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Abstract: The energy consumption in Europe is, to a considerable extent, due to heating and cooling used for domestic 
purposes. This energy is produced mostly by burning fossil fuels with a high negative environmental 
impact. The characteristics of a building are an important factor to determine the necessities of heating and 
cooling loads. Therefore, the study of the relevant characteristics of the buildings with respect to the heating 
and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design 
and construct energy efficient buildings. In previous studies, statistical machine learning approaches have 
been used to predict heating and cooling loads from eight variables describing the main characteristics of 
residential buildings which obtained good results. In this research, we present two fuzzy modelling 
approaches that study the same problem from a different perspective. The prediction results obtained while 
using fuzzy approaches outperform the ones described in the previous studies. Moreover, the feature 
selection process of one of the fuzzy methodologies provide interesting insights to the principal building 
variables causally related to heating and cooling loads. 

1 INTRODUCTION 

In recent years there has been a substantial increase 
of research in the area of energy performance of 
buildings. The aim is to design and construct more 
energy-efficient buildings with the goal of reducing 
their energy consumption and CO2 emissions. 
During the last four years the European Commission 
boosted the research in this area with a programme 
framed in the Seventh Framework Programme for 
Research (FP7) (European Commission, 2013). 

Fuzzy logic-based methods have been applied 
sparingly to the energy performance estimation of 
buildings; however, there is a considerable amount 
of research that uses fuzzy logic instead of classical 
controllers to develop advanced control systems 
with several building energy goals. The overall 
objective is the management of indoor environment 
including user preferences. The development of 
fuzzy controllers to control thermal comfort, visual 
comfort, and natural ventilation, with the combined 
control of these subsystems has led to remarkable 
results (Dounis and Caraiscos, 2009); (Kurian et al., 
2005). There are also studies that focus on more 
specific control purposes such is, for example, the 

control of electrochromic windows. In this research 
the authors develop an algorithm to control the solar 
transmittance of the electrochromic glazing unit, 
both in terms of energy and the quality of the indoor 
environment (Assimakopoulos et al., 2004). 

Another interesting area within the analysis of 
energy in buildings where fuzzy logic has been 
applied is in multiple criteria decision-making 
(FMCDM). We can find works in the literature that 
use these techniques with very different goals. For 
instance, in (Lee, 2010) a FMCDM is developed to 
evaluate and rank the energy performance of office 
buildings because it is relevant for energy agencies 
and authorities. In (Hsieh et al., 2004) this approach 
is used for selecting planning and design alternatives 
in public office building. However, FMCDM has 
been used mainly in energy planning, in application 
areas such are renewable energy, energy resource 
allocation, building energy management, 
transportation energy management or electric utility 
(Pohekar and Ramachandran, 2004).  

Although, as has been already mentioned, fuzzy 
logic has been used scarcely for the prediction of 
energy performance of buildings, machine learning 
strategies have been already used to deal with this 
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issue (Tsanas and Xifara, 2012). In the research 
presented in this paper the work of Tsanas and 
Xifara is taken as a basis to study the performance of 
fuzzy approaches for the problem at hand. The 
approaches reported in (Tsana and Xifara, 2012), i.e.  
classical linear regression approach called Iteratively 
Reweighted Least Squares (IRLS) and nonlinear 
non-parametric method called Random Forests (RF), 
are compared with the two fuzzy approaches 
presented in this work, the Fuzzy Inductive 
Reasoning (FIR) and the Adaptive Neuro-fuzzy 
Inference System (ANFIS) from the prediction 
capability perspective and as feature selection tools.  

The next section provides an insight into these 
two fuzzy approaches. Section 3 presents the data 
used for this study and describes the fuzzy models 
construction. Section 4 presents and discusses the 
results obtained. Finally, section 5 presents the main 
conclusions of this work. 

2 METHODS 

Both, the fuzzy inductive reasoning (FIR) and the 
adaptive neuro-fuzzy inference system (ANFIS) are 
hybrid methodologies that combine mainly soft 
computing approaches. FIR combines fuzzy logic 
with machine learning techniques and ANFIS 
combines fuzzy logic with neural networks.  

