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Abstract: The accurate estimation of Agent Based Models (ABM) by the method of simulated moments is possibly 
affected by the simulation horizon one allows the model to run due to sample variability. This work presents 
an investigation on the effects of this kind of variability on the distribution of the values of the objective 
function subject to optimization. It is intended to shown that, if the simulation horizon is not sufficiently 
large, the resulting distribution may present frequent extreme points, which can lead to inaccurate results 
when one tries to compare different models. For doing so, a model contest is carried out using different 
simulation horizons to assess the difference in goodness of fit when inactive traders are introduced in one of 
the Structural Stochastic Volatility models proposed by Franke (2009). 

1 STAGE OF THE RESEARCH 

This is the report of an on-going investigation. 
Although some experiments have been already 
performed, and the necessary computational infra-
structure is built, the project still lacks important 
methodological improvements, especially with 
regard to model comparison. 

2 OUTLINE OF OBJECTIVES 

The accurate estimation of Agent Based Models 
(ABM) by the method of simulated moments is 
possibly affected by the simulation horizon one 
allows the model to run due to sample variability. 

The main objective is to investigate the effects of 
this kind of variability on the distribution of the 
values of the objective function subject to 
optimization.  

A second objective concerns the improvements 
in goodness of fit brought by the inclusion of 
inactive traders in one of the Structural Stochastic 
Volatility models proposed by Franke (2009). 

3 RESEARCH PROBLEM 

As a working hypothesis, the following statement is 

considered: if the simulation horizon is not 
sufficiently large, the resulting distribution may 
present frequent extreme points, which can lead to 
inaccurate results when one tries to compare 
different models. 

In an attempt to answer to this quesiton, a model 
contest is carried out using different simulation 
horizons to assess the difference in goodness of fit 
when inactive traders are introduced in one of the 
Structural Stochastic Volatility models proposed by 
Franke (2009). 

4 STATE OF THE ART 

The objective of this introduction is to briefly 
overview Agent Based Model (ABM) methodology, 
which is claimed to take into account the so-called 
stylized facts to a great extent, and, thus, could be 
viewed as an alternative to the Efficient Market 
Hypothesis theoretical background (Lux, 2008). 

In doing so, selected recent empirical findings 
are highlighted, and a brief taxonomy for ABMs is 
presented. Then, three specific ABMs are discussed 
in greater detail while focusing on their ability to 
explain some of the stylized facts. 

The second section deals explicitly with the 
estimation of ABMs by the method of simulated 
moments, focusing on practical concerns one has to 
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deal with when using derivative-free methods (in 
particular, the Nelder-Mead Simplex Algorithm). 
Finally, the last section presents an investigation on 
the simulation horizon requirements by means of an 
example of model contest assessing the difference in 
goodness of fit of allowing inactive traders in one of 
the Structural Stochastic Volatility models proposed 
by Franke (2009). 

4.1 Stylized Facts 

Apart from the theoretical critiques developed by 
Grossman et al. (1980), the Efficient Market 
Hypothesis (EMH) seems to be misaligned with 
some empirical features of financial markets. This 
debate is presented by Lux (2008) by portraying 
how various lines of research refer to these empirical 
findings, each in its own different way. On the EMH 
side, these findings were referred to as anomalies, 
that is, there should be at least a few strange 
empirical results in disagreement with the 
established theoretical foundation. On the other 
hand, recent studies have referred to these empirical 
results as stylized facts, meaning that they can be 
found quite regularly in financial markets and, thus, 
they deserve proper theoretical explanation. 

An extensive list of these stylized facts is 
presented by Chen (2008) concerning several data 
natures (such as returns and trading volume) and 
frequencies (ranging from tick-by-tick order book 
data to annual seasonality). Here, attention is only 
focused on some of those data concerning daily 
price returns, namely the absence of autocorrelation 
in raw returns, fat tails of absolute returns, and 
volatility clustering. 

The absence of autocorrelation in raw returns has 
never been referred to as an anomaly, because it is 
an empirical finding in total agreement with the 
EMH theoretical background. It is related to the 
martingale property (Mandelbrot, 1966), which 
states that markets behave similar to a random walk. 
According to Lux (2008), this is the EMH’s most 
important empirical finding, but the author also 
points that a lot of attention was paid to it, thus 
neglecting in consequence other relevant stylized 
facts. 

