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Abstract: This paper proposes an identification method of fuzzy measure for fault diagnosis of rotating machineries 
using vibration spectra method. The membership degrees for spectra in fuzzy set composed of vibration 
spectra are obtained from the optimized membership functions. The fuzzy measure is identified by the 
proposed method using the partial correlation coefficients between two spectra and the weight of each 
spectrum given by skilled engineers. The possibility of faults are determined by the fuzzy integral that is made 
by using the membership degrees and fuzzy measures for spectra. This paper also evaluates the method using 
field data. 

1 INTRODUCTION 

Diagnosis of faults in rotating machineries are made 
by applying prior knowledge in conjunction with 
diagnostic analysis techniques of diagnosing 
engineers. The need for diagnosing rotating 
machineries is rising due to the increased use of 
them in highly reliable systems such as aircrafts and 
nuclear power plants. Moreover, due to the increase 
of condition based maintenance (CBM) for highly 
dependable systems and for cost effective 
maintenance, many highly skilled engineers are 
required to make accurate diagnoses (Chen et al., 
2002). However, it is difficult to satisfy the current 
need of skilled engineers because the requisite 
training is lengthy and very expensive.  

Several diagnostic systems for rotating 
machineries have been developed to satisfy this need 
(Liu et al., 2007). Some of them use fuzzy measures 
and fuzzy integrals to encompass the existing 
knowledge of skilled engineers (Marinai and Singh, 
2006). However, they still have several problems, 
such as difficulty in isolating faults generating 
similar vibration spectra.  

This paper proposes an identification method of 
fuzzy measures using partial correlation coefficients 
of spectra used for fault diagnosis. The possibility of 
faults is determined by the fuzzy integral using the 
membership degree of spectra and fuzzy measure of 
the set of spectra. The membership degrees are 

obtained by the optimized membership functions 
(Tsunoyama et al., 2010; Tsunoyama et al, 2012), 
and fuzzy measures are identified by the  partial 
correlation coefficients of spectra and the weight of 
each spectrum given by skilled engineers. 

This paper is organized as follows. The vibration 
spectra for faults, and fuzzy measure and fuzzy 
integral are described in Section 2. The 
identification method of fuzzy measure and variation 
of possibility are explained in Section 3. A sample 
diagnosis and evaluation of the proposed method are 
provided in Section 4. Our conclusions are presented 
in Section 5. 

2 FAULT DIAGNOSIS 
OF ROTATING MACHINERIES 

2.1 Faults and Vibration Spectra 

Several kinds of faults occur in rotating machineries 
including abnormal vibration, oil or water leaks, and 
abnormal temperature. The proposed method 
diagnoses faults that produce abnormal vibration 
since a large number of faults in rotating 
machineries are accompanied by vibration. 
However, the presence of vibration is not necessarily 
indicative of a failure mode when the vibration 
power is low. The power level required for 
machinery failure is specified by ISO 2372. The 

273Tsunoyama M., Imai Y., Hori H., Jinno H., Ogawa M. and Sato T..
Identification of Fuzzy Measures for Machinery Fault Diagnosis.
DOI: 10.5220/0004629202730278
In Proceedings of the 5th International Joint Conference on Computational Intelligence (FCTA-2013), pages 273-278
ISBN: 978-989-8565-77-8
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



proposed method diagnoses faults generating 
vibrations larger than this level.   

The vibration spectra vary depending on the type 
of fault. The vibration spectra method employed 
analyzes vibration at six locations specified by 
ISO2372 in a machinery using FFT (Fast Fourier 
Transform) and diagnoses faults using the spectra. 
An example of spectra for a faulty machinery is 
shown in Figure 1. In this case, engineers diagnose 
that the fault might be imbalance because the 
spectrum of fundamental frequency (60Hz) is high, 
the second harmonics (120Hz) is rather high, and 
more than third harmonics are very high from the 
figure. 

Figure 1: Vibration frequency spectra. 

2.2 Fault Diagnosis 

2.2.1 Fuzzy Set of Spectra and Membership 
Functions 

In the fault diagnosis, the possibility of forty three 
different faults such as imbalance, misalignment, 
looseness and so on are calculated using the 
vibration spectra collected from a faulty machinery, 
and membership degree and weight of each 
spectrum. 

The fuzzy set of spectra A
~

 is represented by 
Eq.(1). The set is composed of vibration spectra and 
their membership degrees. The set X  is the set of 
whole spectra used for calculating the possibility of 
a fault. 
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where )1)(0(),(  ii shsh  is the membership degree 

of spectrum is for a fault. 

The intensity of spectra vary depending on the 
installation of the machinery or degree of damage by 
the fault, and its probability distribution can be 
approximated by the normal probability distribution. 

We optimize membership functions based on the 
statistical properties of spectra  (Tsunoyama et al., 
2010). 

In fault diagnosis, diagnosed results are 
classified into four cases (Table 1). 

Table 1:  Diagnosed Results. 

