A New Addressing Scheme for Discrimination Networks easing
Development and Testing

Karl-Heinz Krempels, Fabian Ohler and Christoph Terwelp
Informatik 5, Information Systems and Databases, RWTH Aachen University, Aachen, Germany

Keywords: Rule-based System, Discrimination Network.

Abstract: Rule Based Systems and Databased Management Systems are important tools for data storage and processing.
Discrimination Networks (DNs) are an efficient way of matching conditions on data. DNs are based on the
paradigm of dynamic programming and save intermediate computing results in network nodes. Therefore, an
efficient scheme for addressing the data in the used memories is required.

Currently used schemes are efficient but sophisticated in operation hindering the development of new ap-
proaches for structural and functional optimization of DNs. We introduce and discuss a new addressing scheme
for fact referencing in DNs with aim to ease the development of optimization approaches for DNs. The scheme

uses fact addresses computed from sets of edges between the nodes in a DN to reference data.

1 INTRODUCTION Section 7 the mode of operation of the algorithm is
shown by an example run. Finally, Section 8 shows

Because of their ability to store, access, and processour plans to improve and implement the presented ap-

large amounts of data Database Management Sys-roach.

tems (DBMSs) and Rule-based Systems (RBSs) are

used in many information systems as information pro-

cessing unit (Brownston et al., 1985) (Forgy, 1981). 2 DISCRIMINATION NETWORKS

A basic function of a RBS and a function of many

DBMSs is to match conditions on the available data.

Checking all data again every time some data changes® DN consists of a set of nodes for conditional tests

performs badly. It is possible to improve the perfor- or join operations for facts. The objective of a DN is

mance by saving intermediate results in memory us- the verification of rule conditions with a minimum of

ing the dynamic programming paradigm. Such condi- test executions.

tion matchers are often based on Discrimination Net- A DN represents the condition of every rule from

works (DNs). Many DN optimization approaches are the rule base by a hierarchic network of intercon-

discussed in (Forgy, 1982), (Miranker, 1987), and nected nodes. So the terminal node of every hierar-

(Hanson, 1993). Their implementation and evaluation chic network is visited only by facts or fact tuples that

is often hindered by the complexity of current DN im- fulfill the corresponding condition. A rule’s condition

plementations (Jamocha Team, 2013) (CLIPS Projectis divided into its atomic tests which are executed by

Team, 2013) (JBoss Drools Team, 2013). To ease thenetwork nodes. The network is constructed with re-

implementation of new optimization approaches, we spect to the syntax of the condition.

introduce a new method to address informationinside Every node has a test set, a memory, one or more

a DN. inputs, and an output connection. The memory keeps
This paper is organized as follows: Section 2 in- a set of fact tuples received by the node throughiits in-

troduces DNs and Section 3 discusses the state of theput connection that have passed the test set. The out-

art for addressing facts in DNs. Section 4 gives a short put connection is used by successor nodes to access

description of the problem which the approach in this the node’s memory and receive natifications about

paper solves. Section 5 presents the new approach tanemory changes. In this way the network saves in-

address facts in an easier way. Section 6 describes atermediate processing results and in this meets the

algorithm using the new address scheme in detail. In dynamic programming requirements. Common DNs

1 18 Krempels K., Ohler F. and Terwelp C..
A New Addressing Scheme for Discrimination Networks easing Development and Testing.
DOI: 10.5220/0004642201180124
In Proceedings of the 2nd International Conference on Data Technologies and Applications (DATA-2013), pages 118-124
ISBN: 978-989-8565-67-9
Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

A New Addressing Scheme for Discrimination Networks easing Development and Testing

consist of four different node types as shown belowin 3 STATE OF THE ART
Fig. 1:
Beta nodes of a DN apply filters to joined fact tuples.
So, there is a need to identify which facts in the tu-
ples the corresponding filters should be applied to. A
simple solution to address a specific fact in a fact tu-
ple is to give the beta node inputs an order. There-
fore, the order of the facts inside the tuple is defined
and the facts can be addressed by their order position
inside the tuple. The order of the facts depends on
the order of the beta node’s inputs and the orders of
the inputs of all preceding beta nodes. So, during the
construction of the network the correct position of a
fact has to be calculated, which gets the more compli-
cated the larger the beta network gets. Current RBS
implementations use rule-compilers which do these
Figure 1: DN example. calculations during network construction. There are
no publications addressing this topic in detail since