With regard to the tails of returns distributions, it 
is expected by the EMH that they would behave 
normally due to the arrival of purely random 
information. However, even old empirical findings 
(Mandelbrot, 1966) suggested that the normal 
distribution is not well suited to financial returns, 
because it has probability mass more concentrated 
on its mean and extreme values than is expected in a 

normally distributed process.  
Since it is seen that kurtosis is not well suited for 

evaluating such a statistical property, it is then 
common to deal with the Hill estimator of tail index 
α, calculated as follows: first, absolute daily returns 
are sorted in a descending order so that a threshold 
value which defines a tail ݒ௣ can be calculated as the 
correspondent first ݌ (usually ݌ ൌ 5) returns, and ݉ 
is defined as the number of returns labeled as 
belonging to the tail. Finally, the Hill estimator is 
given by the equation 1. 

ߙ ൌ
݉

∑ ሾln ௞ݒ െ ln ௣ሿ௠ݒ
௞ୀଵ

 (1)

Finally, volatility clustering deals with the fact that 
directions of returns are hard to predict, but not their 
magnitude. There seem to exist alternate moments of 
financial fury and relaxation, printing clusters of 
high and low volatility on empirical data that are not 
at all accounted for by the EMH background. As 
pointed out by Lux (2008), even though a great deal 
of research on econometrics is focused on modelling 
this fact (the ARCH methodology), very little 
research has been done to explain it. 

4.2 Taxonomy 

According to an extensive survey conducted on the 
topic dealt with by Chen (2008), during the 1990s, 
the first attempts were made to explain some 
observed regularities in financial data by means of 
ABM. The main concern of these early works was to 
artificially reproduce some of the so-called stylized 
facts observed in real financial data. Hence, the 
objective of the authors just mentioned was to 
simulate and calibrate parameters of an artificial 
financial market by ABM, and then apply standard 
econometric techniques to evaluate how much of the 
stylized facts (both quantitatively and qualitatively) 
could be reproduced by their artificial generated 
data. 

Even though these early works share the goal of 
matching stylized facts, their ABM formulations 
may vary dramatically. For this reason, a taxonomy 
was developed by Chen (2008) in an attempt to 
classify recent work on ABM with regard to specific 
aspects, namely agent heterogeneity, learning, and 
interactions. 

With regard to heterogeneity, agents can 
basically be divided into two groups: N-types and 
autonomous agents. In the former, all possible types 
of behaviour are pre-defined in some sense by the 
designer; whereas in the latter, new strategies (that 
is, agent types) can emerge autonomously. We can 
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consider the model by Lux et al. (1999) as an 
example of N-type design, in which agents can be 
fundamentalists (that is, their demands respond 
proportionally to the current deviation from 
fundamental price) or chartists (who try to 
extrapolate the last trend observed). 

Chartists’ strategy is also determined by a 
sentiment index (pessimism or optimism) which 
determines whether chartists believe that the last 
trend observed will be maintained or reversed. On 
the other hand, we can consider the Santa Fe 
Artificial Stock Market (Arthur et al., 1997) as an 
example of autonomous agent design. In this 
context, agents are allowed to autonomously search 
for profitable strategies that were usually not pre-
defined by the designer by means of genetic search 
algorithms. 

With regard to learning, Lux (2008) points out to 
a branch of literature called Adaptive Belief Systems 
(ABS), which, unlike some of the other less flexible 
models, allows agents to dynamically switch 
between different strategies. With regard to the N-
type models, this feature is most commonly 
introduced by means of two approaches, namely 
transition probabilities and discrete choice. 
Following the transition probability approach, a 
majority index is defined as representing how much 
one group dominates (or is dominated by) the other. 
Each agent switches from one group to the other 
according to time-varying transition probabilities 
௧ߨ
௙,௖ and ߨ௧

௖,௙, which are functions of the current 
state of the system, which is generally defined here 
as ܽ௧. According to Franke et al. (2009), it can be 
demonstrated under some assumptions, that at the 
macroscopic level, population shares are depicted by 
݊௧
௙ ൌ ݊௧ିଵ

௙ ൅ ݊௧ିଵ
௖ ௧ିଵߨ

௖௙ ሺܽ௧ିଵሻ െ ݊௧ିଵ
௙ ௧ିଵߨ

௙௖ ሺܽ௧ିଵሻ and 

݊௧
௖ ൌ 1 െ ݊௧

௙ whereas the transition probabilities are 

given by ߨ௧ିଵ
௖௙ ሺܽ௧ିଵሻ ൌ ݉݅݊ሺ1,  ௔೟షభሻ, and݁ݒ

௧ିଵߨ
௙௖ ሺܽ௧ିଵሻ ൌ ݉݅݊ሺ1,  can be viewed as a ݒ ௔೟షభሻି݁ݒ

flexibility parameter. 
On the other hand, there is the discrete-choice 

approach proposed by Brock et al. (1998), in which 
the adjustment happens directly on the population 
shares (and not on its rate of change) according to 
the following equation 