Case Cause of fault Diagnosed result 
1 

α 
Not α 

2 α 
3 

β 
α 

4 Not α 

When the possibility of fault  is calculated, the 
possibility for Cases 2 should be maximum and the 
possibility for Case 3 should be minimum, since 
Case 2 is correct but Case 3 is not. Moreover, Cases 
1 and 2 are exclusive, as are Cases 3 and 4. 
Therefore, the membership function can be 
optimized by maximizing the mean value of the 
membership degree for Case 2 and minimizing that 
for Case 3. We call  and    are a target fault and 

non-target faults, respectively.  
Figure 2 shows a triangular membership function 
)(xh for a spectrum for diagnosing fault  , and 

probability density function )(xf  ( )(xf ) for 
intensity of the spectrum when fault   ( )  occurs.  
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: Membership function and probability density 
functions. 

The integral of the probability distribution function 
}),{(),( axFa

and the membership function 

)(xh for fault   gives the average membership 

degree for fault  . The optimization of the 
membership function for fault   is performed by  
maximizing the average membership degrees for 
Case 2 and minimizing the average membership 
degrees for Case 3. Eq. (2) shows the average 
membership degrees for Case 2. 
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(2)

Eq. (3) shows the average membership degree for 
Case 3. 

 

(3)

Membership functions can be optimized by 
maximizing Eq. (2) and minimizing Eq. (3). 

2.2.2 Fuzzy Measure and Fuzzy Integral 

A fuzzy measure g is a set function on X satisfying 

the following conditions: 

]1,0[2: Xg  (4)

0)()1( gC  
1)()2( XgC  

)()()3( BgAgXBAC   

The fuzzy measure can cope with the following 
three interactions between the functions on sets A 
and B depending on the additivity of fuzzy measures 
(Wang and Klir,1992).  
(I1) No interaction between A and B. 
(I2) Positive synergy between A and B.  
(I3) Negative synergy between A and B. 

Several fuzzy integrals have been proposed such 
as Sugeno’s and Choquet integrals(Grabisch 2000). 
In this paper, the Choquet integral is used. The 
Choquet integral of a non-negative function h  on X  
with respect to fuzzy measure g is defined: 
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where },,,{ 1 niii sssA   , 0)( ish when i=0., and 

the order of   )11(,  nish i  is assumed to be 

     11 shshsh nn    . 

3 IDENTIFICATION OF FUZZY 
MEASURES 

3.1 Fuzzy Measure based on Partial 
Correlation Coefficient 

Several methods for identifying fuzzy measures 
have been proposed (Wang and Klir, 1992). 
However, they are difficult to apply to fault 
diagnosis of rotating machinery, since several 
parameters must be assigned experimentally before 
identification or they are difficult to differentiate the 
possibility of target fault from non-target faults.  In 
this paper, the fuzzy measure based on partial 
correlation coefficients is defined. This fuzzy 
measure is the extension of the fuzzy measure 
defined by (Taya and Murofushi, 2006). In the 
definition, )1( niwi  is called a weight of 

spectrum is .  
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where coefficient srk ,  is the absolute value of partial 

correlation coefficient between spectra rs and ss  

(Sipley, 2000). The set of weights of spectra are 
represented as follows, and given by skilled 
engineers. 
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The membership degree of spectra are assumed to be 

     11 shshsh nn     

without loss of generality. The factor 0 is 

determined from the following equation to satisfy 
the condition (C2) of fuzzy measure shown in 2.2.2. 
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Thus the factor is given by the following equation. 
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3.2 Fuzzy Integral and Variation 
of Possibilities 

Fuzzy integral defined by Eq.(5) can be rewritten by 
Eq.(8) when fuzzy measure is additive, since every 
partial correlation coefficient is zero and the fuzzy 
measure )( iAg is given by Eq.(9).  
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The above fuzzy integral is called a weighted 
average and has been commonly used for calculating 
the possibility of faults in fault diagnosis. 

When fuzzy measure is not additive, fuzzy 
integral is represented by the following equation by 
substituting Eq.(7) to Eq.(6). 
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In fault diagnosis, we can distinguish faults correctly 
when possibility of target fault(Case 2 in 2.2.1) is 
higher than the possibilities of non-target faults(Case 
3 in 2.2.1). In order to evaluate the proposed fuzzy 
measure, we compare the difference of possibilities 
between target fault and non-target faults. The 
difference is obtained from the variation of fuzzy 
integral when membership degree of spectra changes.  

The partial differential of the fuzzy integral with 
respect to membership degree )( ish of spectrum is is 

given by the following equation when fuzzy measure 
is additive. 
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The total variation of fuzzy integral is given by the 
following equation from the above partial 
differential. 
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On the other hand, when fuzzy measure is not 
additive, the partial differential is given by the 
following equation. 
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Thus the total variation is given by the following 
equation. 
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We evaluate the proposed fuzzy measure by 
comparing the above two total variations. The ratio 
of the above two variations is given by the following 
equation and is called the ratio of improvement. 
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The ratio of improvement shows that when proposed 
fuzzy measure is used, we can expect K times larger 
difference of possibilities between target fault (Case 
2) and non-target faults (Case 3) than weighted 
average is used. 

