
A Model-driven Approach for Securing Software Architectures∗

Mario Arrigoni Neri1, Marco Guarnieri2, Eros Magri3, Simone Mutti1 and Stefano Paraboschi1

1Dip. di Ingegneria Informatica e Metodi Matematici, University of Bergamo, Bergamo, Italy
2Institute of Information Security, ETH Zürich, Zürich, Switzerland

3Comelit R & D, Comelit Group S.p.A, Rovetta S. Lorenzo, Italy

Keywords: Access Control, Model-driven Security, Security Policy, Software Architectures.

Abstract: Current IT systems consist usually of several components and services that communicate and exchange data
over the Internet. They have security requirements that aim at avoiding information disclosure and at showing
compliance with government regulations. In order to effectively handle the security management of complex
IT systems, techniques are needed to help the security administrator in the design and configuration of the
security architecture. We propose a model-driven security approach for the design and generation of concrete
security configurations for software architectures. In our approach the system architect models the architecture
of the system by means of UML class diagrams, and then the security administrator adds security requirements
to the model by means ofSecurity4UML, a UML profile. From the model enriched with security requirements,
the concrete security configuration is derived in a semi-automated way. We present a tool that supports this
model-driven approach, and a case study that involves a distributed multi-user meeting scheduler application.

1 INTRODUCTION

IT systems are becoming more and more complex as
the range of offered services increases and the capa-
bilities of the systems themselves improve. Current
IT systems consist usually of several components and
services communicating and exchanging data over
complex IT infrastructure through the Internet. These
systems usually have strict and complex security re-
quirements, which are needed in order to adequately
protect sensitive data and to assure the availability of
the systems themselves ((Patterson, 2002; Pertet and
Narasimhan, 2005) analyze the costs of unavailabil-
ity of applications). The management of security re-
quirements is a critical task that has the goal of avoid-
ing possible information disclosure and showing com-
pliance with respect to the many regulations promul-
gated by governments.

The security of the global system arises both from
the security of the components and from the correct
configuration of the entire IT infrastructure. Manag-
ing the security of these systems is a tough task, be-

∗This work was partially supported by the EC within the
7FP, under grant agreement 257129 “PoSecCo” and 256980
“NESSoS”, by the Italian Ministry of Research within the
PRIN projects “PEPPER 2008”, “GATECOM” and “Gen-
Data 2020”.

cause the high number of components, which usually
need an access to the Internet, leads to a large attack
surface, whilst the high level of interconnections be-
tween components increases the damage that an at-
tack to one of the components may cause to the en-
tire system. Recent analysis of information security
breaches has found empirical evidence that highlights
the fact that security management is a difficult and
error prone task, (e.g., (7safe, 2010; Langevin et al.,
2008)) showing that misconfigurations of the security
infrastructure are one of the main causes of breaches.

A viable way for handling the complexity of se-
curity management is by using a model-driven ap-
proach. In a way similar to the evolution seen in
the area of software development and database de-
sign, the model-driven engineering of security leads
to the specification of security requirements at an ab-
stract level, with the subsequent refinement of the ab-
stract model toward a concrete implementation. It is
then guaranteed that, when the high-level representa-
tion of the security requirements is correct, the secu-
rity configuration of the system satisfies the require-
ments. The application of this approach requires the
implementation of a rich collection of tools support-
ing, for each of the many components in the system,
the refinement from the high-level representation of
security requirements to the concrete security con-

595Arrigoni Neri M., Guarnieri M., Magri E., Mutti S. and Paraboschi S..
A Model-driven Approach for Securing Software Architectures.
DOI: 10.5220/0004611305950602
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 595-602
ISBN: 978-989-8565-73-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



figuration. A significant investment in research and
development is needed to realize this vision, in or-
der to manage the heterogeneous collection of devices
and security services that information and commu-
nication technology offers to system administrators.
Still, this large investment promises to produce ade-
quate returns, considering the importance that the cor-
rect management of security requirements presents in
modern information systems.

