
A New Addressing Scheme for Discrimination Networks easing
Development and Testing

Karl-Heinz Krempels, Fabian Ohler and Christoph Terwelp
Informatik 5, Information Systems and Databases, RWTH Aachen University, Aachen, Germany

Keywords: Rule-based System, Discrimination Network.

Abstract: Rule Based Systems and Databased Management Systems are important tools for data storage and processing.
Discrimination Networks (DNs) are an efficient way of matching conditions on data. DNs are based on the
paradigm of dynamic programming and save intermediate computing results in network nodes. Therefore, an
efficient scheme for addressing the data in the used memories is required.
Currently used schemes are efficient but sophisticated in operation hindering the development of new ap-
proaches for structural and functional optimization of DNs. We introduce and discuss a new addressing scheme
for fact referencing in DNs with aim to ease the development of optimization approaches for DNs. The scheme
uses fact addresses computed from sets of edges between the nodes in a DN to reference data.

1 INTRODUCTION

Because of their ability to store, access, and process
large amounts of data Database Management Sys-
tems (DBMSs) and Rule-based Systems (RBSs) are
used in many information systems as information pro-
cessing unit (Brownston et al., 1985) (Forgy, 1981).
A basic function of a RBS and a function of many
DBMSs is to match conditions on the available data.
Checking all data again every time some data changes
performs badly. It is possible to improve the perfor-
mance by saving intermediate results in memory us-
ing the dynamic programming paradigm. Such condi-
tion matchers are often based on Discrimination Net-
works (DNs). Many DN optimization approaches are
discussed in (Forgy, 1982), (Miranker, 1987), and
(Hanson, 1993). Their implementation and evaluation
is often hindered by the complexity of current DN im-
plementations (Jamocha Team, 2013) (CLIPS Project
Team, 2013) (JBoss Drools Team, 2013). To ease the
implementation of new optimization approaches, we
introduce a new method to address information inside
a DN.

This paper is organized as follows: Section 2 in-
troduces DNs and Section 3 discusses the state of the
art for addressing facts in DNs. Section 4 gives a short
description of the problem which the approach in this
paper solves. Section 5 presents the new approach to
address facts in an easier way. Section 6 describes an
algorithm using the new address scheme in detail. In

Section 7 the mode of operation of the algorithm is
shown by an example run. Finally, Section 8 shows
our plans to improve and implement the presented ap-
proach.

2 DISCRIMINATION NETWORKS

A DN consists of a set of nodes for conditional tests
or join operations for facts. The objective of a DN is
the verification of rule conditions with a minimum of
test executions.

A DN represents the condition of every rule from
the rule base by a hierarchic network of intercon-
nected nodes. So the terminal node of every hierar-
chic network is visited only by facts or fact tuples that
fulfill the corresponding condition. A rule’s condition
is divided into its atomic tests which are executed by
network nodes. The network is constructed with re-
spect to the syntax of the condition.

Every node has a test set, a memory, one or more
inputs, and an output connection. The memory keeps
a set of fact tuples received by the node through its in-
put connection that have passed the test set. The out-
put connection is used by successor nodes to access
the node’s memory and receive notifications about
memory changes. In this way the network saves in-
termediate processing results and in this meets the
dynamic programming requirements. Common DNs

118 Krempels K., Ohler F. and Terwelp C..
A New Addressing Scheme for Discrimination Networks easing Development and Testing.
DOI: 10.5220/0004642201180124
In Proceedings of the 2nd International Conference on Data Technologies and Applications (DATA-2013), pages 118-124
ISBN: 978-989-8565-67-9
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

consist of four different node types as shown below in
Fig. 1:

beta

alpha

terminal

alpha

alpha

alpha

terminal

beta

root

alpha

network

beta

network

Figure 1: DN example.

Root Node. is a virtual unique node. Its input con-
nection is connected to the working memory and
receives all changes of facts. As a virtual node it is
missing a memory because it would be equivalent
to the working memory. The output connection
provides access to a tuple based representation of
the working memory elements (facts). The root
node has an empty test set.

Alpha Node. has one input connection, where it re-
ceives tuples containing just one fact. The input
is connected to another alpha node or to the root
node. It checks if the tuples pass the test set and
relays them to the output. It may have a memory
or be virtual, acting as a simple filter.