݊௧
௙,௖ ൌ

݁ఉ௔೟షభ
೑,೎

݁ఉ௔೟షభ
೑

൅ ݁ఉ௔೟షభ
೎

 (2)

where ߚ is the intensity of choice, and the state of 
the system is allowed to be different for each group. 
The way the state of the system influences agent 
choice significantly varies in literature. As 

examples, one can consider the specification of a 
herding ߙ௧ ൌ ௡൫݊௧ߙ

௙ െ ݊௧
௖൯ or a misalignment 

component ߙ௧ ൌ ௧݌௣ሺߙ െ  is the ∗݌ ሻ where∗݌
fundamental price. This will be pursued in greater 
detail in the next section. 

Finally, the way agents interact defines the 
structure of the artificial financial market and its 
price determination. When considering N-type 
models, it is common to sum up demand of both 
groups and to assume a market maker who holds a 
sufficiently large inventory to supply any excess of 
demand and to absorb any excess of supply. Then, 
this market maker adjusts the price in the next period 
to reflect this excess demand or supply. However, as 
stated by LeBaron (2006), this is not a very realistic 
assumption in the way that no actual market clearing 
is taking place. In addition, a true market clearing 
mechanism would be easier to be implemented in an 
autonomous agent design by means of direct 
numerical cleaning. 

5 METHODOLOGY 

In the remaining part of the section, two specific 
agent-based models are described in greater detail, 
namely the trading inactivity model proposed by 
Westerhoff (2008) and the structural stochastic 
volatility model proposed by Franke et al. (2009). 
The idea is to present some practical issues 
concerning the development of an agent-based 
model, and also to introduce the task of estimating 
its parameters that is the objective of the next 
section. 

5.1 Trading Inactivity Model 

In an attempt to use simple agent based models to 
illustrate the potential effects of regulatory policies 
on financial markets, Westerhoff (2008) introduces a 
modification on the chartists-fundamentalists 
traditional scheme by allowing agents also to be 
absent from markets, that is, they can be inactive. 
This innovation may imprint models with more 
reality and also is important for using agent based 
models in the analyses of regulatory and taxing 
policies. This section outlines this model by 
focusing on this new device of trading inactivity and 
also on the model’s power to reproduce some of the 
stylized facts. 

As it is common practice, the demands of 
chartists and fundamentalists are respectively given 
by 
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௧ܦ
஼ ൌ ܾሺ ௧ܲ െ ௧ܲିଵሻ ൅ ௧ (3a)ߚ

௧ிܦ ൌ ܿሺܨ௧ െ ௧ܲሻ ൅ ௧ (3b)ߛ

where ܦ stands for demand, the superscripts ܥ and ܨ 
represents chartists and fundamentalists respectively, 
 is the log ܨ ,is the time unit,  ܲ is the log of price ݐ
of fundamental price, ܾ and ܿ are positive reaction 
parameters for chartists and fundamentalists 
respectively, ߚ and ߛ are I.I.D. random normal 
process with zero mean and ߪఉ and ߪఊ are standard 
deviations that capture intra-group heterogeneity 
respectively for chartists and fundamentalists. 

In this context, price formation is given by the 
following price impact function 

௧ܲାଵ ൌ ௧ܲ ൅ ܽሺ ௧ܹ
஼ܦ௧

஼ ൅ ௧ܹ
ிܦ௧ிሻ ൅ ௧ (4)ߙ

where ܹ denote population shares, ܽ is a positive 
price adjustment coefficient and ߙ is an I.I.D. 
random normal process with zero mean and standard 
deviation ߪఈ. 