The model-driven approach described above has
several advantages: (1) the concrete configuration can
be generated in a semi-automated way from the mod-
els (in this way the risk of misconfigurations is low),
(2) the models can be analyzed for an early identifica-
tion of anomalies and inconsistencies, (3) the models
act as documentation of the security architecture of
the system, (4) the modeling process requires that the
security administrator defines the security properties
of the system and explicits the assumptions behind the
requirements, (5) it allows the adoption of adefence-
in-depthapproach that deploys security countermea-
sures at several layers, (6) changes in the security re-
quirements can be effectively handled by modifying
the initial model and then by generating the new con-
crete configuration.

Integrating this model-driven security approach
with Architecture Description Languages (ADLs) can
lead to great advantages. Software architectures are
produced in the early steps of the development pro-
cess, and thus integrating security properties in archi-
tecture design allows developers to integrate security
early in the development process. In this way, devel-
opers consider security during the whole process and
not only as an afterthought, and they can also analyze
early security configurations in order to detect flaws.
This fact leads to better security and reduces the costs
of changes in the security configuration.

In this work, we present an approach that can
be used to add security requirements to architectural
models of distributed, data-intensive applications rep-
resented in the C2 architecture style (Taylor et al.,
1996). The paper is organized as follows. In Section
5 a comparison is made with previous related work.
Section 2 presents a brief overview of the C2 archi-
tecture style. Section 3 describes the Model-Driven
Design process in detail. In Section 4 we present our
UML profile, calledSecurity4UML, that can be used
to add security properties to architectural models. In
Section 6 we present a case study describing how our
approach can be used to model security requirements
for a distributed multi-user meeting scheduler appli-
cation. Finally, Section 7 draws a few concluding re-
marks and presents future work.

2 BACKGROUND

The C2 architectural style is a software architectural
style that can be used to model user interface intensive
systems (Taylor et al., 1996). It can thus be used to
model the majority of data intensive applications, e.g.,
e-commerce web applications, by means of the C2
ADL (Medvidovic, 1996). In (Robbins et al., 1998),
Robbins et al. present a way to represent C2 ADL by
means of UML class diagrams. In the remainder of
the paper, we use simply C2 to refer to both the archi-
tecture style and the ADL. C2 architectures are based
on two main concepts:componentsandconnectors.

Componentsare those parts of the architecture that
maintain state and perform operations. They contain
objects with defined interfaces. Each component ex-
changes messages by means of two interfaces, called
“top” and “bottom”. In a UML class diagram, a
component can be modeled by means of a class with
the stereotype≪ C2Component≫. In C2, compo-
nentsare not allowed to directly exchange messages;
they can exchange messages by means ofconnec-
tors, which have the responsibility to route, filter and
broadcast messages. In a UML class diagram, a con-
nector can be modeled by means of a class with the
stereotype≪ C2Connector≫. Each interface of a
componentmay be connected to only oneconnector,
whereas aconnectormay be connected with one or
morecomponents.

3 MODEL-DRIVEN DESIGN
PROCESS

The management of security aspects of current IT
systems is a tough task, and misconfigurations may
cause security breaches. The increasing complex-
ity of this task may be effectively handled by using
model-driven approaches for the definition and man-
agement of the security configurations of the system.
Our model-driven process involves two stakeholders:
(a) the system architect and (b) the security adminis-
trator. The system architect models the architecture of
the system in the C2 architectural style. As shown in
(Robbins et al., 1998), there is a way to represent C2
models by means of UML class diagrams, and thus,
without loss of generality, we assume that the system
architect models the architecture by means of UML
diagrams.

