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Abstract: We collect some results concerning electrical conduction problems in biological tissues. These problems are

1

This is a review article concerning the results obtaine

set in a finely mixed periodic medium and the unknown electric potentials solve standard elliptic equations set

in different conductive regions (the intracellular and extracellular spaces), separated by an interface (the cell
membrane), which exhibits both a capacitive and a conductive behavior. As the spatial period of the medium

goes to zero, the problems approach a homogenization limit. The macroscopic models are obtained by using
the technique of asymptotic expansions, in the case where the conductive behavior of the cell membrane is
linear, and by means of two-scale convergence, in the case where, due to its biochemical structure, the cell
membrane performs a strongly nonlinear conductive behavior. The asymptotic behavior of the macroscopic

potential for large times is investigated, too.

INTRODUCTION as capacitors. This phenomenon (known in physics
as Maxwell-Wagner effect) is studied modeling the
g Piological tissue as a composite medium with a peri-

by the authors in several papers dealing with some odic microscopic structure of characteristic length

aspects of electrical conduction in biological tissue
Itis well known that electric potentials can be used
in diagnostic devices to investigate the properties o
biological tissues. Besides the well-known diagnos-
tic techniques such as magnetic resonance, X-rays
and so on, it plays an important role a more recent,
cheap and noninvasive technique knownetectric
impedance tomographi£I T). Such a technique is es-
sentially based on the possibility of determining the
physiological properties of a living body by means of

the

This leads to an inverse problem for an elliptic
equation, usually the Laplacian, which is the equation
satisfied by the electrical potential, when the body is
assumed to display only a resistive behavior. How-
ever, it has been observed that, applying high fre-
guency potentials to the body, a capacitive behavior
appears, due to the electric polarization at the inter-
face of the cell membranes produced by the lipidic
composition of the membranes themselves, which act
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s. Where two finely mixed conductive phases (the intra-
and the extra-cellular phase) are separated by a di-
f electric interface (the cellular membrane). From the
mathematical point of view, the electrical current flow
through the tissue is described by means of a system
of decoupled elliptic equations in the two conductive
phases (obtained from the Maxwell equations, under
the quasi-static assumption; i.e., we assume that the
magnetic effects are negligible). The solutions of this
system are coupled because of the interface condi-
tions at the membrane, whose physical behavior is de-
scribed by means of a dynamical boundary condition
(which takes into account both the conductive and the
capacitive behavior of the cell membrane), together
with the flux-continuity assumption. Because of the
complex geometry of the domain, these models are
not easily handled, for example from the numerical
point of view. This justifies the need of the homoge-
nization approach, with the aim of producing macro-
scopic models for the whole medium &s- 0, since

knowledge of its electrical behavior.
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the typical scale of the microstructure is very small
with respect to the tissue macroscopic scale analyzed
in the experiments. 3
We present in the following two different cases: 3
in the first one the conductive behavior of the cell ! |
membrane is assumed to be linear and the approach i 1
used in order to obtain the macroscopic equation is 1 !
the asymptotic expansion introduced in (Bensoussan o o .
etal., 1978); in the second one, we assume a stronegF'gure 1: An examples of admissible periodic structures in
nonllnear conductive behavior of the cell membrane, R Left: Y is the dashed square, aBd"Y is the shaded
. - . . . region. Right: the domaif.
which actually appears in some physical situation and
which is due to the presence of ionic channels, i.e. o a out ]
to the biochemical structure of the cell membrane it- at[ el + f ([a]) = OoulUP™-v,  onl?; (4)
self. The technique used in this last case in order to

— €.
obtain the effective potential of the tissue is the two- [g] (x,0) = S(X), onr™ (5)
scale convergence technique introduced in (Nguet- Ug(X,t) =0, onoQ. (6)
seng, 1989) and in (Allaire, 1992). The notation in (1)-(4), (6), means that the indi-

In the first case, the macroscopic equation ob- cated equations are in force in the relevant spatial do-
tained with this approach is an elliptic equation with  main for0O<t < T.
memory, as it could be expected in any electrical cir- Here oint, Oout anda are positive constants, and
cuit in which a capacitor is present. In the second v is the normal unit vector t6°¢ pointing into Q5.
case, we obtain a strictly coupled system of equa- Sinceu, is not in general continuous acroE§ we
tions for the macroscopic and microscopic potentials, have set

ZZFl)JIngc?I when the two-scale convergence technique is ugm) ¥ oo Ofus\Qfm onre:

uW = trace Ofugqe ONTE.