4 EXAMPLE OF DIAGNOSIS 

In this example, we compare the possibility of 
looseness fault (target fault) with the possibilities of 
imbalance and misalignment faults (non-target 
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faults) using field data.  
The spectra used to diagnose looseness fault are 

,, 21 NN ss and MNs3 , where 1N, 2N, and 3MN are 

fundamental frequency, second harmonics and over 
third harmonics, respectively. The weights of spectra 
given by skilled engineers are shown in Table 2.  

Table 2: Weights of spectra. 

Nw1  Nw2  MNw3  
0.6 0.2 0.2 

The membership degrees of spectra of field data for 
three faults obtained from the optimized 
membership functions are shown in Table 3.  

Table 3: Membership degrees of spectra. 

Fault )( 1Nsh  )( 2Nsh  )( 3MNsh  

Looseness 0.864 0.809 0.790 
Imbalance 0.839 0.810 0.084 
Misalignment 0.875 0.534 0.029 

The partial correlation coefficients between two 
spectra of field data for looseness fault are shown in 
Table 4. 

Table 4: Partial correlation coefficients. 

NNk 2,1  MNNk 3,1  MNNk 3,2
0.572 0.843 0.330 

The ratio of improvement given by Eq.(15) is 
obtained as follows: 
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The ratio is calculated as 2.27K   by using the 
values in the above tables.  

The possibilities for field data obtained from the 
fuzzy integral and from weighted average are shown 
in the following figure.  
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Figure 3: Possibility of faults. 

From the figure, we can see that the ratio of 
improvement ( 1112 / dd ) is 3.25 when imbalance 

data is used, and the ratio ( 2122 / dd ) is 2.97 when 

misalignment data is used. These values are larger 
than that of the ratio of improvement given by 
Eq.(16). We can say that the possibility of target 
fault (Looseness) is more differentiated than that of 
non-target fault (Imbalance and Misalignment). 

5 CONCLUSIONS 

Herein, an identification method of fuzzy measure 
for diagnosing faults in rotating machinery is 
proposed. The fuzzy measures are determined by 
using partial correlation coefficients between 
vibration spectra and the weights of spectra given by 
skilled engineers.  

The fuzzy measure is evaluated by comparing 
the possibility obtained by using the proposed fuzzy 
measure and the possibility obtained by using 
weighted average. The ratio of improvement K is 
introduced to compare the difference of the above 
two possibilities, and the equation for K is derived 
using the partial differentials of fuzzy integral.  

The evaluation is also made using field data. The 
results show that the ratio of improvement obtained 
from field data are around three and higher than the 
value obtained from the equation in the paper.  

In future work, we will improve the accuracy of 
the ratio of improvement, and apply this method to 
other fault diagnoses and evaluate the method using 
extensive field data. 

REFERENCES 

Wang, Z. and Klir, G. J., 1992. Fuzzy Measure Theory, 
Plenum Press. 

Sipley, B.,  2000. Cause and correlation in Biology. 

d11 d21 

d22d12 

Identification�of�Fuzzy�Measures�for�Machinery�Fault�Diagnosis

277



Cambridge University Press. 
Grabisch, M. , Murofushi, T.  and Sugeno, M., 2000. 

Fuzzy Measures and Integrals : Theory and 
Applications, Springer. 

Chen, P., Feng,F. and Toyoda, T., 2002. Sequential 
Method for Plant Machinery by Statistical Tests and 
Possibility Theory, REAJ, vol. 24, No. 4, pp. 331-322. 

Marinai , L., and Singh, R., 2006. A Fuzzy Logic 
Approach to Gas Path Diagnostics in Aero-engines, 
Computational Intelligence in Fault Diagnosis, 
Springer. 

Taya,  M. and Murofushi, T.,  2006. Fuzzy measure 
identification for bootstrapped Choquet integral model 
in multicriteria decision making.  International 
Conference on Soft Computing and Intelligent Systems, 
and International Symposium on advanced Intelligent 
Systems 2006, pp.1402-1407, Japan. 

Liu, X., Ma, L. and Mathew, J., 2007. Rotating machinery 
fault diagnosis on fuzzy data fusion techniques, 2nd 
World Congress on Engineering Asset Management 
and the 4th International Conference on Condition 
Monitoring, pp. 1309-1318, Harrogate England. 

Tsunoyama, M., Masumori, K., Jinno, H., Ogawa M. and 
Sato, T., 2010. An Application of Fuzzy Measure and 
Integral for Diagnosis of Rotating Machinery Faults,  
ICFC 2010, International Conference on Fuzzy 
Computation, pp. 120-124, Spain. 

Tsunoyama, Imai, Y., K., Jinno, H., Ogawa M. and Sato, 
T., 2012. An Application of Fuzzy Measure and 
Integral to Diagnosis Utilizing Knowledge of Skilled 
Engineers, PRDC 2012, Pacific Rim Dependable 
Computing, Japan. 

IJCCI�2013�-�International�Joint�Conference�on�Computational�Intelligence

278