Beta Node. has more than one input connection. It
joins the tuples from the input connections and
checks if the resulting tuple passes the test set. So
it is required not only to react to incoming noti-
fications but to request memory contents from its
predecessors. The input connections can be con-
nected to alpha or beta nodes. It saves all tuples
which passed the test set in its memory and sends
notifications about memory changes through its
output connection. Beta nodes may have an empty
test set to enable full joins.

Terminal Node. is a virtual node with one input con-
nection, which is connected to a beta or alpha
node. Its purpose is to collect the fact tuples which
fulfill the whole rule condition. So it has an empty
test set and its output is connected to the conflict
set, to fill it.

Based on these node types the network consist of two
parts. The alpha network containing the root node and
all alpha nodes, and the beta network containing beta
and terminal nodes.

3 STATE OF THE ART

Beta nodes of a DN apply filters to joined fact tuples.
So, there is a need to identify which facts in the tu-
ples the corresponding filters should be applied to. A
simple solution to address a specific fact in a fact tu-
ple is to give the beta node inputs an order. There-
fore, the order of the facts inside the tuple is defined
and the facts can be addressed by their order position
inside the tuple. The order of the facts depends on
the order of the beta node’s inputs and the orders of
the inputs of all preceding beta nodes. So, during the
construction of the network the correct position of a
fact has to be calculated, which gets the more compli-
cated the larger the beta network gets. Current RBS
implementations use rule-compilers which do these
calculations during network construction. There are
no publications addressing this topic in detail since
(Forgy, 1982) although improvements would ease de-
velopment of optimization algorithms a lot.

4 OBJECTIVE

Optimizations of DN construction algorithms and DN
runtime optimization require an efficient way to ad-
dress facts in filter conditions easily. Additionally, in-
ternal optimizations of memory usage and tuple pro-
cessing often require flexibility in addressing facts not
limited by a predefined order of facts in tuples. So, the
aim is to develop an efficient referencing method for
facts which on the one hand is easy to use for network
construction and optimization algorithms, and on the
other hand allows a computation of references which
can be used efficiently during the DN runtime.

5 APPROACH

Observing the fact flow in a DN we recognize that it
is possible to address an element of a fact tuple in the
DN by the set of edges traversed by the fact since it
left the alpha network (see Fig. 2).

If we would limit the network structure of one rule
condition to a tree we could identify a fact tuple ele-
ment with only the edge between the alpha and beta
network. Since the output of one alpha node may be
used multiple times in a rule condition network, we
have to use more than one edge to address elements
which originate from the same alpha node. Although
these additional edges are only required in this partic-
ular cases we use the full set of edges traversed by the
fact to obtain an easy to use addressing scheme.

A�New�Addressing�Scheme�for�Discrimination�Networks�easing�Development�and�Testing

119

β

β

b

a

a => e
b => f

c => g
d => h

β

d

c

(a, b) (c, d)

(e, f, g, h)

Figure 2: Address translation in the edges.

Because of the complexity of handling these sets of
edges as addresses we reduce the sets to a unique
identifier. Therewith, we simplify the comparison of
addresses and the conversion of addresses into the po-
sitions of fact tuple elements. This is possible, be-
cause it is not necessary to determine which edges are
in the set. The unique address identifiers are gener-
ated by constructing the corresponding edge set. The
construction starts at the outputs of the alpha network.
For edge sets consisting of only one edge, this edge
must connect the alpha with the beta network. These
edges are annotated with a unique address identifier.
So, if the address for the edge set with only one edge
is required, it can be acquired from the edge. For edge
sets with more than one edge, we assign a map to
every edge inside the beta network. It maps the ad-
dresses of all elements of the fact tuples of the source
beta node (to whose output the edge is connected) to
new addresses valid for fact tuples of the target beta
node (to whose input it is connected). So, we retrieve
the address of a tuple element by successive mapping
of the addresses through all edges of the addressing
set. That way we never have to compare sets but only
identifiers. This satisfies the requirements during con-
struction of the DN.