2 SETTING OF THE PROBLEM Indeed we refer conventionally @, as to thente-
rior domain and toQg; as to theouter domain We
also denote )

Let Q be an open connected bounded subseg df [Ug] := uleu)

Let us introduce a periodic open sub&ebf RN, so
thatE +z= E for all ze ZN. For alle > 0 define
Qf = QneE, Q5 = Q\ eE. We assume tha®, E
have regular boundary, say of clas$ for the sake [00ug -v] =0, onré,

of simplicity. Moreover, we se® = Q¢ UQE ,UTE,

Similar conventions are employed for other quanti-
ties; for example (3) can be rewritten as

int where
wherel® = 9Q% N Q = 0Q5,,NQ. We also employ . .
the notationY = (0,1)N, andEjny = ENY, Eout = 0 =0int N Qjyy, 0 =0out N Qg
Y\E, ' =0ENY. As a simplifying assumption, The functionf and the initial date; will be dis-
we stipulate thaEiqy is a connected smooth subset of cussed below.
Y such that digEin,0Y) > 0. Some generalizations Under the assumptions above, we prove existence

may be possible, but we do not dwell on this point and uniqueness of a weak solution to (1)-(6), in the
here. Finally, we assume that dist,0Q) > ye for class

some constang > 0 independent of, by dropping > 1/ :
the inclusions contained in the cedigY + z), ze zZN Ugoe € L(0,T;HY(QP)),  i1=1,2, (7)
which intersectQ (see Figure 1). Finally, lef > 0 and ug9o = 0 in the sense of traces (Amar et al.,

be a given time. 2005).
We are interested in the homogenization limitas, In the following, we will show that, ify le <
0 of the problem forg(x,t) (here the operators div. S (x) < ye, whereS is the initial jump prescribed
and[ act only with respect to the space variakje in (5), for a fixed constany > 1, thenug becomes
stable ag — 0 (i.e., it converges to a nonvanishing
—div(ointOug) = inQf; (1)  bounded function). Therefore, let us stipulate that
— div(ToutJue 0 inQ8: (@  SeHY4r and
OinOU™ v = 0ouu®™-v, onl®;  (3) S(X) = £Si(x, )E() +ERe(), 8)
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whereS; : Q x 0E — R, and

[S1llLo(axag) <©,  [IRellL=(q) — O, ase — 0;

Si(x,y) is continuous irx, uniformly overy € 0E,
and periodic iry, for eachx € Q.

3 THE LINEAR CASE

In this section we assume that

fett) = gt, te R,

with B > 0. Firstly, we remark that, up to a change

of unknown function, we can assurfie= 0; indeed,
settingve (X, t) = Ug(X,t) - exp(g t) , it follows thatvg
satisfies

—div(ointOVve) =0, in Qfy;
— div(TouVe) =0, in QG
O'intDVgnt) V= GoutDVg)m)‘Va onrs;
%%[Vs] = GoutDVgOUt) vV, onre;
[Ve] (%,0) = Ss(x)., onrs;

Vg(x7t) :O7 OnaQ.

Hence, from now on, we assurfie= 0 in (4).
3.1 Homogenization

The weak formulation of Problem (1)—(6) is

T
//O‘DUE-Dquth
o Jo

a [T 0
~2 | v 5w doct
~2 [ [l Ww)(©do=0, (9)

€ Jre
for eachs € L?(Q x (0, T)) such thaty is in the class
(7), [W] € HY(0, T;L2(r?)), andy vanishes odQ x
(0,T),aswellasat=T.
Moreover, multiplying (1), (2) byug, integrating
by parts and using (3)—(6), for allkot < T, we obtain
the energy estimate

t
//0|Dug|2dxdt+g/ [Ug]?(x,t) do
0/a 2¢ Jre
:3/ f(x)do<C < 4, (10)
2¢€ Jre

whereC does not depend anand the last inequality
is due to (8), taking into account thid€|y_1 ~ 1 /€.