The determination of ܹ, that is, the choice 
between the three available strategies, depends on 
past performance and is given by the following 
equations in the spirit of the discrete choice 
approach: 

௧ܣ
஼ ൌ ሺ݁௉೟ െ ݁௉೟షభሻܦ௧ିଶ

஼ ൅ ௧ିଵܣ݀
஼

െ ሺ݁௉೟ݔܽݐ െ ݁௉೟షభሻܦ௧ିଶ
஼  (5a)

௧ிܣ ൌ ሺ݁௉೟ െ ݁௉೟షభሻܦ௧ିଶ
ி ൅ ௧ିଵிܣ݀

െ ሺ݁௉೟ݔܽݐ െ ݁௉೟షభሻܦ௧ିଶ
ி  (5b)

௧ܣ
ை ൌ 0 (5c)

where the superscript ܱ stands for inactivity, ܣ 
denotes each strategy attractiveness and is composed 
by the sum a short run capital gain term and an 
accumulated profits term which is weighted by the 
memory parameter ݀. ݔܽݐ is a percentage tax 
applied both when buying and selling the asset. 
Finally, defining ߚ as the so called intensity of 
choice, population shares are represented by 

௧ܹ
஼ ൌ

݁ఉ஺೟
಴

݁ఉ஺೟
಴
൅ ݁ఉ஺೟

ಷ
൅ 1

 (6a)

௧ܹ
ி ൌ

݁ఉ஺೟
ಷ

݁ఉ஺೟
಴
൅ ݁ఉ஺೟

ಷ
൅ 1

 (6b)

௧ܹ
ை ൌ

1

݁ఉ஺೟
಴
൅ ݁ఉ஺೟

ಷ
൅ 1

 (6c)

Even though the author does not carry on a 
systematic estimation procedure, a set of benchmark 
input parameters are presented and thus the 
calibrated model is claimed to reproduce some of the 
stylized facts (mainly volatility clustering and fat 

tails) when no ݔܽݐ is applied. Figure 1 presents a 
single simulation of the model with the following set 
of input parameters presented by the author (ܽ ൌ 1, 
ܾ ൌ 0.04, ܿ ൌ 0.04, ݀ ൌ ߚ ,0.975 ൌ ఈߪ ,300 ൌ
ఉߪ ,0.01 ൌ 0.05, and ߪఊ ൌ 0.01). 

5.2 Structural Stochastic Volatility 
Model 

With regard to agent design, this is a two-group 
model where agents can be fundamentalists or 
chartists. The main difference is that fundamentalists 
respond to deviations from fundamental price, and 
chartists extrapolate the returns they just observed in 
the previous period. Thus, their demand functions 
݀௧
௙,௖ are given by 

 

Figure 1: Upper panel shows the log of price, middle panel 
its percentage returns, and lower panel the shares of 
fundamentalists (gray), chartists (black) and inactive 
(white) traders. 

݀௧
௙ ൌ ߶ሺ݌∗ െ ௧ሻ݌ ൅ ௧ߝ

௙ 

௧ߝ
௙~ܰ൫0, ௙ߪ

ଶ൯, ߶ ൐ 0 
(7a)

݀௧
௖ ൌ ߯ሺ݌௧ െ ௧ିଵሻ݌ ൅ ௧ߝ

௖ 
௧ߝ
௖~ܰሺ0, ,௖ଶሻߪ ߯ ൒ 0 

(7b)

where the superscripts ݂ and ܿ denote agent 
affiliation (fundamentalists and chartists, 
respectively); the subscript ݐ represents time unit; ݌ 
is the log of the price; ݌∗ is the log of the (fixed) 
fundamental price; ߝ௙,௖ are group-specific random 
terms (with zero mean and ߪ௙,௖ standard deviations) 
that account for intra-group heterogeneity; ߶  
corresponds to the responsiveness of the 
fundamentalists to the deviation from fundamental 
price; and ߯ corresponds to the responsiveness of the 
chartists to the last trend observed. 

However, this model also accounts for learning, 
in the sense that agents can dynamically change their 
minds and move to the other group. Therefore, the 
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shares of each group in the total population are 
allowed to vary over time. Considering that ݊௧

௙,௖ 
denotes their respective population shares, total 
excess demand can be written as ݊௧

௙݀௧
௙ ൅ ݊௧

௖݀௧
௖. Seen 

that this equation may not balance, a market maker 
is assumed to hold a sufficiently large inventory for 
supplying any excess of demand and for absorbing 
any excess of supply. This is done by adjusting the 
price in the next period by a fixed coefficient that is 
inversely related to market liquidity. Considering 
these specifications, price determination at each time 
unit is given by 

௧ܲାଵ ൌ ௧ܲ ൅ ௧݊ൣߤ
௙߶ሺ݌∗ െ ௧ሻ݌
൅ ݊௧

௖߯ሺ݌௧ െ ௧ିଵሻ݌ ൅  ௧൧ߝ
(8)

where 

,௧~ܰሺ0ߝ ,௧ଶሻߪ ௧ଶߪ ൌ ሺ݊௧
௙ሻଶߪ௙

ଶ ൅ ሺ݊௧
௖ሻଶߪ௖ଶ (9)

summarizes what the authors coined as Stochastic 
Structural Volatility (SSV), and can be viewed as a 
structural modelling approach to time-varying 
variance. 