Then, the security administrator receives the ar-
chitectural model of the system and he/she can enrich
it with a representation of the security requirements.
The security administrator can extract information on
the security requirements from two sources: (a) busi-

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

596



ness requirements, which express a high-level de-
scription of the expected behaviour of the global sys-
tem (security administrators usually receive business
requirements from the business and they cannot mod-
ify them), (b) the physical configuration of the sys-
tem, i.e., servers, applications etc. (this aspect also
cannot be usually influenced by the security adminis-
trator, at least in the short term). The security mod-
eling process is divided into three different phases.
In each phase the security administrator adds security
relevant information to the model.

In the first phase of the process, theModeling
Phase, the security administrator models the secu-
rity requirements and adds them to the architectural
model. The security requirements are expressed by
using theSecurity4UMLprofile defined in Section 4.
Despite the fact that business requirements are usually
expressed in natural language, the security adminis-
trator can easily define a first high level model that is
close to the business requirements. Then, he/she re-
fines the model in several steps, by adding details at
each iteration. During this refinement process the ad-
ministrator can execute automated analysis tools over
the model, in order to detect conflicts and anomalies
in the model itself. The results of the analysis can lead
to further modifications to the model. The resulting
model, calledSec-Model, is a platform independent
model (PIM).

In the second phase of our process, theEnrich-
ment Phase, the security administrator enriches the
Sec-Modelwith context dependent information, i.e.,
he/she adds information about the concrete configu-
ration of the system, e.g., information about type and
version of DBMSs or web servers. In this phase the
security administrator can extract the needed informa-
tion from theactual configurationof the system. The
result of this phase is anEnriched Sec-Model(ESec-
Model) which contains the specification of the secu-
rity requirements and information about the actual in-
frastructure. TheESec-Modelis a platform specific
model (PSM).

The last phase, calledDerivation Phase, con-
sists in the derivation and the deployment, in a semi-
automated way, of the concrete security configuration
of the system. During this phase, theESec-Modelis
given as input to several derivation modules that gen-
erate and deploy the global concrete configuration.
Each module generates and deploys part of the con-
crete configuration, e.g., in the example presented in
Section 6 we have defined a module forPostgreSQL,
which extracts the information needed from theESec-
Model. The platform dependent model has to con-
tain enough information to allow the generation of the
configuration.

A critical aspect of our process is the need of a
dedicated derivation module for each kind of resource
in the IT system under modeling. However, once the
effort for the development of the adequate modules is
done, the entire security architecture of the applica-
tion can be managed, updated and modified without
directly operating over the concrete configuration.

4 Security4UML

In order to adequately represent the large number and
variety of entities involved in actual enterprise scenar-
ios, we need a rich metamodel and a flexible language
for expressing relationships between the entities of
the model. In this section we are going to present
a UML profile, calledSecurity4UML, which can be
used to model security properties. Due to space con-
straints we are going to present only a brief overview
of the profile and in the remainder of the section we
are going to present only theSec-Modelmeta-model.
TheESec-Modelmeta-model, not shown, is an exten-
sion of theSec-Modelmeta-model that refines and en-
riches classes and associations with system dependent
information. System dependent information is stored
in tagged values associated with stereotypes.

Abstract Syntax. The meta-model of theSe-
curity4UML Sec-Modelconsists of six sub-meta-
models, each one focusing on a particular aspect of
the system.

Figure 1: Principal meta-model.

Principal Meta-model: it can be used to represent
all the individuals and entities that can appear as ben-
eficiaries of authorizations or involved in an authen-
tication rule. The meta-model is shown in Figure 1.
It contains the abstract classPrincipal, which repre-
sents an abstraction of the principals in the system.
We can represent single users by means of theSin-
gleId class and groups of users using theGroupId