Inequality (10) together with a suitable Poincaré

type lemma assures that, up to a subsequence,u
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weakly inL?(Q x (0,T)). It remains to identify the
limit function u, and this will be done in the following
theorem.

Theorem 3.1. Under the assumptions listed in Sec-
tion 2, ase¢ — 0, we have that y— u, weakly
in L2(Q x (0,T)), and strongly in (0, T;LY(Q)),
where the limit ue L2(0, T; H}(Q)) solves inQ

t
—div <ooDxu + A%, +/B(t —T)0xu(X, T) dr> =F
0

with u= 0 on 0Q. Here ¥ is a source depending
on the initial condition g in (8) and the two matri-
ces A, B are symmetric and A= agl + A% is positive
definite.

The proof of this theorem can be found in (Amar
et al., 2003) and (Amar et al., 2004b) whefeA®, B
are explicitly defined.

Remark 3.2. In this regard, different models are ob-
tained corresponding to different scaling with respect
to € (wheree denotes the length of the periodicity cell)
of the relevant physical quantity, entering in the dy-
namical interface condition given by
onle, (11)
with k € Z. As we state in the previous theorem, the
casek = 1 leads to an elliptic equation with memory,
while the casd& = —1 leads to a degenerate parabolic
system, the well known bidomain model for the car-
diac syncithial tissue (Krassowska and Neu, 1993),
(Pennacchio et al., 2005). In turn, the case0 leads

to a standard elliptic equation (Lipton, 1998),(Amar
et al., 2006).

In (Amar et al., 2006) we analyze in details the
whole familyk € Z, proving that, fork > 2, the cor-
responding homogenized model reduces to a standard
diffraction problem, while fok < —2, in the limit we
obtain two independent standard Neumann problems.

We would like to observe that only the cases cor-
responding tok = 1 andk = —1 in (11), preserve
memory, in the limit, of the membrane properties (i.e.,
of the constant). This is not true for all the other
choices ok.

It is not yet clear which one of these two mod-
els is more appropriate to describe the physical situ-
ation. Indeed, it seems that both of them are valid in
their respective frequency ranges. However, the one
presented here (i.e., model (1)—(6)) seems to be more
suitable to describe the response of a biological tissue
when high frequencies of alternating currents (of the
order of Megahertz) are applied, since in this case the
relevance of the capacitive properties of the dielectric
membrane increases. In the case of frequencies of
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the order of hundreds of Megahertz an improved ver-
sion of this model has been developed in (Amar et al.,
2009b) and (Amar et al., 2010). On the contrary, the
casek = —1 has been applied to low frequencies in
the context of activation of cardiac muscle.

The applicability of this model to real physical sit-

uations is connected to the study of an inverse prob-

lem, which for the elliptic equation is tipically related
to the study of the Neumann-Dirichlet map. This
problem has been widely studied. On the contrary
(apart from some geometrically simple cases), the in-
verse problem for the homogenized equation in The-
orem 3.1 s still open; in this case, the usual Dirichlet-
Neumann map should be replaced with a map in
which we assign the Dirichlet boundary condition to-
gether with the condition:
A0 ou

’ax J4—/B.Jt T)—

wherenis the outward normal t6Q andh is a given
function.

(X, T)njdt =h(xt),

3.2 Concentration of the Physical
Problem

We point out that in the physical setting, the cell mem-
brane has a nonzero thickness, even if it is very small
with respect to the characteristic length of the cell.
Hence, we denote by the ratio between these two
guantities and remark that << 1. Moreover, we
write Q asQ = Q&N ureEN yaren, whereQ®" and
&N are two disjoint open subsets &f, " is the
tubular neighborhood of® with thicknessen, and
areNisits boundary In addition, we assume also that
Q&N = an[' UQgT andaren = (aofn? UaQsh NQ.
Again, Qglt, Q- correspond to the conductive re-
gions, andrén to the dielectric shell. We assume
that, forn — 0 ande > O fixed, |®"| ~ en||n-_1,
QN — QF,UQE, andar®*" — r's. We employ also
the notationy = ENurMuarn, whereg" and M
are two disjoint open subsets ¥f ™ is the tubu-
lar neighborhood of” with thicknessn, andar" is
its boundary. MoreoverE" = EJ) UE],, (see Fig-
ure 2). Fom — 0, E" — Ejnt UEgy, [T ~ NIl |n-1
andorn —T.