What remains to be explained is the learning 
mechanism that yields the dynamics of the 
population shares. Even though the authors 
presented two different technical approaches for this, 
namely transition probabilities and discrete choice, 
only the latter will be considered here, given its best 
performance in a comparative study conducted by 
the same authors Franke et al. (2011). It is worth 
beginning with the definition of a switching index 
 ௧, which attempts to measure the relativeݏ
attractiveness of the fundamentalist’s strategy in 
comparison to that of the chartist, given by 

௧ݏ ൌ ଴ߙ ൅ ௧ݔ௫ߙ ൅ ௧݌ௗሺߙ െ ሻଶ (10)∗݌

where ߙ଴ is a predisposition parameter to switch to 
fundamentalism; ߙ௫ captures the idea of herding 
behaviour; and ߙௗ can be understood as a measure 
of the influence of price misalignment (that is, the 
larger the gap, the higher the attractiveness of 
switching to fundamentalism). Thus, in the spirit of 
the discrete-choice approach, the shares of the total 
population in each group can be written as ݊௧

௙ ൌ
1 ൣ1 ൅ ݁ିఉ௦೟షభ൧⁄  and ݊௧

௖ ൌ 1 െ ݊௧
௙ where ߚ is the 

intensity of choice. Figure 2 compares outputs from 
a single run of the model with returns of S&P500 as 
a benchmark. 
 

 

Figure 2: ܶ ൌ 6750 observations of (A) log of price, (B) 
share of fundamentalists, and (C) returns from a simple 
run of the model and (D) daily returns from S&P500 from 
January 1980 to March 2007. Inputs to the model are as 
follows: ߶ ൌ 0.0728, ߯ ൌ ߤ ,0.0896 ൌ ଴ߙ ,0.01 ൌ
௫ߙ ,0.327 ൌ ௗߙ ,1.815 ൌ ௙ߪ ,9.6511 ൌ ௙ߪ ,1.0557 ൌ
∗݌ ,2.9526 ൌ 0, and ߚ ൌ 1. 

5.3 Introducing Inactivity to SSV 
Models 

This section described the exact same model from 
last section, but augmented to allow agents to be 
absent (inactive) from the market. Hence, it is now a 
three-group model (fundamentalists, chartists, and 
inactive), with demand functions ݀௧

௙,௖,௜ given by 

݀௧
௙ ൌ ߶ሺ݌∗ െ ௧ሻ݌ ൅ ௧ߝ

௙ (11a)

݀௧
௖ ൌ ߯ሺ݌௧ െ ௧ିଵሻ݌ ൅ ௧ߝ

௖ (11b)

݀௧
ை ൌ 0 (11c)

where the subscript ݅ denotes the inactive group, and 
all the other variables remain the same from 
equation 7. Another modification required from the 
two-group model described in the last section 
concerns the shares of the total population in each of 
the three group, which is now described as 

݊௧
௙ ൌ

ሺ1 െ ߱ሻ݁ఉ௔೟షభ
೑

ሺ1 െ ߱ሻ ቂ݁ఉ௔೟షభ
೑

൅ ݁ఉ௔೟షభ
೎
ቃ ൅ ߱

 (12a)

݊௧
௖ ൌ

ሺ1 െ ߱ሻ݁ఉ௔೟షభ
೎

ሺ1 െ ߱ሻ ቂ݁ఉ௔೟షభ
೑

൅ ݁ఉ௔೟షభ
೎
ቃ ൅ ߱

 (12b)

݊௧
௢ ൌ 1 െ ݊௧

௙ െ ݊௧
௖ (12c)

5.4 Estimation 

In this section, the Method of Simulated Moments is 
applied to the model (SSV augmented with inactive 
traders) just described. In order to follow this 
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method of estimation, one has to first select the 
moments of interest. Following the approach 
developed by the authors just mentioned (Franke and 
Westerhoff, 2011), only four stylized facts that have 
received more attention in the literature are 
considered here, namely the absence of 
autocorrelation in raw returns, fat tails of returns 
distribution, volatility clustering, and long memory. 
Therefore, it is argued that the following set of nine 
moments is enough to account for these four stylized 
facts, namely the Hill estimator of tail index of 
absolute returns ܪሺݒሻ, mean of the absolute returns 
 first-order autocorrelation of the raw returns ,ݒ̅
ܽܿଵሺݎሻ, and six different lags from the 
autocorrelation function of the absolute returns 
ܽܿଵሺݒሻ, ܽܿହሺݒሻ, ܽܿଵ଴ሺݒሻ, ܽܿଶହሺݒሻ, ܽܿହ଴ሺݒሻ, 
andܽܿଵ଴଴ሺݒሻ. Each single run of the model will then 
be compared with a specific empirical data set with 
regard to this vector of selected moments. 