Root Node. is a virtual unique node. Its input con- (Forgy, 1982) although improvements would ease de-
nection is connected to the working memory and velopment of optimization algorithms a lot.
receives all changes of facts. As a virtual node itis
missing a memory because it would be equivalent
to the working memory. The output connection 4 OBJECTIVE
provides access to a tuple based representation of
the working memory elements (facts). The root
node has an empty test set.

alpha
network

beta
network

terminal terminal

Optimizations of DN construction algorithms and DN
])) runtime optimization require an efficient way to ad-
AlphaNode. has one input connection, where it re- qress facts in filter conditions easily. Additionally, in-
ceives tuples containing just one fact. The input terna| optimizations of memory usage and tuple pro-
is connected to another alpha node or to the root ¢essing often require flexibility in addressing facts not
node. It checks if the tuples pass the test set and|imijted by a predefined order of facts in tuples. So, the
relays them to the output. It may have a memory gim js to develop an efficient referencing method for
or be virtual, acting as a simple filter. facts which on the one hand is easy to use for network
Beta Node. has more than one input connection. It construction and optimization algorithms, and on the
joins the tuples from the input connections and other hand allows a computation of references which
checks if the resulting tuple passes the test set. Socan be used efficiently during the DN runtime.
it is required not only to react to incoming noti-
fications but to request memory contents from its
predecessors. The input connections can be con-
nected to alpha or beta nodes. It saves all tuples5 APPROACH
which passed the test set in its memory and sends])])
notifications about memory changes through its Observing the fact flow in a DN we recognize that it

output connection. Beta nodes may have an emptyis possible to address an element of a fact tuple in the
test set to enable full joins. DN by the set of edges traversed by the fact since it

left the alpha network (see Fig. 2).
Terminal Node. is a virtual node with one input con- P (9. 2)

i hich i ted t bet Ioh If we would limit the network structure of one rule
nection, which 1S connected to a beta or apha ., qition to a tree we could identify a fact tuple ele-
node. Its purpose is to collect the fact tuples which

fulfill the whole rule condition. So it has an empty ment with only the edge between the alpha and beta

: . ’ _ network. Since the output of one alpha node may be
test set and its output is connected to the conflict used multiple times in a rule condition network, we

set, to fill it have to use more than one edge to address elements
Based on these node types the network consist of twowhich originate from the same alpha node. Although
parts. The alpha network containing the root node and these additional edges are only required in this partic-
all alpha nodes, and the beta network containing betaular cases we use the full set of edges traversed by the
and terminal nodes. fact to obtain an easy to use addressing scheme.

119

DATA 2013 - 2nd International Conference on Data Management Technologies and Applications

Figure 2: Address translation in the edges.

Because of the complexity of handling these sets of
edges as addresses we reduce the sets to a unique
identifier. Therewith, we simplify the comparison of
addresses and the conversion of addresses into the po-
sitions of fact tuple elements. This is possible, be- % 'SX, NG SR L BEX AT 4
cause it is not necessary to determine which edges are Ay 0oy) A (05, x5) A Sy (5, X)) A f(g, X) A S (55, X)
in the set. The unique address identifiers are gener-
ated by constructing the corresponding edge set. The
construction starts at the outputs of the alpha network.
For edge sets consisting of only one edge, this edge
must connect the alpha with the beta network. These
edges are annotated with a unique address identifier.list_
So, if the address for the edge set with only one edge
is required, it can be acquired from the edge. For edge
sets with more than one edge, we assign a map to
every edge inside the beta network. It maps the ad- 5\ y"s on until the alpha network is reached. Nor-
dresses of all elements of the fact tuples of the SOUTCe a1y this list should only be used to access the mem-
beta node (to whose output the edge is connected) toory of the direct parents. Address comparisons are
new addresses valid for fact tuples of the target betapossible by direct object reference comparison be-
node (to whose input it is connected). So, we retrieve cause address objects are unique.