A�Model-driven�Approach�for�Securing�Software�Architectures

597



class. Both classes have a common abstract super-
class calledIdentity. SingleIds are flexible, they may
represent single users of the system, legal entitites
(i.e., external companies or customers of the system
under modeling) or software components. Over the
identities we can define a hierarchy, because groups
are organized in a taxonomy via thecontainsrelation-
ship. The classRolecan be used to model roles. In
RBAC, each role represents the binding between users
and permissions associated to them. The meta-model
allows the definition of the role hierarchy by means
of theroleHierarchyrelationship.Roles may be used
to represent several concepts. For instance, they may
representorganizational roles(i.e., specific enterprise
functions),collections of privilegesthat may be acti-
vated by users orsystem accountsavailable on certain
systems.
Privilege Meta-model: this meta-model contains the
Privilege class, which can be used to represent the
right of performing a certain action. When a privi-
lege is associated with a specific resource, it can be
modeled by means of theObjectPrivilegeclass. The
Actionclass represents the actions that the principals
can execute.
Security Rule Meta-model: it is used to describe se-
curity rules and policies. The main class isSecuri-
tyRulewhich is an abstract class representing security
rules. Each security rule is granted to a certain princi-
pal, as represented by thegrantedTorelationship, by
a particular single id, modeled by thegrantor rela-
tionship. Our meta-model aims at handling several
aspects of security (i.e., authorization and authentica-
tion) in a common way. For this reason the concrete
subclasses ofSecurityRuleare: (a) theRoleAuthoriza-
tion class which gives the privilege to enable a certain
role (this fact is represented by theenabledRolere-
lationship), (b) theSystemAuthorizationclass which
associates the subject to which the authorization is
granted with a privilege, (c) theAuthenticationRule
which models the authentication configuration for a
principal with respect to a certain resource. Security
rules have a sign, and may be marked with agrant
option. This meta-model contains the classesPolicy,
PolicySetandTargetwhich can be used to model se-
curity policies in a way similar to what is done in
XACML.
Authentication Meta-model: it can be used to de-
scribe the properties that the authentication service
has to satisfy by means of theAuthcFeatureclass. The
classAuthcOptioncan be used to specify the configu-
ration options of the authentication feature.
Resource Meta-model: this meta-model can be used
to model the entities of the IT system. Given the
fact that our meta-model is quite general and aims at

Table 1: Mapping between UML elements and the ESec-
Model metamodel.

UML type Stereotype Security4UML
Class 〈〈Principal〉〉 Principal
Class 〈〈Role〉〉 Role
Class 〈〈GroupId〉〉 GroupId
Class 〈〈SingleId〉〉 SingleId

Association 〈〈contains〉〉 contains
Association 〈〈roleHierarchy〉〉 roleHierarchy

representing several aspects of security, we have sev-
eral concrete subclasses of theSecurityObjectabstract
class: 1. theServiceclass can be used to represent ser-
vices in a Service Oriented Architecture environment;
2. theSoftwareModuleclass describes nodes and soft-
ware modules; 3. theLink class models communica-
tion channels that are concrete, e.g., network links, or
abstract , e.g., software connectors; 4. theData class
can be used to represent static resources like files and
directories in a file system or tables and views in a
database. Protected data may be modeled by means of
theProtectedDataclass and its subclassesEncrypted-
DataandSignedData, which contain the details about
the encryption and signature processes. Protected
communication channels, e.g., SSL connections, may
be modeled by theProtectedLinkclass (subclass of
theLink class).
Security Domain Meta-model: it contains only the
SecurityDomainclass which can be used to repre-
sent security domains and the contained principals, by
means of theprincipalSecurityDomainrelationship,
and resources, using theresourceSecurityDomainre-
lationship. Given the fact thatSecurity4UMLaims at
modeling security architectures, which may consist of
several IT systems, the concept of security domain is
important, because it may be used to represent trust
boundaries between systems.

Concrete Syntax. In order to define the concrete
syntax of ourSecurity4UMLmodeling language, we
defined a UML profile based on the meta-model pre-
sented above. The mapping between UML types
and stereotypes and theSecurity4UMLmeta-model is
straightforward. Due to space constraints we present
only an example. Table 1 shows how thePrincipal
meta-modelcan be represented by using UML types
and stereotypes.