The distance between the moments vector ݉ 
generated by a single run of the model (with set of 
inputs ߠ, sample size ܵ, and random seed ܿ) and the 
vector of empirical moments ݉௘௠௣ is defined by a 
weighted quadratic loss function in the following 
form 

ܬ ൌ ,ߠሾ݉ሺܬ ܵ, ܿሻሿ ൌ ሺ݉ሺߠ, ܵ, ܿሻ
െ ݉௘௠௣ሻᇱܹሺ݉ሺߠ, ܵ, ܿሻ
െ ݉௘௠௣ሻ 

(13)

where ܹ is a weighting matrix that intends to 
capture both correlation between individual 
moments and sampling variability. 

Among several options for choosing a proper 
weighting matrix ܹ, here the inverse of the 
estimated variance-covariance matrix of the 
moments Σ෠ is used. In order to estimate such a 
matrix, the following bootstrapping method was 
applied. For the two first moments (ܪሺݒሻ and ̅ݒ), 
ܤ ൌ 10଺ random resamples with replacement were 
constructed from the original series, and the 
respective moments were calculated. However, since 
the other moments deal with autocorrelations, such a 
procedure would be inadequate due to the 
destruction of long-term dependencies by the 
sampling procedure. Therefore, for these moments, 
an index-bootstrapping method was used by 
randomly selecting (with replacement) ܤ set of time 
indexes ܫ௕ ൌ ଵݐ

௕, ଶݐ
௕, … , ்ݐ

௕ from indexes and then 
calculating the correlation coefficient regarding time 
lag ݄ as ߛ௕ሺ݄ሻ ൌ ሺ1/ܶሻ∑ ሺݒ௧ െ ௧ି௛ݒሻሺݒ̅ െ ሻ௧∈ூ್ݒ̅  
where ̅ݒ is the mean value of ݒ௧ over ܶ, and 
௧ି௛ݒ ൌ ݐ if ݒ̅ െ ݄ ൑ 0.  

Considering ݉௕ as the vector of moments of 
each of these bootstrapped resamples and ഥ݉  as the 
vector of their moment specific means, the variance-
covariance matrix was, thus, estimated as Σ෠
∶ൌ ሺ1/ܤሻ∑ ሺ݉௕ െ ഥ݉ሻሺ݉௕ െ ഥ݉ሻᇱ஻

௕ୀଵ . 

5.4.1 Avoiding Local Minima 

Finally, the minimization problem ܬሾ݉ሺߠ, ܵ, ܿሻሿ ൌ
minఏ ! was performed by the Nelder-Mead simplex 
algorithm to estimate the set of parameters ߠ that 
minimizes the loss function ܬ. Here, only seven 
parameters were allowed to vary, namely ߶, ߯, ߙ௫, 
 ௖, and ߱ where the remaining were fixed atߪ ,௙ߪ ,ௗߙ
ߤ ൌ ଴ߙ ,0.01 ൌ െ0.327, and ߚ ൌ 1. Starting from 
an initial set of parameters ߠ௜, the algorithm returns 
an estimated set of parameters ߠ and a value for the 
objective function ܬ. To avoid getting trapped in a 
local minima, this obtained set of estimated 
parameters ߠ was re-introduced in the algorithm 
here as the initial set of parameters (that is, ߠ௜ ൌ  ,(ߠ
and this procedure was carried out as many times it 
was necessary until no improvement higher than 
0.001 was achieved in the objective function. 

5.4.2 Experiment on Simulation Horizon 
Requirements 

In order to reduce sample variability, Franke et al. 
(2011) points that a model simulation horizon ܵ ten 
times bigger than the empirical size ܶ (that is, 
ܵ ൌ 10ܶ) was considered sufficient for their model 
comparison purposes. The main objective of this 
study is to assess how such results change when one 
increases simulation horizon beyond this value. For 
doing so, first it will be described in more detail how 
a model specific p-value is calculated by means of 
Monte Carlos runs, and then the comparison of these 
p-values calculated using both ܵ ൌ 10ܶ and 
ܵ ൌ 100ܶ will be presented.  