The classical governing equation is derived from
the Maxwell system in the quasi-static approximation,
which gives

—div(A"0ud) =0, inQ";  (12)
—div(B"0u) =0, inren;  (13)
AHDUQ ~Vr| = B”Dugt.vﬂ’ Onar&n; (14)

Problems

,,,,,,,,,,,,,,,,,,,,,,

Figure 2: The periodic cel. Left: before concentration;
I is the shaded region, arie! = E;}, UE]; is the white
region. Right. after con(:entratlori'ri shrinks tol" asn —

Oug (x,0) = 53 (x),
ug(x,t) =0,

inr&n:
onoQ.

(15)
(16)

We assume that the conductiviy) > 0 is such
that Al = Oi in Q7, A1 = 0oyt in Q5L the perme-
ability B" > 0 is such thaB" = an; andsy = O,
for someS! € HL(F&N) with |Sg| ~ 1/n.

Remark 3.3. We are interested in preserving, in the
limit n — 0, the conductiomcrossthe membrané&®
instead of theangentialconduction on . To this
purpose, we need to preserve the &MU} - v and
the jump|[u}}] across the dielectric shells to be con-
centrated. This is the reason for which we rescale
B = an, instead of scalin@" = a/n in %", as more
usual in concentrated-capacity literature.

We are next interested in passing to the limit for
n — 0t, keepinge > 0 fixed. In (Amar et al., 2006)
we proved the following result.

Theorem 3.4. Under the previous assumptions, when
n — 07, it follows that the concentration of Problem
(12)-(16)is given by(1)+6) (with f = 0). More pre-
cisely asn — Ot it follows that Lﬂ — Ug, weakly in

Ioc(Q X (0 T)) where Q\QE € I-Ioc(o T, Hl(ant))

Ugjge € L2.(0,T;H(QE,)) and u is the unique so-
lution of (1)H6) (with f = O) Moreover, asn —
0+, Oug — Oug, weakly in 2,(QE, x (0,T)) and in
I‘Ioc(Qout x (0,T)).

3.3 Well-posedness Results

The first result of this section is connected with the
existence and uniqueness of the solution of the mi-
croscopic problem; heneds assumed to be fixed and
equalto 1.

Theorem 3.5. Let Q be an open connected bounded
subset ofRN such thatQ = Q;UQ,UT, where
Q; and Q, are two disjoint open subset 61, I =
0Q:1NQ =0Q,NQ is a compact regular set, and
FNoQ = 0. Assume also tha®, Q1 and Q, have
Lipschitz boundaries. Lett > 0 and 3 > 0. Let
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f € L2(Q x (0,T)), g,h € L%(0,T;L%(I")), and Se
HY2(I"). Therefore, problem

—oAv=f(t), inQ1,Qy;  (17)
[GDv-v] =q(t), onl; (18)
[v] OoutVOW.v+h(t), onl; (19)

v ]( 0)=S onl;  (20)
v(x,t) = O ondQ; (21)
admits a unique solution & L?(0, T; #}(Q)) with
[V] € C(0,T;L2(I)), where H}(Q) = {u= (ug,up) |

U1 = U, , Uz = Ujg,,, With U, Uz € H}(Q)}.

Assume that fe CO([0,T|;C™VY(Q)), and
that Oxf(x;t) and f(x,t) exist and are
bounded. Let ge CO([0, T];C™?HY(Q)), with

g € L®(0,T;C™2HY(Q)).

Then the solution u given in Theorem 3.8 be-
longs to &([0,T];C*Y(Q)) NL™(0,T;C™2HY(Q))
and solves the problem in the classical sense.