Tool Support. A critical aspect in model-driven en-
gineering approaches is the need of adequate tools
that can be used by developers in order to handle,
refine and transform the models. The availability of
such tools is usually one of the main factors that may
influence the success of the approach itself.

In order to help security administrators in the def-

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

598



inition and refinement of our models, we developed
theSecurity4UML Tool. The tool provides the devel-
oper with three functionalities:
- Reasoning: Security4UML Toolprovides several
reasoning services that can be used to detect anoma-
lies and inconsistencies in the model, and to report
them to the user. In this way the user can modify
the model according to the analysis’ results, in order
to remove inconsistencies. These reasoning services
are implemented by using Semantic Web technolo-
gies, i.e., theSec-Modelis represented as anOWL
ontology and the reasoning services are expressed
by means of Semantic Web tools, e.g.,OWL-DL,
SWRLand SPARQL. The Minimization service can
be used to detect redundancies in theSec-Model, i.e.,
the model may contain authorizations which are im-
plied by other authorizations and thus may be re-
moved. TheIncompatibilityservice detects authoriza-
tions that are incompatible, e.g., theSec-Modelmay
contain conflicting authorizations. TheSoDservice
can be used to detect authorizations breaking Separa-
tion of Duty constraints expressed in theSec-Model.
A detailed description of these services can be found
in (Arrigoni Neri et al., 2012; Arrigoni Neri et al.,
2013).
- Enrichment: Security4UML Toolhelps the devel-
oper in the definition of theESec-Model. The plat-
form independentSec-Modelis enriched and trans-
formed in order to obtain the platform specific model.
Security4UML Toolprovides also reasoning capabil-
ities that can be used to check the consistency of an
instance of theESec-Model.
- Code Generation: Security4UML Toolmanages
the process that leads to the concrete implementation
and deployment of the security configuration. The
tool supports the definition of several code generation
modules that generate the concrete configuration for a
particular element of the infrastructure, e.g., a partic-
ular version of a DBMS. Each module takes as input
theESec-Model, extracts the needed information and
generates part of the concrete configuration.

We implementedSecurity4UML Toolon the basis
of the Eclipse framework, because Eclipse is today
one of the de-facto standard in terms of IDEs. Sev-
eral model-driven engineering tools are based upon
Eclipse, e.g., TopCased or IBM Rational Rose.Secu-
rity4UML Toolcan be integrated in one of such tools,
and this fact lets us providing developers with reason-
ing, enrichment and code generation capabilities. The
extension point mechanism allows an easy integration
of new reasoning services, enrichment modules and
code generation modules. A detailed description of
part of the tool can be found in (Mutti et al., 2011;
Guarnieri et al., 2012).

5 RELATED WORK

The last decade has seen a growing interest in model-
driven techniques concerning security aspects (Basin
et al., 2011), and several solutions have been proposed
to formalize the development of secure systems.

Basin et al. have proposedSecureUML(Basin
et al., 2006), a UML profile that can be used to model
Role-Based Access Control (Sandhu, 1998) (RBAC)
infrastructures. They have proposed the application
of SecureUMLin several contexts: from the defini-
tion of security aware GUIs (Basin et al., 2010) to
process oriented systems (Basin et al., 2003). They
have shown howSecureUMLcan be used for sup-
porting a model-driven security approach that leads to
the concrete implementation of IT systems. TheSe-
cureUMLmeta-model is primarily focused on access
control systems, and more in detail on RBAC. On the
contrary, ourSecurity4UMLprofile can model several
aspects of security. It supports the definition of access
control policies, it can be used to model authentica-
tion properties, it also considers encrypted and signed
resources and protocols such as SSL.

In (Jürjens, 2003), Jürjens proposed, as a security
extension of UML, theUMLSecprofile. In (Jürjens,
2005), he shows howUMLSeccan be used for se-
curity analysis and formal security requirement ver-
ification. AlthoughUMLSecsupports the annotation
of UML models with security requirements, we need
a more extended meta-model, likeSecurity4UMLor
SecureUML, to facilitate a model-driven security ap-
proach.