the address of a tuple element by successive mappin

N9 The impact on the runtime of a DN would be lin-
of the addresses through all edges of the addressmgear at mosl?[, because only single addresses have to be

;5 de;ﬁ:i-friltfrtsvv%i\évzz;ii,\;gshta\éeréo Sﬁgnrg::ﬁssgasﬁ2Utc(;r:]|}/accessed and no searches through the linked addresses
struction 6f the DN q 9 are required. It could be reduced to no change to
: runtime behaviour by translating the addresses used

To process facts in the network some more infor- qyring construction time into the previously used ad-
mation is required. On the one hand, the inputs of a gressing scheme for runtime.

beta node need to know their addresses to apply the

node’s filter to an incoming fact tuple. Because the

input already has a mapping of addresses valid in the

parent node to addresses valid in the child node, thesdd NETWORK CONSTRUCTION
information is available. On the other hand, a map-

ping of addresses to their corresponding input and theln this Section the mode of operation of a DN con-
address in the parent node is required to be able tostruction algorithm is discussed. A DN is constructed
access the fact tuples in the parent node’s memory, if based on rule conditions defined in a rule description
a fact tuple has arrived on another input and a join language. The DNs derived from the same rule de-
has to be performed. To solve this problem, the par- scription may differin the order of filter application

Figure 3: DN, edges annotated with address mappings.

ent's node memory and the corresponding address is
attached to new addresses.
In the scope of object orientation we get a linked

It starts with the address in the current node,
which contains a reference to the parent nodes mem-
ory and an address which is valid in the parent nodes
scope. This address again has a reference to its parent

120

A New Addressing Scheme for Discrimination Networks easing Development and Testing

Algorithm 1: Function for creating addresses.
Input: The outpub for which the address is created.
The address’ which is mapped to this address
by the outpub.
Output: A new address.
1: function newaddres§a’, 0)

2: ajg «+ unique identifier
3 doutput <— O

4: aprev<a

5. returna

6: end function

The new address is assigned a unique identjer
and both parameters.

For a better understanding of the following algo-
rithms we begin with introducing the variables used to
keep the state of the network during constructidh.
is the set of nodes the DN is currently maderofis a
map, which maps the variables to their corresponding
addresses they are currently available un@ekeeps
track of the variables which are combined in the tu-
ples of the network.

and optimization of the DN structure. As this is out
of scope of this paper, an ordered list of the filters of a
rule condition is expected as input for the construction
of a DN. So, the order the filters are applied is defined
in a preceding optimization phase and is not part of
this construction algorithm.

Algorithm 2. Function for creating nodes.

Input: The variablegvs,...,vm) on which the filter
f should be applied. Current variable to-address
mappingm. The setG of the tuples in which the
variables are available.
Output: A new noden.
1: function newnod€(f, (v, ...,Vm)),m G)

2. Noutputs$— {}
3: Ninputs <— {}
4. forall G ={v;,...,v;} €G,
5: with Ji € {1,...,m} :v; € G' do
6: 0 <« m(\/l)out put
7: |f Oconnecﬂon: undeflnedheﬂ
8: Oconnections— N
9 Ninputs <— NinputsY {o}
10: ese
11: 0' <+ newout put(Onode
12: m<—
O{ranslation(m(v) DTEV)/
Vi ,ifve G
m(v)
, otherwis
13: Ninputs <— NinputsY {0/}
14: end if
15: end for
16: for allie{1,..n} do
17: a <« m(v)
18: end for
19: nyier < (f,(a1,...,a@n))
20: return (n,m)

21: end function

The function given in Algorithm 1 creates a new ad-

Algorithm 3: Function for node outputs.