Both the proofs can be obtained, for example, with
a standard delay argument or a fixed point theorem,
together with an a-priori estimate in the correspond-
ing function spaces. The a-priori estimates are ob-
tained as in standard elliptic equations, using also the
Gronwall's Theorem to deal with the memory term

The technique employed to prove this theorem re- (Amar et al., 2004a).

lies on a result of existence and uniqueness for ab-

stract parabolic equations, to which Problem (17)- 3.4 Stability

(21) can be reduced by means of a suitable identifi-

cation of the function spaces there involved (Zeidler, In this section we will give a brief description of the
1990, Chapter 23). For the details see (Amar et al., asymptotic behavior ofis(x,t) and u(x,t) for large

2005).

times. The interest in studying the asymptotics of this

Remark 3.6. Note that the same result as in Theorem model is due to the fact that the diagnostic measure-

3.5 holds if we assume th& =Y = (0, )N, g(-,1)
is Y-periodic for a.e.t € (0,T), f andq satisfy the
compatibility condition

/Yf(y,t)dy:/rq(y,t)dy

and we replace (21) with the requirement thaft) is
Y -periodic.

fora.eite (0,T),

For the homogenized problem an existence and
uniqueness theorem, both for weak and classical so- ||Ug(-,t)| 2(q)

lutions, is available.

Theorem 3.7. Let Ac Lm(Q;RNZ) be a symmet-
ric matrix such thatA|E|? < A(x)€ - & < AJE|?, for
suitable0 < A < A < +o, for almost every x Q
and every& € ®N; let B € L2(0, T;L>(Q; ®RN*)),
and let ge L?(0,T;HY(Q)). Assume that f Q x
(0,T) — R is a Caratteodory function such that
f € L?(0,T;H 1(Q)) and g€ L?(0, T;HY(Q)).

Then, there exists a unique function a
L%(0,T;HY(Q)) satisfying in the sense of distribu-
tions

_div(A(x) Oxu +/OtB(x,t —1)Oxu(x, 1) dr> = f(x,t)

in Q x (0, T) withu=gondQ x (0, T).
Theorem 3.8. Let m> 0 be any fixed integer and let

also0 < y < 1. Let Ac CHY(Q; RV) satisfy the as-
sumption of Theorem 3.7 and

B CY([0, T|;C*Y(@; &)
be such that
B € L2(0, T;w(@; R ).
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ments are in general performed at times significantly
longer than the typical relaxation time of the system.

In the case where a homogeneous Dirichlet
boundary condition is satisfied, the following results
were provenin (Amar et al., 2009a).

Theorem 3.9.LetQf ., QF 1, %, Oint, Oout, 0 be as be-
fore. Assume that the initial daturg Satisfied8). Let

Ug be the solution of1)+(6) (with f = 0). Then
<C(e+e™) ae.in(1,+w), (22)

where C and\ are independent of. Moreover, if $
has null mean average over each connected compo-
nent ofl¢, it follows that

[[Ue (-, )l L2 (23)

This theorem easily yields the following exponen-
tial time-decay estimate fom under homogeneous
Dirichlet boundary data.

Corollary 3.10. Under the assumptions of Theorem
3.9, if u — uweakly in 2(Q x (0,T)) for everyT >
0, then

U, )lle2(q) (24)

Next we are interested in the case of a nonhomo-
geneous but time-periodic Dirichlet boundary data for
us andu. Then we assume

<Ce™ ae.in(1,+w).

<Ce™ a.e.in(1,+om).

Ug(X,t) = W(Xx)P(t) and  u(xt) =W¥YX)P(t),
(25)

onoQ x (0,+), where

o) eHER), WK eHYRY), A¥=0
(26)



Electrical Conduction in Biological Tissues - Homogenization Techniques and Asymptotic Decay for Linear and Nonlinear
Problems

in Q. Here and in the following a subscript # denotes
a space of -periodic functions, for some fixet > 0.