To process facts in the network some more infor-
mation is required. On the one hand, the inputs of a
beta node need to know their addresses to apply the
node’s filter to an incoming fact tuple. Because the
input already has a mapping of addresses valid in the
parent node to addresses valid in the child node, these
information is available. On the other hand, a map-
ping of addresses to their corresponding input and the
address in the parent node is required to be able to
access the fact tuples in the parent node’s memory, if
a fact tuple has arrived on another input and a join
has to be performed. To solve this problem, the par-

f
4
(a

13
, a

10
)

f
1
(a

2
, a

3
)

∈ X
3

∈ X
4

∈ X
2

f
2
(a

5
, a

1
) f

3
(a

4
, a

8
)

∈ X
1

a
1

a
2

a
3

a
4

a
2
→a

7

a
3
→a

8

a
2
→a

5

a
3
→a

6

a
1
→a

9

a
5
→a

10

a
6
→a

11

a
7
→a

12

a
8
→a

13

a
4
→a

14

x
1

∈ X
1

∧ x
2
, x

3
∈ X

2
∧ x

4
, x

5
∈ X

3
∧ x

6
∈ X

4

∧ f
1
(x

2
, x

4
) ∧ f

1
(x

3
, x

5
) ∧ f

2
(x

2
, x

1
) ∧ f

3
(x

5
, x

6
) ∧ f

4
(x

2
, x

6
)

root

Figure 3: DN, edges annotated with address mappings.

ent’s node memory and the corresponding address is
attached to new addresses.

In the scope of object orientation we get a linked
list. It starts with the address in the current node,
which contains a reference to the parent nodes mem-
ory and an address which is valid in the parent nodes
scope. This address again has a reference to its parent
and so on until the alpha network is reached. Nor-
mally this list should only be used to access the mem-
ory of the direct parents. Address comparisons are
possible by direct object reference comparison be-
cause address objects are unique.

The impact on the runtime of a DN would be lin-
ear at most, because only single addresses have to be
accessed and no searches through the linked addresses
are required. It could be reduced to no change to
runtime behaviour by translating the addresses used
during construction time into the previously used ad-
dressing scheme for runtime.

6 NETWORK CONSTRUCTION

In this Section the mode of operation of a DN con-
struction algorithm is discussed. A DN is constructed
based on rule conditions defined in a rule description
language. The DNs derived from the same rule de-
scription may differ in the order of filter application

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

120

Algorithm 1: Function for creating addresses.
Input: The outputo for which the address is created.

The addressa′ which is mapped to this address
by the outputo.

Output: A new addressa.
1: function newaddress(a′,o)
2: aid ← unique identifier
3: aout put← o
4: aprev← a′

5: return a
6: end function

and optimization of the DN structure. As this is out
of scope of this paper, an ordered list of the filters of a
rule condition is expected as input for the construction
of a DN. So, the order the filters are applied is defined
in a preceding optimization phase and is not part of
this construction algorithm.

Algorithm 2: Function for creating nodes.

Input: The variables(v1, ...,vm) on which the filter
f should be applied. Current variable to address
mappingm. The setG of the tuples in which the
variables are available.

Output: A new noden.
1: function newnode((f ,(v1, ...,vm)),m,G)
2: nout puts← {}
3: ninputs←{}
4: for all G′ = {v′1, ...,v

′
m′} ∈G,

5: with ∃i ∈ {1, ...,m} : vi ∈G′ do
6: o←m(v′1)out put
7: if oconnection= undefinedthen
8: oconnection← n
9: ninputs← ninputs∪{o}

10: else
11: o′← newout put(onode)
12: m←






v 7→











o′translation(m(v)prev)
, if v∈G′

m(v)
, otherwise







13: ninputs← ninputs∪{o′}
14: end if
15: end for
16: for all i ∈ {1, ...n} do
17: ai ←m(vi)
18: end for
19: nf ilter ← (f ,(a1, ...,an))
20: return (n,m)
21: end function

The function given in Algorithm 1 creates a new ad-
dress for an edge between two nodes using the current
address of the facta′ and the edgeo as parameters.

The new address is assigned a unique identifieraid
and both parameters.

For a better understanding of the following algo-
rithms we begin with introducing the variables used to
keep the state of the network during construction.N
is the set of nodes the DN is currently made of.m is a
map, which maps the variables to their corresponding
addresses they are currently available under.G keeps
track of the variables which are combined in the tu-
ples of the network.