Input: The noden for which a new output should be
created.
Output: A new outputo of the noden.
1: function newout put(n)
Onode<— N
Nout puts < Nout putsJ {0}
Oaddressmap < { (@ newaddressa,0)) |
an' e Ninputs - (@,a) € n/addressmap}
Otranslation <—
a/
if (a,@) € Oaddressmap
undefined

] , otherwis
7. Oconnections— undefined

8: returno
9: end function

2
3
4.
5:
6

In Algorithm 2 a function is described which creates
a new node in the DN. It requires the filtérand

the variabless, ..., v to which the filter should be
applied. Additionally, the se®& must be supplied to
enable connecting the same node to two inputs of the
new node. In the lines 4 to 15 all tuples containing
variables the filter should be applied on are visited.
In line 6 the output corresponding to the tuple is se-
lected. Line 7 to 8 check if the output is already con-
nected to a node. If it isn’t it can be used as input
for the newly created node. Otherwise in line 11 to
13 a new output is created and the address map is up-
dated to match the new addresses of the variables of
the tuple. This is especially required if a node should
be connected to the new node more than once. The
creation of the initial output of the node and the cor-
responding change of the $8tand mappingnis not
handled in this function because it is also required in
the case of re-usage of an already existing node.

The function given in Algorithm 3 creates a new
output for an existing node. The only parameter is
the noden for which the output should be created.
The output is assigned the source node and is added

dress for an edge between two nodes using the currento the node’s output set. An address map for the out-

address of the facd’ and the edg® as parameters.

put is generated mapping all addresses of inputs of the

121

DATA 2013 - 2nd International Conference on Data Management Technologies and Applications

source node to newly created addresses. Additionally puts for the first variable tuple i@ and creates an ad-
a translation function is created which maps the ad- dress mapping for the variables in the tuple for each
dresses for easier use. output. In lines 13 to 20 each of these mappings is
combined with each of the recursively generated map-
Algorithm 4: Function for calculating all possible pings for all other variable tuples. Lines 17 to 19 are
addresses for variables in a filter. required to make sure that different variable tuples are
Input: Variables {vi,...,vm} of a filter to gener- not mapped to the same addresses.
ate possible addresses for. Current variable-to-
address mappingn. Current variable grouping Algorithm 5: Network construction algorithm, sup-
per outpu(G.)) porting node sharing.
Output_: Set of address mappingsturnmappings Input: The list F of filters with their variables on
which are relevant for searching a reusable node. which they should be applied in the order in

L function possibleaddressevs, .., Vm}, M, G) which they should be implemented in the net-

2: N {1’_“." m} work. A functionm mapping variable identifiers
3: V/<_ vliel} , to addresses of edges from the alpha network.
‘51: Y/ i gé’v;tlg Vé é,(f Output: A discrimination network with the nodes in
: | N.
6 A= {mv)li €1} 1: function createnetworkF, m
7. O« {o[Fac A": 0 < ((autput)node)outputs 2 N« {1 {Fm)
8: | mappings— {m} 3 G {{V}3(f.V)eF veV)
9: for all o€ O\ m(vy)output do 4 for all (f,(Vi,o.,Vim)) € F do
10: neV\Lmapplcr)1tg<— e 5: for all possiblemappinge
ranslatiom 1A ™) prev) 6: possibleaddresse§ vy, ...,Vm},m,G) do
ifveV .
Vi m(v) ’ 7 forallie{1,....m}do
otherwis 8: gif<— possiblemappingvi)
; ; ; 9: end for
11: map pings— mappings) {newmappin .
12 end folip g ppings/{ pping 10: if 3n" € N nfje, = (f, (a1, ...,am)) then
13: returnmappings— {} 1L nen _
14: for all a€ mappingsa € 12: m < possmlem/appmg
15: possibleaddresse®/ —V’,m,G) do 13: 0, With Onoge= N
a(v) 15: end if
JifveV’ 16: end for
VT aw) 17: if lisse{n) then
, otherwis 18: (n,m) «
17: if [{newmappindv)|ve V}| = V| then newnod€(f,(as,...,an)))
18: returnmappings— 19: 0+ newout put(n)
returnmappings {newmapping 20: end if
19: end if 21 G+ {XeGFie{l,..m:veX}
20: end for 22: m<—
21: returnreturnaddresses Otranslation(M(V))
22: end function Jifve U g
Vi— geG
m(v)
Algorithm 4 describes a function to create a set of , otherwis
mappings of a given set of variables onto all possi- 23: G+ (G-GHu{U g}
ble addresses. This is required because in some cases 9@