2.1 Fuzzy Inductive Reasoning (FIR) 

The conceptualization of the FIR methodology 
arises of the General System Problem Solving 
(GSPS) approach proposed by Klir (Klir and Elias, 
2002). This methodology of modeling and 
simulation is able to obtain good qualitative relations 
between the variables that compose the system and 
to infer future behavior of that system. It has the 
ability to describe systems that cannot easily be 
described by classical mathematics or statistics, i.e. 
systems for which the underlying physical laws are 
not well understood.  

FIR offers a model-based approach to predicting 
either univariate or multi-variate time series (Nebot 
et al., 2003); (Carvajal and Nebot, 1998). A FIR 
model is a qualitative, non-parametric, shallow 
model based on fuzzy logic.  

Visual-FIR is a tool based on the Fuzzy 
Inductive Reasoning (FIR) methodology (runs under 
Matlab environment), that offers a new perspective 
to the modeling and simulation of complex systems. 
Visual-FIR designs process blocks that allow the 
treatment of the model identification and prediction 

phases of FIR methodology in a compact, efficient 
and user friendly manner (Escobet et al., 2008). 

FIR methodology has two main processes: a 
feature selection process, that allow to develop a 
model, and the prediction or simulation process, that 
uses the model obtained to infer the future behaviour 
of the system. 

A FIR model consists of its structure (relevant 
variables) and a set of input/output relations (history 
behavior) that are defined as if-then rules.  

Feature selection in FIR is based on the 
maximization of the models' forecasting power 
quantified by a Shannon entropy-based quality 
measure. The Shannon entropy measure is used to 
determine the uncertainty associated with 
forecasting a particular output state given any legal 
input state. The overall entropy of the FIR model 
structure studied, Hs, is computed as described in 
equation 1.  
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where p(i) is the probability of that input state to 
occur and Hi is the Shannon entropy relative to the 
ith input state. A normalized overall entropy Hn is 
defined in equation 2. 
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Hn is obviously a real-valued number in the range 
between 0.0 and 1.0, where higher values indicate an 
improved forecasting power. The model structure 
with highest Hn value generates forecasts with the 
smallest amount of uncertainty.  

Once the most relevant variables are identified, 
they are used to derive the set of input/output 
relations from the training data set, defined as a set 
of if-then rules. This set of rules contains the 
behaviour of the system. Using the five-nearest-
neighbours (5NN) fuzzy inference algorithm the five 
rules with the smallest distance measure are selected 
and a distance-weighted average of their fuzzy 
membership functions is computed and used to 
forecast the fuzzy membership function of the 
current state, as described in equation 3.  
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The weights 
jrelw are based on the distances and are 

numbers between 0.0 and 1.0. Their sum is always 
equal to 1.0. It is therefore possible to interpret the 
relative weights as percentages. 
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Figure 1: Example of how a Sugeno model works (evaluation of two fuzzy rules with two input variables or antecedents, 
i.e. A and B). 

For a more detailed explanation of the fuzzy 
inductive reasoning methodology refer to (Escobet 
et al., 2008).   

2.2 Adaptive Neuro-Fuzzy Inference 
System (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System 
(ANFIS), developed by Jang, is one of the most 
popular hybrid neuro-fuzzy systems for function 
approximation (Nauck et al., 1997). ANFIS 
represents a Sugeno-type neuro-fuzzy system. A 
neuro-fuzzy system is a fuzzy system that uses 
learning methods derived from neural networks to 
find its own parameters. It is relevant that the 
learning process is not knowledge-based but data-
driven. 

The main characteristic of the Sugeno inference 
system is that the consequent, or output of the fuzzy 
rules, is not a fuzzy variable but a function, as 
shown in equation 4. 

R1: If A is A1 and B is B1 then z = p1*a + q1*b + r1 

R2: If A is A2 and B is B2 then z = p2*a + q2*b + r2 
(4)

Figure 1 describes graphically the inference process 
of a Sugeno model composed by the two rules 
described in equation 4 works.  

The first step of the Sugeno inference is to 
combine a given input tuple (in the example of 
figure 1: a=3 and b=2) with the rule’s antecedents by 
determining the degree to which  each input belongs 
to the corresponding fuzzy set (left panel of Fig. 1). 
The min operator is then used to obtain the weight of 
each rule, wi, which are used in the final output 

computation, z (right panel of Fig. 1). Notice that 
the Sugeno inference has two differentiated set of 
parameters. The first set corresponds to the 
membership functions parameters of the input 

variables. The second set corresponds to the 
parameters associated to the output function of each 
rule, i.e. pi, qi and ri. 