Algorithm 3: Function for node outputs.
Input: The noden for which a new output should be

created.
Output: A new outputo of the noden.
1: function newout put(n)
2: onode← n
3: nout puts← nout puts∪{o}
4: oaddressmap← {(a,newaddress(a,o)) |
5: ∃n′ ∈ ninputs : (a′,a) ∈ n′addressmap}
6: otranslation←






a 7→











a′

, if (a,a′) ∈ oaddressmap
undefined

, otherwise







7: oconnection← undefined
8: return o
9: end function

In Algorithm 2 a function is described which creates
a new node in the DN. It requires the filterf and
the variablesv1, ...,vm to which the filter should be
applied. Additionally, the setG must be supplied to
enable connecting the same node to two inputs of the
new node. In the lines 4 to 15 all tuples containing
variables the filter should be applied on are visited.
In line 6 the output corresponding to the tuple is se-
lected. Line 7 to 8 check if the output is already con-
nected to a node. If it isn’t it can be used as input
for the newly created node. Otherwise in line 11 to
13 a new output is created and the address map is up-
dated to match the new addresses of the variables of
the tuple. This is especially required if a node should
be connected to the new node more than once. The
creation of the initial output of the node and the cor-
responding change of the setG and mappingm is not
handled in this function because it is also required in
the case of re-usage of an already existing node.

The function given in Algorithm 3 creates a new
output for an existing node. The only parameter is
the noden for which the output should be created.
The output is assigned the source node and is added
to the node’s output set. An address map for the out-
put is generated mapping all addresses of inputs of the

A�New�Addressing�Scheme�for�Discrimination�Networks�easing�Development�and�Testing

121

source node to newly created addresses. Additionally
a translation function is created which maps the ad-
dresses for easier use.

Algorithm 4: Function for calculating all possible
addresses for variables in a filter.
Input: Variables {v1, ...,vm} of a filter to gener-

ate possible addresses for. Current variable-to-
address mappingm. Current variable grouping
per outputG.

Output: Set of address mappingsreturn mappings
which are relevant for searching a reusable node.

1: function possibleaddresses({v1, ...,vm}, m, G)
2: I ←{1, ...,m}
3: V←{vi |i ∈ I}
4: V ′ ∈G, with v1 ∈G′

5: I ′←{i ∈ I |vi ∈G′}
6: A′←{m(vi)|i ∈ I ′}
7: O←{o|∃a∈ A′ : o∈ ((aout put)node)out puts}
8: mappings← {m}
9: for all o∈O\m(v1)out put do

10: newmapping←





v 7→











otranslation(m(v)prev)
, if v∈V ′

m(v)
, otherwise







11: mappings←mappings∪{newmapping}
12: end for
13: return mappings←{}
14: for all a∈mappings,a′ ∈
15: possibleaddresses(V−V′,m,G) do
16: newmapping←






v 7→











a(v)
, if v∈V ′

a′(v)
, otherwise







17: if |{newmapping(v)|v∈V}|= |V| then
18: return mappings←

return mappings∪{newmapping}
19: end if
20: end for
21: return return addresses
22: end function

Algorithm 4 describes a function to create a set of
mappings of a given set of variables onto all possi-
ble addresses. This is required because in some cases
variables are mapped to addresses of the wrong out-
put of a node preventing node sharing. Without this
function it would be possible to generate a valid net-
work for every rule condition, but some constructs
would not be possible, as we will see in the exam-
ple below. This function widens the search space for
nodes for node sharing and works in a recursive man-
ner. In lines 9 to 12 it searches for all alternative out-

puts for the first variable tuple inG and creates an ad-
dress mapping for the variables in the tuple for each
output. In lines 13 to 20 each of these mappings is
combined with each of the recursively generated map-
pings for all other variable tuples. Lines 17 to 19 are
required to make sure that different variable tuples are
not mapped to the same addresses.

Algorithm 5: Network construction algorithm, sup-
porting node sharing.
Input: The list F of filters with their variables on

which they should be applied in the order in
which they should be implemented in the net-
work. A functionm mapping variable identifiers
to addresses of edges from the alpha network.

Output: A discrimination network with the nodes in
N.