variables are mapped to addresses of the wrong out-24: €nd for

put of a node preventing node sharing. Without this 2> eturnN

function it would be possible to generate a valid net- 26: end function

work for every rule condition, but some constructs

would not be possible, as we will see in the exam- Finally, the function given in Algorithm 5 constructs
ple below. This function widens the search space for the network using all functions discussed. Parameters
nodes for node sharing and works in a recursive man-to this function are the list of filter& in the order
ner. In lines 9 to 12 it searches for all alternative out- of implementation and a mapping of all variables

122

A New Addressing Scheme for Discrimination Networks easing Development and Testing

Table 1: The mappingn after each filter is added to the Table 2: The values of the s€tafter each filter is added to

network. the network.
MQO|Ve|V2| V3| Va|Vs | Vs |V7| Vg | Vg G
StepQax|az| az | a3 | a2 | as (a1 | & | &4
Step 1 as | ag Step 0 %\{/;/i}{\{/;/f{a {V3}7 {V4}a {V5}7 {Vﬁ}a {V7}7
Step 2 as | ag :
{{V17V2}7 {Vg}, {V4}7 {V5}’ {V6}7 {V7}’
Step 3 % | % SCP | {va). {vo}}
Step 4 a7 | 3 % Step 2 {{V17V2}7 {V35V4}a {V5}7 {Vﬁ}a {V7}7 {Vg}a
Step 5 an | a a P {vo}}
p 12 | 13 14 9
Step 6 aiz| a3 aia Step 3 %{V}%}Vzh {vs,va},{vs,V6},{v7},{vs},
Vg
to the addresses of the outputs of the alpha network. sep 4 {{va,v2,v7},{Va,Va}, {Vs,V6}, {Vs},
Lines 2 and 3 are initializing the state of the DN. In {vot}
lines 4 to 24 the filters df are processed sequentially.
Lines 5 to 16 search for existing nodes already imple- Step 5| {{va,v2, vz}, {Va,va, Ve}, {Vs, Vo1, {vol }
menting the filter. Using the function from Algorithm
4 all possible nodes for node sharing are found. If Step 6| {{va,V2,V7}, {Va,Va, Va}, {Vs, Ve, Vo }

a node is found, it is used and the possible address
mapping generated in Algorithm 4 becomes the cur- Newly created beta node (Table 1, Step G)is up-
rent address mapping. In lines 17 to 20 a new node isdated to show that; andv; are joined and available
created if no existing node to share was found. Lines in one tuple (Table 2, Step 1).

21 to 23 update the address mapping for all variables
which are contained in the same tuples as the vari-
ables used by the filter. S€tis updated to match the
tuples which are available at the new output.

7 EXAMPLE

An example run of the given algorithm is performed
using the list of filter-variable tuplels and the map-
ping mgiven in Table 1, Step 0 as parameters.

F= ((fl,Vl,Vz),
(fl,Vg,V4),
(f1,Vs,Ve),
(f2,v1,V2,v7),
(f2,V3,Va,Vs),

(f2,V5,V6,Ve))

Figure 4: Example DN, constructed using the introduced
At the beginning of the network construction the set algorithm.
G is initialized as shown in Table 2, Step 0. We
start with the construction of the network node for The next tuple(fi,vs,vs) is processed. Again the
(f1,v1,v2) € F. The call of thepossibleaddresses function possibleaddresseseturns only the current
function returns only the current mappingbecause = mappingm because all nodes only have one output.
at this time every alpha node has only one output. v3 andv, are mapped by the mappimg to the ad-
Since there is no beta node in the current network, dresses, andas. The previously created beta node
anew one is created. The output of the new node getsalready provides this filter-address combination, so it
the mapping ofa; to the new addresas and az to is reused as a shared node. The mappimgupdated,
as. The mappingn is updated, so it maps variables so it maps variableg; andv, to their new addresses
v andv; to their new addresses in the output of the inthe output of the reused beta node (Table 1, Step 2).