5.4.2.1 Definition of a Model Specific 
P-value 

Apart from providing the variance-covariance 
matrix, the bootstrap procedure of empirical data 
described in the previous section can also be used to 
assess the fit of different model simulations to real 
data. This idea, presented by Franke et al. (2011), 
consists of calculating the value of the objective 
function ܬ for each of the vector of moments ݉௕ 
obtained by bootstrapping empirical data ܤ ൌ 5000 
times, and then finding a critical value ܬ௖௥௜௧௜௖ which 
represents the 95% quantile of the distribution of the 
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objective function values. This critical value was 
found to be ܬ଴.ଽହ ൌ 17.228. In this sense, if a 
simulation run from a given model presents a value 
of the objective function higher than ܬ଴.ଽହ, this run 
cannot be said to have a good fit to empirical data. 
Finally, the p-value of a model is given by the 
proportion of Monte Carlo runs which lies below 
this critical value. Figure 3 presents the distribution 
of objective function values obtained by 
bootstrapping empirical data, and its correspondent 
critical value.  

5.4.3 Model Fit for Different Simulation 
Horizons 

To begin with, table 1 shows, for a given random 
seed, and considering the simulation horizon of 
ܵ ൌ 10ܶ, the set optimal parameters obtained by a 
single run of the model, and their correspondent 
value of ܬ. 

Table 2 shows the moments obtained with this 
optimized set of parameters in this specific run of 
the model, and compares them with the empirical 
moments for S&P500 and their bootstrapped 
statistics. It can be seen that, at least with regard to 
this specific random seed, the moments obtained 
with the optimal set of inputs rely inside the bands 
provided by bootstrapping empirical data. 

 
Figure 3: Distribution of objective function values 
obtained by bootstrapping empirical data, and its 
correspondent critical value. 

Table 1: Estimated parameters for a given random seed, 
considering a simulation horizon of	ܵ ൌ 10ܶ. 

 ߱ ௖ߪ ௙ߪ ௗߙ ௫ߙ ߯ ߶ ܬ
11.744 0.914 2.077 0.992 0.89 1.359 2.049 0.548 

In order to check whether these results depend on 
the given pseudo-random number sequence, a 
similar estimation procedure to the one just 
described  was carried  on  while  considering 1,000 

Table 2: Moments obtained with optimized parameters for 
ܵ ൌ 10ܶ, the empirical moments for S&P500 and their 
bootstrapped bound values. 

 run 2.5% mean 97.5% 
 ሻ 3.448 3.155 3.484 3.891ݒሺܪ

ݒ̅ 0.706 0.690 0.706 0.723 

ܽܿଵሺݎሻ 0.006 -0.018 0.006 0.030 

ܽܿଵሺݒሻ 0.154 0.128 0.154 0.182 

ܽܿହሺݒሻ 0.184 0.163 0.184 0.205 

ܽܿଵ଴ሺݒሻ 0.166 0.148 0.166 0.185 

ܽܿଶହሺݒሻ 0.142 0.125 0.143 0.161 

ܽܿହ଴ሺݒሻ 0.126 0.107 0.126 0.147 

ܽܿଵ଴଴ሺݒሻ 0.089 0.075 0.090 0.106 
 

different random seeds. Table 3 summarizes this 
Monte Carlo experiment by presenting the average 
and 5% bounds for the obtained optimized 
parameters and values of the objective function ܬ. 
The p-value for this model and simulation horizon, 
calculated as described previously, is 0.290. 

Table 3: Mean and bound values for parameters estimated 
for 1,000 different random seeds, considering a simulation 
horizon of ܵ ൌ 10ܶ. 

 ߱ ௖ߪ ௙ߪ ௗߙ ௫ߙ ߯ ߶ ܬ
6.210 0.750 1.759 0.988 0.711 1.212 1.885 0.491 
18.833 0.948 1.962 0.993 0.964 1.328 2.075 0.538 
62.944 1.160 2.184 0.998 1.098 1.538 2.178 0.597 

 

Similarly, table 4 presents the same statistics as table 
3, but now considering a longer simulation horizon 
of ܵ ൌ 100ܶ. It can be seen that, although there is a 
larger variability for some of the estimated 
parameters, the resulting distribution of the values of 
the objective function presents much less extreme 
values. Figure 4 depicts this result, by showing the 
distribution of ܬ both for a simulation horizon of 
ܵ ൌ 10ܶ (solid) and of ܵ ൌ 100ܶ (dashed). The 
obtained p-value for the longer case is 0.021, which 
is significantly smaller than for the shorter. 