1: function createnetwork(F,m)
2: N←{}
3: G←{{v}|∃(f ,V) ∈ F : v∈V}
4: for all (f ,(v1, ...,vm)) ∈ F do
5: for all possiblemapping∈
6: possibleaddresses({v1, ...,vm},m,G) do
7: for all i ∈ {1, ...,m} do
8: ai ← possiblemapping(vi)
9: end for

10: if ∃n′ ∈N : n′f ilter = (f ,(a1, ...,am)) then
11: n← n′

12: m← possiblemapping
13: o,with onode= n′

14: Break for loop.
15: end if
16: end for
17: if !isset(n) then
18: (n,m)←

newnode((f ,(a1, ...,an)))
19: o← newout put(n)
20: end if
21: G′←{X ∈G|∃i ∈ {1, ...,m} : vi ∈ X}
22: m←









v 7→















otranslation(m(v))
, if v∈

⋃

g∈G′
g

m(v)
, otherwise









23: G← (G−G′)∪{
⋃

g∈G′
g}

24: end for
25: return N
26: end function

Finally, the function given in Algorithm 5 constructs
the network using all functions discussed. Parameters
to this function are the list of filtersF in the order
of implementation and a mappingm of all variables

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

122

Table 1: The mappingm after each filter is added to the
network.

m() v1 v2 v3 v4 v5 v6 v7 v8 v9

Step 0 a2 a3 a2 a3 a2 a3 a1 a4 a4

Step 1 a5 a6

Step 2 a5 a6

Step 3 a5 a6

Step 4 a7 a8 a9

Step 5 a12 a13 a14

Step 6 a12 a13 a14

to the addresses of the outputs of the alpha network.
Lines 2 and 3 are initializing the state of the DN. In
lines 4 to 24 the filters ofF are processed sequentially.
Lines 5 to 16 search for existing nodes already imple-
menting the filter. Using the function from Algorithm
4 all possible nodes for node sharing are found. If
a node is found, it is used and the possible address
mapping generated in Algorithm 4 becomes the cur-
rent address mapping. In lines 17 to 20 a new node is
created if no existing node to share was found. Lines
21 to 23 update the address mapping for all variables
which are contained in the same tuples as the vari-
ables used by the filter. SetG is updated to match the
tuples which are available at the new output.

7 EXAMPLE

An example run of the given algorithm is performed
using the list of filter-variable tuplesF and the map-
pingmgiven in Table 1, Step 0 as parameters.

F = ((f1,v1,v2),

(f1,v3,v4),

(f1,v5,v6),

(f2,v1,v2,v7),

(f2,v3,v4,v8),

(f2,v5,v6,v9))

At the beginning of the network construction the set
G is initialized as shown in Table 2, Step 0. We
start with the construction of the network node for
(f1,v1,v2) ∈ F . The call of thepossibleaddresses
function returns only the current mappingm because
at this time every alpha node has only one output.
Since there is no beta node in the current network,
a new one is created. The output of the new node gets
the mapping ofa2 to the new addressa5 and a3 to
a6. The mappingm is updated, so it maps variables
v1 andv2 to their new addresses in the output of the

Table 2: The values of the setG after each filter is added to
the network.

G

Step 0
{{v1},{v2},{v3},{v4},{v5},{v6},{v7},
{v8},{v9}}

Step 1
{{v1,v2},{v3},{v4},{v5},{v6},{v7},
{v8},{v9}}

Step 2
{{v1,v2},{v3,v4},{v5},{v6},{v7},{v8},
{v9}}

Step 3
{{v1,v2},{v3,v4},{v5,v6},{v7},{v8},
{v9}}

Step 4
{{v1,v2,v7},{v3,v4},{v5,v6},{v8},
{v9}}

Step 5 {{v1,v2,v7},{v3,v4,v8},{v5,v6},{v9}}

Step 6 {{v1,v2,v7},{v3,v4,v8},{v5,v6,v9}}

newly created beta node (Table 1, Step 1).G is up-
dated to show thatv1 andv2 are joined and available
in one tuple (Table 2, Step 1).

f
1
(a

2
, a

3
)

f
2
(a

5
, a

6
, a

1
) f

2
(a

10
, a

11
, a

4
)

a
1

a
2

a
3

a
4

a
2
→a

10

a
3
→a

11

a
2
→a

5

a
3
→a

6

a
1
→a

7

a
5
→a

8

a
6
→a

9

a
10

→a
12

a
11

→a
13

a
4
→a

14

Figure 4: Example DN, constructed using the introduced
algorithm.