123

DATA 2013 - 2nd International Conference on Data Management Technologies and Applications

The sefG is updated to show that andv, are joined (e.g. fact memory or join-optimization) with minimal

and available in one tuple (Table 2, Step 2). code adaptation. Simplification of the algorithms es-
The next tuple f1,vs, vg) is processed in a similar ~ pecially the handling of shared network nodes is de-

way to the previous tupléfi,v3,v4). The mapping sirable and is objective of our future work.

mand the se6 are updated accordingly (Table 1 and

Table 2, Step 3).

Next, the tuple(fa,vi,v2,v7) is processed. The REFERENCES
function possibleaddresseseturns only the current

mappingm because all nodes have only one output. grownston, L., Farrell, R., Kant, E., and Martin, N. (1985).

The variables, v2, andv; are mapped to their corre- Programming expert systems in OPS5: an introduc-
sponding addressas, ag, anda;. Since no node with tion to rule-based programming Addison-Wesley
this filter-address combination exists, againanewnet- Longman Publishing Co., Inc., Boston, MA, USA.

work node is created. The new output of this node CLIPS Project Team (2013). ~ CLIPS Project Page.
maps the existing addressas ag, anda; to the new http.//cl|psrules.sourceforg’e.net/. _

addresses, ag, andag. The mappingn is updated Forgy, C. L. (1981).f0cl:385 UsersSManuaI. gechnlqal repﬁ)rt,
to map the variables to their new addresses (Table 1, Department of Computer Science, Carnegie-Mellon

: University.
Step 4). The se6 is updated to show tha, v,, and Forgy, C. L. (1982). Rete: A fast algorithm for the many

v7 are available in one tuple now (Table 2, Step 4). pattern/many object pattern match probletificial

The next tuple(fs,vs,va,Vg) is processed. The Intelligence 19(1):17 — 37.
functionpossibleaddressestill returns only the cur- = Hanson, E. N. (1993). Gator: A Discrimination Network
rent mappingn because all nodes have only one out- Structure for Active Database Rule Condition Match-
put. The variabless, v4, andvg are mapped to their ing. Technical report, University of Florida.

addressess, ag, andas. Since no node with this Jamocha '_I'eam (2013). Jamocha Project Page. _http://
filter-address combination exists, a new network node WWW'J;‘mOCha")rg’ http://sourceforge.net/projects/
is created. But because the output of the node cre- o Jar;oc IaIT 2013). JB Drools Proiect P
ated for the tupld f1,v1,v2) is already connected to oss Drools Team () 0ss Droois Froject Fage.

h d . d for thi d http://www.jboss.org/drools/.
another node, a new output is created for this NOAe. yyanrer P, (1987). TREAT: A Better Match Algorithm

This output maps the addressgsandag to the new for Al Production Systems; Long Version. Techni-
addresseaioandaj1. The newly created node is con- cal report, University of Texas at Austin, Austin, TX,
nected to this output. The mappingand the seG USA.

are updated accordingly again (Table 1 and Table 2,

Step 5).

The last tuple(f,,vs,ve, V) is processed. The
functionpossibleaddresseseturns now a set contain-
ing the current mapping and a mapping identical to
mexcept for the variableg andvg which are mapped
to the addressem o andas;. For the first mapping of
the variables to the address®s ag andas, no node
implementing the filter-address combination is found.
For the second mapping to the addressgsa;; and
a4, the node created fdrf2, vz, va,Vs) is found. This
node is reused and the mappimgand the seG are
updated accordingly again (Table 1 and Table 2, Step
6). The resulting DN is shown in Figure 4.

8 OUTLOOK

The described approach is currently in the process of
implementation for the RBS Jamocha. It will be used
to make fast prototyping of optimized construction al-
gorithms and reconstruction algorithms possible. As
an additional benefit of the clean and flexible interface
it will be possible to exchange major parts of the DN

124