ANFIS is the responsible of adjusting in an 
automatic way these two set of parameters by means 
of two optimization algorithms, i.e. back-
propagation (gradient descendent) and least square 
estimation. Back-propagation is used to learn the 
parameters of the antecedents (membership 
functions) and the least square estimation is used to 
determine the coefficients of the linear combinations 
in the rules’ consequents. ANFIS is a function of the 
Fuzzy toolbox that runs under the Matlab 
environment. For a more detailed explanation of the 
ANFIS methodology refer to (Nauck et al., 1997). 

3 DATA 

The data used for this study stems from the UCI 
machine learning repository (UCI, 2013) and is 
called energy efficiency data set. The data was 
created by (Tsanas and Xifara, 2012) in the 
following way. They generated 768 simulated 
buildings using Ecotet. Ecotet is a sustainable 
building design software tool that allows the design 
of buildings performing a whole building energy, 
thermal performance and water usage analysis, 
among other functionalities (Ecotet, 2013). 

All the buildings have a volume of 771.75 m3, 
but different surface areas and dimensions. All of 
them are created with the same materials, that were 
selected taking into account the newest and most 
common materials in the building construction 
industry and the lowest heat loss in each building 
element, i.e. wall, floor or roof (U-value). 

The simulation assumes that the buildings are 
located in Athens, Greece, and are residential 
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buildings.  
They used three types of glazing areas, expressed 

as percentages of the floor area: 10%, 25%, and 
40%. Furthermore, five different distribution 
scenarios for each glazing area were simulated: 1) 
uniform: with 25% glazing on each side, 2) north: 
55% on the north side and15% on each of the other 
sides, 3) east: 55% on the east side and 15% on each 
of the other sides, 4) south: 55% on the south side 
and 15% on each of the other sides, and 5) west: 
55% on the west side and 15% on each of the other 
sides. In addition, they obtained samples with no 
glazing areas. Finally, all shapes were rotated to face 
the four cardinal points. 

Each one of the 768 simulated buildings can be 
characterized by eight building parameters which 
are: Relative Compactness (RC), Surface Area (SA), 
Wall Area (WA), Roof Area (RA), Overall Height 
(OH), Orientation (O), Glazing Area (GA) and 
Glazing Area Distribution (GAD). These parameters 
correspond to the input variables. Also, they 
recorded the Heating Load (HL) and the Cooling 
Load (CL), which correspond to the output 
variables. The authors of the data claim that the data 
generated represent actual real data with high 
probability, enabling energy comparisons of 
buildings (Tsanas and Xifara, 2012).  

In the work of Tsanas and Xifara basic statistical 
analysis of the data were performed and show that 
linear techniques are not appropriate for the 
available data in this application due to the fact that 
the scatter and density plots do not follow a 
Gaussian distribution.   

3.1 Model Evaluation 

In order to test the generalization performance of 
FIR and ANFIS fuzzy models we use cross 
validation, in this case 10-fold cross validation (CV). 
The model parameters are derived using the training 
subset and errors are computed using the testing 
subset. For statistical confidence, the training and 
testing processes are repeated 10 times with the 
whole dataset randomly permuted in each run prior 
to splitting in training and testing subsets.    

Two error measures were used to evaluate the 
performance of each of the models. These are: the 
mean square error (MSE) and the mean absolute 
error (MAE), described in equations 5 and 6, 
respectively. These are the same error measures used 
in (Tsanas and Xifara, 2012), in order to compare 
accurately the methodologies presented in that paper 
with the fuzzy methodologies presented in this work. 

ܧܵܯ ൌ
1
ܰ
෍|ݕ௜ െ ො௜|ଶݕ
ே

௜ୀଵ

 (5)
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where ŷ(t) is the predicted output, y(t) the system 
output and N the number of samples. 