In order to deal with this case, for evegy> 0
we introduce an auxiliary functio which solves a ot
time-periodic version of the microscopic differential
scheme introduced in Section 2

Fourier series; i.e.,

+oo

e Xt
)25

Finally, expressing the functioh by means of its

(34)

wherewy = 2km/T is thek-th circular frequency, and

—div(o0u) =0, in (QfUQow) x R (27)  representing the solutiauf (x,t) as follows:
[cOuf-v] =0, onréx R; (28)
Vek (X)€Kt 35
%%[uﬁ] Oufout.y | onlfEx R; (29) k_Zm ek(X ’ (35)
W (x,t) = wXo(t), ondQ x R; (30) we obtain that the complex-valued functiong(x) €
uf(x,-) is T periodic, vxeQ; (31  LA(Q)are such thaty|q: € HY(QF), i = 1,2, and for
k #£ 0 satisfy the problem
[U¥(-,t)] —S(-) has null average over each —div(oOvg) =0, in QL,UQs:  (36)
connected component 6f. (32) [00vgk-v] =0, onl%  (37)
Indeed, this problem is derived from (1)—(6) (with wxa Ve = (G0vek-v)°™,  onr®;  (38)
f = 0), replacing equation (5) with (31). Equation
(32) has been added in order to guarantee the unique- Vek = W, onoQ, (39)
ness of the solution, and is suggested by the observa-
tion that [us(-,t)] — S:(-) has null average over each Whereas fok =0 they satisfy the problem
((:;))r'lr(lg)(?ted component bf, as a consequence of (1)- —div(a0veo) = 0, in QF, U QO%" (40)
In (Amar et al., 2009a, Theorem 7) it has been [0BVeo -] =0, onr™; (41)
proved that as — 0, the functioru?(x,t) approaches (00Vgp - v)°Ut =0, onlé&; (42)
a time-periodic function” € H}(® ;H(Q)) solving Veo = CoW, ondQ;  (43)
—div (Amu#+ " BOOFxt—1) dr) —0, (33)
0 ’ - [Veo] — S(+) has null average
over each connected componenféf (44)

in Q x R, with u¥ = W(x)®(t) on 9Q x R. HereA
andB the same matrices defined in Theorem 3.1.
Moreover, the following result holds.

Theorem 3.11. Let Qf ,, Q8 ,T%, Oint,Oout, @ be as
before. Assume that the initial daturp &atisfieq(8)
and the boundary datum satisfi€z6). Let{us} and
{uf} be the sequences of the solutiongD#-(5) (with

f =0), (25)and(27)+(32), respectively. Then
<ce™

e (-, t) — WD)z a.e. in(1,4),

where C and\ are positive constants, independent of

€.

This theorem easily yields the following exponen-

tial time-decay estimate far— u”,

Corollary 3.12. Under the assumption of Theorem

3.11,if y — uand § — u* weakly in 2(Q x (0,T)),
for everyT > 0, then the following estimate holds:
(- t) = (1)l 2(q)

<ce™ ae.in(1,+w),

where C and\ are positive constants, independent of

€.

Note that any solutiorvg, of Problem (36)—(39) is
such thatlvek] has null average over each connected
component of €.

Finally, in (Amar et al., 2009a) the following ho-
mogenization result is proven:

Theorem 3.13. Let QF , QF ;[ Oint,Oout, & be as
before. Assume that the boundary datum satisfies
(26). Then, for ke Z\ {0} [respectively, k=0
under the further assumption(8), the solution w
of Problem (36)(39) [respectively, Problen(40)-
(44)] strongly converges in4(Q) to a function gy €

H(Q) which is the unique solution of the problem

—div(A®% Ovg) =0, in Q; (45)
Vok = CkW, onoQ; (46)
where
+o0 )
A :A+/ B(t)e X d (47)
0

with A and B the same matrices defined in Theorem
3.1.
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Remark 3.14. Experimental measurements in clini-
cal applications are currently performed by assigning
time-harmonic boundary data and assuming that the
resulting electric potential is time-harmonic, too. This
assumption, which is often referred to as the limiting
amplitude principle, leads to the commonly accepted
mathematical model based on the complex elliptic
Problem (45)—(46) for the electric potential (Borcea,
2003), (Dehghani and Soni, 2005). In (Amar et al.,
2009a), in view of the preceding theorem, this phe-
nomenological equations have been mathematically
justified and, moreover, in (47) a quasi-explicit rela-
tion between the circular frequenay and the coeffi-
cientA® has been found.