Some works present approaches for the integra-
tion of security concepts in ADLs. In (Mouratidis
et al., 2005), Mouratidis et al. propose an ADL for
agent systems that is able to express security proper-
ties by means ofprotection objectives, i.e., desider-
able security properties that an agent might have.
Each agent may own severalsecurity mechanismsto
satisfy objectives. The ADL allows the definition of
security constraintsthat may restrict goals and capa-
bilities of agents. In (Ren and Taylor, 2005), Ren et
al. extend the existing Architecture Description Lan-
guagexADL with security concepts. They provide a
newSecureConnectorwhich can be used to model ar-
chitectural access control. In (Oladimeji et al., 2007),
Oladimeji et al. present a UML-based ADL that can
express access control properties. On the contrary,
our work can model several aspects of security, not
only access control. Another difference is that we in-
tegrate security requirements in a well-known ADL,
i.e., C2, instead of defining a new one.

Integrating security in software architectures may
be a viable way of handling the increasing complexity

A�Model-driven�Approach�for�Securing�Software�Architectures

599



of IT systems. Although a lot of work has been done
on model-driven security approaches, these works are
not integrated in the current software architecture de-
sign process. On the other hand, some approaches
propose ways of integrating security requirements in
ADLs. Given the fact that these approaches tackle
security at a very abstract level, they are not able to
effectively support a model-driven security approach.
In this work, we want to propose a model-driven se-
curity approach that can be used to integrate theC2
ADL with security requirements.

6 CASE STUDY

The management of security requirements is a criti-
cal task specially in modern application. In order to
aid theSecurity Administratorin this task, we imple-
mented a prototype that permits to start from business
security requirements, transforms them into a more
concrete representation (i.e., policies), ties them to
a representation of the elements in the software ar-
chitecture, and produces a concrete configuration for
each element involved in the policies. In order to
point out the benefit of the tool we have defined the
following case study. Figure 2 shows the software ar-
chitecture of a distributed multi-user meeting sched-
uler. Usually, the architecture model is provided by
theSystem Architect. Figure 3 shows the architecture
modeled by means of UML.

Figure 2: C2 Architecture.Figure 3: UML Architecture.

As described in Section 3 the architecture pre-
sented in Figure 2 can be easily translated into the

corresponding UML class diagram with the use of the
≪ C2Component≫ and≪ C2Connector≫ stereo-
types. With this translation theSecurity Administrator
has all the information needed to add the security re-
quirements. According to theISAE 3402standard, a
business requirement that the application has to fulfill
is the following: Standards and policies exist to au-
thenticate all administrative users. This top level re-
quirement exemplifies requirements related to authen-
tication (and authorization) of administrative users.
For example, this requirement can be refined into the
following set of authorizations and authentications:
• access toAdmin GUIrequires authentication,
• the data exchanged throughAdmin GUI must be

protected,
• the data exchanged between the web server and

the Database must be protected,
• only the Administrative roles can create a new

meeting,
• persistent data must be encrypted.

The requirements presented above lead also to the
definition of a set of negative authorizations and au-
thentications in order to make explicit the assump-
tions behind the requirement.
• the roleUsercannot create a new meeting,
• theAdmin GUIis not accessible from the Internet,
• the roleUsermust not access theAdmin GUI,
• the data exchanged between the web server and