3.2 Fuzzy Models Development 

In this section the development of ANFIS and FIR 
models is described. As mentioned before, in this 
application we have two output variables, i.e. 
heating load and cooling load, and we want to study 
if it is possible to estimate each output by using the 
eight input variables that represent different building 
parameters. Both, ANFIS and FIR methodologies 
allow developing models that have a single output, 
i.e. SISO or MISO models. Therefore, for each 
methodology two sets of models are obtained, one 
for each possible output. The input variables for both 
sets of models are the eight variables previously 
described. We talk about sets of models because for 
each methodology and each output we obtain a 
model for each of the 10 folds, and this is repeated 
10 times. Therefore, 100 models are derived and 
validated for each of the two methodologies and 
outputs studied.   

Both fuzzy approaches need to discretized the 
quantitative data into qualitative data. To this end, it 
becomes necessary to define, at least, two 
parameters, the number of classes (also called 
granularity) chosen for each input variable (and also 
for the output variable in the case of FIR models), 
and the shape of the membership functions of the 
input variables (and also for the output variable in 
the case of FIR models). 

In this research we have decided to discretize the 
input variables RC, SA, WA and GAD into three 
classes and RA, OH, O and GA into only two 
classes. The output variable is discretized into three 
classes in the case of the FIR models. Remember 
that ANFIS does not have fuzzy consequents, i.e. the 
rules’ output is a function (see Figure 1). A 
triangular shape has been used to discretize all the 
variables.  

These discretization parameters have been 
chosen based on the analysis of the data. The 
variable OH can take only two possible values, and 
therefore it is represented into two classes. Variables 
RA, O and GA can take four different values, and 
some of these values appear only few times. A 
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discretization with more than two classes does not 
enhance the model prediction power and, instead, a 
higher number of classes can lead to a curse of 
dimensionality problem. Therefore, it was found that 
two classes are enough for these variables to obtain 
good models. The variables discretized into 3 classes 
have a uniform distribution in their dimensionality 
space, and, therefore, an odd number of classes seem 
more reasonable. Three is the lowest number of 
classes that give good results.  

3.2.1 ANFIS Models 

In order to obtain ANFIS models it is necessary to 
define two sets of parameters: the ones related to the 
discretization process of the input variables, which 
have been explained before, and the parameters 
related to the training process. The parameters 
needed to perform the training process are: the type 
of the output function (i.e. constant or linear), the 
optimization method to train the fuzzy inference 
system and the number of training epochs.  

In this research we use a constant output 
function, a hybrid optimization method and 50 
epochs. A constant output has been chosen instead 
of a linear one because the prediction power of the 
resulting models were equivalent and the training 
process is much more time consuming when the 
linear function is used, due to the additional number 
of parameters involved that need to be estimated in 
the optimization process.  

ANFIS uses the eight input variables to predict 
each output, i.e. heating and cooling loads, and does 
not perform any kind of feature selection. 

3.2.2 FIR Models 

As in the case of ANFIS, the first step in order to 
obtain the FIR models is to discretize the data, i.e. to 
convert quantitative values into fuzzy data. To this 
end, it is necessary to specify the two parameters 
described before, i.e. granularity and shape of the 
membership functions, but also a parameter that 
refers to the discretization algorithm. Depending on 
the algorithm chosen the distribution of the 
membership functions in the variable space may 
vary and this has a direct impact to the reasoning 
process, and, therefore, to the model predictions. 
Contrarily to FIR, ANFIS does not have this 
discretization parameter. ANFIS distributes 
uniformly all the membership functions that describe 
a specific variable. Figure 2 shows an example of 
uniform (upper plot) and non-uniform (lower plot) 
distribution of the membership functions of a 
variable.  

 

Figure 2: Example of uniform (upper plot) and non-
uniform (lower plot) membership functions distribution of 
four classes that represent a given variable.  

In this research, FIR uses the equal with partition 
(EWP) algorithm for the discretization of the RA 
and OH variables, and the equal frequency partition 
(EFP) algorithm for the discretization of the rest of 
the variables. The EWP algorithm is the one that 
performs a uniform distribution of the membership 
functions. The EFP algorithm distributes the 
membership functions of a variable in such a way 
that all the classes contain the same number of data 
points. Visual-FIR allows the modeller to choose 
between 15 discretization algorithms, some of them 
belonging to the hierarchical family and others to the 
fuzzy family (Escobet et al., 2008). 