4 THE NONLINEAR CASE

In this section the functiorf appearing in equation
(4) is assumed to be continuous and strictly mono-
tone increasing; moreover, we require thigd) =0
and|f(s)| <Al | Vse R, whereA > 0 is a suitable
constant. For later use, let us set

XHY) == {(uP,u@) | u = ug,  u® = g,
with u™ e HY(Ey), u® e HY(E,), andu Y — periodid
and recall the definition of two-scale convergence.

Definition 4.1. Given a sequence{uUs} €

L2(0,T;L%(Q)) and a functioru € L?(0, T;L2(Q x

Y)), we say thatug two-scale converges ta

in L2(0,T;L2(Q x Y)) for € — 0 (and we write
lim

U 25°0) if
T X
Ho/o /ng(x,t)q) (x,g,t) dxdt =

:
| utxynotcyt drayet
0 JOxY

for any test functionp € LZ(Y; C(Q x [0, T))).

Following (Allaire et al., 1995) (see also (Hum-
mel, 2000)), we recall also the notion of two-

/OT /Q /FV(XvYat)LIJ(X,y,t)dxdcr(y)dt

for any test functionp € C(Q x [0, T]; C4(Y)).

A weak formulation and an energy estimate anal-
ogous to the ones in (9) and (10) can be written down
also in this case, so that we can assert again that, up
to a subsequence; — u weakly inL?(Q x (0,T)),
whereu is identified in the next theorem (see (Amar
etal., 2013a)).

Theorem 4.3. Let the assumptions listed in Sec-
tion 2 be satisfied and let f be as stated above.
Assume, in addition, thate two-scale converges
in L2(Q;L2(T)) to a function $ which satisfies

Si(x,+) = Sr(x,-) for some S €(Q; G3(Y)), and

/rs (%)Z(X) do = /Q /ﬁ(x,y) dxda(y).

Then there exists@ L?(0, T;Hg (Q)) and there exists
up € L2(Q x (0,T); X3 (Y)) such that, ag — 0, we
have

lime
e—0

strongly in 12.(0,T;L%(Q)),
inL2(0,T;L2(Q xY)),

Us — U
1Q\ra DUE ZjCDU'i‘ DyUl

2—sc

£ Hug] = [ug] inL2(Q x (0, T);L3(I")).

Moreover, the paifu,u;) solves

—div <00DU+/0DyU1dy) =0, in Q; (48)
Y

—divy(cOu+o0yuy) =0, in Qx (EintUEow); (49)

[0(Bu+0Oyu)-v] =0, onQ xTI; (50)

a%[ul] + f([us]) =o(Ou+DOyug)-v, onQxT;
(51)
[u1](%,y,0) = S1(X,Y), onQxTI; (52)
u(x,t) =0, onodQ. (53)

scale convergence for sequences of functions defined  As in Subsection 3.4, also in this nonlinear case

on periodic surfaces, suitably adapted to the time-
dependent case.

Definition 4.2. Given a sequence {vg} €
L2(0,T;L(r¥)) and a function v € L?(Q x
(0,T);L2(I")), we say that, two-scale converges to
vin L2(Q x (0,T);L?()) for e — 0 (and we write
2—sc
T X
/0 /revg(x,t)tp (x,g,t) dodt =

Ve — V) if

lime
e—0
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we are interested in studying the asymptotic behavior
of the macroscopic potentialfor large times. In the
case where a homogeneous Dirichlet boundary con-
dition is satisfied, the following result is proven in
(Amar et al., 2013b, in preparation), which is anal-
ogous to the one stated in Corollary 3.10.

Theorem 4.4. Let u u; be the solution of the homog-
enized Problen@48)«53). Then,

||U(',t)||L2(Q) < CeﬁM a.e. in(l,—|—00)
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