Table 4: Mean and bound values for parameters estimated 
for 1,000 different random seeds, considering a simulation 
horizon of ܵ ൌ 100ܶ. 

 ߱ ௖ߪ ௙ߪ ௗߙ ௫ߙ ߯ ߶ ܬ
7.595 0.597 1.559 0.990 0.669 1.116 1.871 0.474 
10.702 0.961 1.952 0.991 0.928 1.379 2.030 0.546 
16.268 1.301 2.217 0.992 1.184 1.642 2.218 0.609 

5.4.4 Assessing the Introduction of Inactive 
Traders 

It was shown in the last section that a great extent of 
the inability of the model to reproduce the stylized 
facts (that is, large values o ܬ) was in fact a sort of 
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noise introduced by a not sufficiently large 
simulation horizon. Then, the present section 
introduces a p-value based model contest, as 
proposed by Franke et al. (2011), in order to check 
whether the introduction of inactive traders improve 
or not the goodness of fit of this class of models to 
empirical data. 

Table 5 presents two versions of a model contest, 
one for each simulation horizon ܵ ൌ 10ܶ and 
ܵ ൌ 100ܶ. It can be seen that the introduction of 
inactive traders improve the goodness of fit in both 
versions. Figure 5 depicts this result, by showing the 
distribution of ܬ for each pair model-horizon. 
Although a significant reduction sample variability 
is obtained by using larger simulation horizons, it 
can be seen that the central tendencies of each 
distribution of ܬ do not change widely in respect to 
ܵ. 

 

Figure 4: Comparison of the distributions of objective 
function values for simulation horizons of ܵ ൌ 10ܶ and 
ܵ ൌ 100ܶ. 

Table 5: Model contest to asses the improvement in 
goodness of fit when allowing inactive traders in SSV 
models using different simulation horizons. 

 p-value ܬ  

DCA 
ܵ ൌ 10ܶ 

2.5% 10.175 
0.349 mean 16.451 

97.5% 27.151 

DCA 
ܵ ൌ 100ܶ 

2.5% 13.362 
0.051 mean 15.518 

97.5% 17.530 

DCA-I 
ܵ ൌ 10ܶ 

2.5% 6.210 
0.290 mean 18.833 

97.5% 62.944 

DCA-I 
ܵ ൌ 100ܶ 

2.5% 7.595 
0.021 mean 10.702 

97.5% 16.268 
 

6 EXPECTED OUTCOME 

There are two main expected outcomes from the 
PhD thesis. First, and most important, is to shed 
light on the simulation horizon requirements one 
allows a model to run when performing estimations 
by the method of simulated moments. 

The current stage of the research has already 
shown that a great deal of sample variability can be 
avoided by longer simulation horizons, but it is still 
an open question whether this implies major 
problems when performing estimations. 

 

Figure 5: Comparison of the distributions of objective 
function values for simulation horizons of ܵ ൌ 10ܶ and 
ܵ ൌ 100ܶ, and for inclusion/exclusion of inactive traders. 

A second expected outcome is the definition of a 
model contest procedure able to determine goodness 
of fit of different models, hence allowing one to 
compare models and decide for the best performing 
one. In addition to this second objective, it is also an 
expected outcome to assess the improvement in 
goodness of fit when allowing inactive traders in one 
of the Structural Stochastic Volatility models 
proposed by Franke (2009). 

7 CONCLUSIONS 

From the current stage of the research, two initial 
conclusions can be drawn. First, the introduction of 
inactive traders in the Structural Stochastic 
Volatility (SSV) model proposed by Franke (2009) 
yields better goodness of fit when compared to the 
standard two agent types model, as pointed by the 
smaller values of the objective function shown in 
figure 5. By allowing agents to be inactive for some 
periods of time, the model gains a more realistic 
feature, and, hence, is able to better reproduce the 
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stylized facts represented by the selected moments 
of interest. 

The second conclusion deals with the simulation 
horizon requirements one allows the model to be 
run. From figure 5 it is clear that a great deal of 
sample variability is reduced when the simulation 
horizon is extended from 10 to 100 times the size of 
the empirical time series used as reference in the 
estimations. However, it can also be seen in figure 5 
that the centroids of the distributions do not change 
(that is, the mean locations remain the same) when 
the model is simulated for a longer time horizon. In 
this sense, the relevance of the longer simulation 
horizon with respect to the estimation procedure still 
requires further investigation. 
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