Once the data has been discretized, FIR 
methodology performs a feature selection process 
where the more relevant causal relations between the 
input variables and the output variable are identified. 
To this end, we used the model structure 
identification process of the fuzzy inductive 
reasoning methodology that performs a feature 
selection based on the entropy reduction measure as 
described in section 2.  

FIR founds that for both outputs, HL and CL, the 
features that have higher relevant causal relation are 
Relative Compactness (RC) and Glazing Area (GA). 
The use of the other variables does not improve the 
predictive power of FIR models. Therefore, these 
two variables represent the minimum subset of 
variables needed to accurately estimate the heating 
load and cooling load. 
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4 RESULTS AND DISCUSSION 

The MSE and MAE obtained by ANFIS and FIR 
models, for both HL and CL output variables are 
summarized in tables 1 and 2, respectively. In both 
tables, the prediction results reported in (Tsanas and 
Xifara, 2012) for the Iteratively Reweighted Least 
Squares (IRLS) and Random Forest (RF) algorithms 
are also included in order to study their performance 
when compared with fuzzy approaches. IRLS is a 
linear regression algorithm that adjusts weights in 
the coefficients of the classical regression scheme in 
order to diminish the effect of the outliers when 
obtaining the fitting curve (Bishop, 2007). RF is a 
non-linear method which was first put forward by 
Breiman (2001). RF is a set of classification and 
regression trees, where the training sample set for a 
base classifier is constructed by using the Bagging 
algorithm (Breiman, 1996). When building a base 
classifier, inner nodes are spitted with a random 
candidate attribute set. The final classification rule 
or regression function is the simple majority voting 
method or the simple average method. 

In tables 1 and 2 the errors of ANFIS and FIR 
models over the 10 cross validation realisations were 
averaged. Tsanas and Xifara performed 100 cross 
validations for both, IRLS and RF models. Tables 1 
and 2 show the average errors of these 100 CV. We 
found out that the models errors for each realisation 
were very similar and, therefore, we think that 10 
CV are enough to ensure a fair comparison.  

Table 1: Mean square prediction errors obtained by the 
methodologies: IRLS, RF, ANFIS and FIR, for the HL 
models and the CL models. The results are given in the 
form of mean ± standard deviation. 

MSE IRLS RF ANFIS FIR 
HL 9.87±2.41 1.03±0.54 0.49±0.1 0.24±0.07 
CL 11.46±3.63 6.59±1.56 3.04±0.62 2.96±0.73 

Table 2: Mean absolute prediction errors obtained by the 
methodologies: IRLS, RF, ANFIS and FIR, for the HL 
models and the CL models. The results are given in the 
form of mean ± standard deviation. 

MAE IRLS RF ANFIS FIR 
HL 2.14±0.24 0.51±0.11 0.52±0.05 0.35±0.04 
CL 2.21±0.28 1.42±0.25 1.06±0.11 1.09±0.16 

 

From tables 1 and 2 it can be seen that the linear 
regression approach, IRLS, has the lowest 
performance. All the non-linear approaches have 
good results and FIR is the one that performs much 
better for both outputs. It is interesting to notice that 
FIR mean square errors are a 75% and 50% lower 
than the errors obtained by the RF, for HL and CL 

models, respectively. The ANFIS errors are also 
significantly lower (50%) than the MSE of the RF 
models. Therefore, both fuzzy approaches 
outperform the RF in the application at hand. It is 
relevant to mention that the standard deviations 
obtained by ANFIS and FIR models are really much 
lower than the ones obtained by RF models. A low 
standard deviation indicates that all the predictions 
errors (100 as described in the previous section) tend 
to be very close to the mean.  

An important issue is that FIR, which is the 
methodology that has a better performance, is the 
only one that performs a feature selection process. 
FIR finds that two of the eight input variables, i.e. 
relative compactness (RC) and glazing area (GA), 
are highly causally related to the outputs, and 
therefore, FIR models only use these two building 
characteristics to predict the heating and cooling 
loads. This is a very interesting result because, in the 
one hand, is consistent with Tsanas and Xifara 
outcomes that claim that the GA is the most 
important predictor for both HL and CL. 