The next tuple(f1,v3,v4) is processed. Again the
function possibleaddressesreturns only the current
mappingm because all nodes only have one output.
v3 and v4 are mapped by the mappingm to the ad-
dressesa2 anda3. The previously created beta node
already provides this filter-address combination, so it
is reused as a shared node. The mappingm is updated,
so it maps variablesv3 andv4 to their new addresses
in the output of the reused beta node (Table 1, Step 2).

A�New�Addressing�Scheme�for�Discrimination�Networks�easing�Development�and�Testing

123

The setG is updated to show thatv3 andv4 are joined
and available in one tuple (Table 2, Step 2).

The next tuple(f1,v5,v6) is processed in a similar
way to the previous tuple(f1,v3,v4). The mapping
m and the setG are updated accordingly (Table 1 and
Table 2, Step 3).

Next, the tuple(f2,v1,v2,v7) is processed. The
function possibleaddressesreturns only the current
mappingm because all nodes have only one output.
The variablesv1, v2, andv7 are mapped to their corre-
sponding addressesa5, a6, anda1. Since no node with
this filter-address combination exists, again a new net-
work node is created. The new output of this node
maps the existing addressesa5, a6, anda1 to the new
addressesa7, a8, anda9. The mappingm is updated
to map the variables to their new addresses (Table 1,
Step 4). The setG is updated to show thatv1, v2, and
v7 are available in one tuple now (Table 2, Step 4).

The next tuple(f2,v3,v4,v8) is processed. The
functionpossibleaddressesstill returns only the cur-
rent mappingm because all nodes have only one out-
put. The variablesv3, v4, andv8 are mapped to their
addressesa5, a6, and a4. Since no node with this
filter-address combination exists, a new network node
is created. But because the output of the node cre-
ated for the tuple(f1,v1,v2) is already connected to
another node, a new output is created for this node.
This output maps the addressesa2 anda3 to the new
addressesa10 anda11. The newly created node is con-
nected to this output. The mappingm and the setG
are updated accordingly again (Table 1 and Table 2,
Step 5).

The last tuple(f2,v5,v6,v9) is processed. The
functionpossibleaddressesreturns now a set contain-
ing the current mappingmand a mapping identical to
mexcept for the variablesv5 andv6 which are mapped
to the addressesa10 anda11. For the first mapping of
the variables to the addressesa5, a6 anda4, no node
implementing the filter-address combination is found.
For the second mapping to the addressesa10, a11 and
a4, the node created for(f2,v3,v4,v8) is found. This
node is reused and the mappingm and the setG are
updated accordingly again (Table 1 and Table 2, Step
6). The resulting DN is shown in Figure 4.

8 OUTLOOK

The described approach is currently in the process of
implementation for the RBS Jamocha. It will be used
to make fast prototyping of optimized construction al-
gorithms and reconstruction algorithms possible. As
an additional benefit of the clean and flexible interface
it will be possible to exchange major parts of the DN

(e.g. fact memory or join-optimization) with minimal
code adaptation. Simplification of the algorithms es-
pecially the handling of shared network nodes is de-
sirable and is objective of our future work.

REFERENCES

Brownston, L., Farrell, R., Kant, E., and Martin, N. (1985).
Programming expert systems in OPS5: an introduc-
tion to rule-based programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

CLIPS Project Team (2013). CLIPS Project Page.
http://clipsrules.sourceforge.net/.

Forgy, C. L. (1981). OPS5 User’s Manual. Technical report,
Department of Computer Science, Carnegie-Mellon
University.

Forgy, C. L. (1982). Rete: A fast algorithm for the many
pattern/many object pattern match problem.Artificial
Intelligence, 19(1):17 – 37.

Hanson, E. N. (1993). Gator: A Discrimination Network
Structure for Active Database Rule Condition Match-
ing. Technical report, University of Florida.

Jamocha Team (2013). Jamocha Project Page. http://
www.jamocha.org, http://sourceforge.net/projects/
jamocha.

JBoss Drools Team (2013). JBoss Drools Project Page.
http://www.jboss.org/drools/.

Miranker, D. P. (1987). TREAT: A Better Match Algorithm
for AI Production Systems; Long Version. Techni-
cal report, University of Texas at Austin, Austin, TX,
USA.

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

124