On the other hand, it allows concluding that the 
rest of the six variables, i.e. surface area (SA), wall 
area (WA), roof area (RA), overall height (OH), 
orientation (O), and glazing area distribution (GAD), 
are redundant or irrelevant. Again, this is consistent 
with the previous work that infer that variables RC, 
SA, WA, RA and OH appear reasonably strongly 
associated with the output variables, and at the same 
time founds that some input variables are highly 
correlated. Based on the FIR feature selection 
process, it becomes reasonably to think that the 
relative compactness variable, RC, includes the 
information of other relevant variables involved in 
the study, as SA or RA. In fact, this is true because 
there is an analytic formula linking the RC the SA 
and the volume (Tsanas and Xifara, 2012). The WA 
variable is clearly directly related to the GA, so it is 
redundant. Therefore, the five variables that appear 
reasonably strongly associated with the output 
variables contain redundant information if SA and 
GA are already selected. 

Figure 3 shows real versus predicted ANFIS and 
FIR results for HL and CL models. In both cases we 
present the fold that gives larger MSE, in order to 
show that even for the worse prediction results the 
difference with the real data is almost 
indistinguishable, especially in the case of the 
heating load model. 
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Figure 3: Real vs. ANFIS and FIR prediction results for the Cooling Load (upper plot) and Heating Load (lower plot) 
models. The results of the Cooling Load correspond to fold #1 in one of the 10 iterations. The MAE and MSE obtained by 
the ANFIS model in this fold are 1.08 and 2.91, respectively. The MAE and MSE obtained by the FIR model in this fold are 
1.16 and 3.03, respectively. The results of the Heating Load correspond to fold #7 in one of the 10 iterations. The MAE and 
MSE obtained by the ANFIS model in this fold are 0.54 and 0.46, respectively. The MAE and MSE obtained by the FIR 
model in this fold are 0.42 and 0.38, respectively. 

5 CONCLUSIONS 

The main goal of this work is to study the feasibility 
of fuzzy approaches to estimate the energy 
performance of buildings. The characteristics of a 
building are an important factor to determine the 
necessities of heating and cooling loads. Therefore, 
the study of the relevant characteristics of the 
buildings with respect to the heating and cooling 
needed to maintain comfortable indoor air 
conditions, could be very useful in order to design 
and construct energy efficient buildings. This work 
follows a previous study (Tsanas and Xifara, 2012), 
that creates a set of 768 buildings with different 
characteristics by means of the Ecotet software, with 
the goal of predict the heating and cooling load of 
buildings taking into account eight variables that 
represent different building characteristics, i.e. 
relative compactness, surface area, wall area, roof 
area, overall height, orientation, glazing area and 
glazing area distribution. 

Two fuzzy methodologies have been studied, the 
fuzzy inductive reasoning (FIR) and the adaptive 
neuro-fuzzy inference system (ANFIS). In order to 
test the generalization performance of FIR and 
ANFIS fuzzy models we use 10-fold cross 
validation. The training and testing processes are 
repeated 10 times with the whole dataset randomly 
permuted in each run prior to splitting in training 
and testing subsets. Therefore, 100 models are 
derived and validated for each of the two 
methodologies and outputs studied.   

The results obtained by ANFIS and FIR 
methodologies are compared with the ones presented 
in the work of Tsanas and Xifara, where the linear 
regression Iteratively Reweighted Least Squares 
(IRLS) algorithm and the non-linear Random Forest 
(RF) algorithm are used to predict heating and 
cooling loads. 

From the results it can be concluded that the non-
linear approaches (RF, ANFIS and FIR) perform 
much better than the IRLS. All the non-linear 
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approaches have good results and FIR is the one that 
performs much better for both models, i.e. heating 
and cooling loads. Both fuzzy approaches 
outperform the RF in the application at hand. 
Moreover, the standard deviations obtained by 
ANFIS and FIR models are really much lower than 
the ones obtained by RF models. 

An interesting result is that the feature selection 
process of FIR methodology finds that only two 
input variables, i.e. relative compactness and glazing 
area, contain the relevant information needed to 
predict accurately the heating and cooling loads. 

The results are very encouraging and we think 
that these fuzzy methodologies can be good 
alternatives to deal with different energy analysis 
problems in the context of the smart grid.  
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