the Database must be protected.
With the use ofSecurity4UMLthe Security Ad-

ministrator is able to represent the above policies in
a more concrete way. Figure 4 shows theESec-
Model representing the following authorizations: (a)
only the Administrative roles can create a new meet-
ing (authz-1), (b) the role User cannot create a new
meeting(authz-2) and (c)the role User must not ac-
cess the Admin GUI(authz-3). These authorizations
are not tied to the specific system, hence in order to
add the security requirements to the software architec-
ture, the Security Administrator has to refine theSec-
Modelinto theESec-Modelas described in Section 3.
For instance, the Security Administrator may enrich
the top-level actionCreatewith information about the
concrete action. If we assume that the new meeting
corresponds to a new row in theMeeting_Table, then
the corresponding concrete action will be anInsert
into the database. Furthermore, in this phase, the Se-
curity Administrator can introduce additional proper-
ties in order to tie the authorizations and/or authenti-
cations with the technologies related to the architec-
ture. For instance he/she can specify which crypto-
graphic technique (e.g., 3DES, AES) is used for the
encryption of theMeeting_Table.

The result of the Enrichment process above is a

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

600



Figure 4: Security requirements.

set of policies related to the actual infrastructure and
ready to be translated into the concrete configura-
tion in order to fulfill the security requirements. Af-
ter theEnrichment phasethe Security Administrator
can perform theDerivation phasein order to pro-
duce a set of scripts and configuration files in order
to enforce the authorizations and authentications de-
fined by means ofSecurity4UML. The requirements
only the Administrative roles can create a new meet-
ing (authz-1), andthe role User cannot create a new
meeting(authz-2) are implemented by the following
SQL scripts:

CREATE ROLE Admin LOGIN
CREATE ROLE User LOGIN
GRANT INSERT ON Meet ing_Table TO Admin
REVOKE INSERT ON Meet ing_Table TO User

7 CONCLUSIONS AND FUTURE
WORK

The increasing complexity of current IT systems re-
quires techniques that can be used to help security ad-
ministrators and system architects in the design, im-
plementation and deployment of secure software ar-
chitectures. A viable way for handling this increas-
ing complexity is by using model-driven security ap-
proaches, which can guide the user from the formal
definition of security requirements to the concrete im-
plementation of the security configuration.

In this paper we presented a model-driven secu-
rity approach that can be used to introduce security
requirements in software architectures, and to imple-
ment and deploy the security configuration in a semi-

automated way. We have shown how a well-known
ADL (C2) may be integrated with a representation of
security requirements. We presented an overview of
our Security4UMLmeta-model, and we have shown
how this meta-model can be mapped on a UML pro-
file. We also presented a case study in which we have
modeled a distributed multi-user meeting scheduler
application.

Our approach is currently based on UML class
diagrams. This is not a restriction, because there
are ways to represent Architectural Design Languages
with UML models (Robbins et al., 1998). We plan in
the future to integrate our model-driven approach in
ADLs that are not UML-based.

REFERENCES

7safe (2010). UK security breach investigations report.
Technical report, University of Bedfordshire.

Arrigoni Neri, M., Guarnieri, M., Magri, E., and Mutti, S.
(2013). On the Notion of Redundancy in Access Con-
trol Policies. InProc. of SACMAT.

Arrigoni Neri, M., Guarnieri, M., Magri, E., Mutti, S., and
Paraboschi, S. (2012). Conflict Detection in Security
Policies using Semantic Web Technology. InProc. of
IEEE ESTEL - Security Track.

Basin, D., Clavel, M., and Egea, M. (2011). A decade of
model-driven security. InProc. of SACMAT.

Basin, D., Clavel, M., Egea, M., and Schläpfer, M. (2010).
Automatic generation of smart, security-aware GUI
models. InProc. of ESSOS.

Basin, D., Doser, J., and Lodderstedt, T. (2003). Model
driven security for process-oriented systems. InProc.
of SACMAT.

Basin, D., Doser, J., and Lodderstedt, T. (2006). Model
driven security: From UML models to access con-
trol infrastructures.ACM Trans. Soft. Eng. Methodol.,
15(1).

Guarnieri, M., Magri, E., and Mutti, S. (2012). Automated
management and analysis of security policies using
eclipse. InProc. of the Eclipse-IT2012.

Jürjens, J. (2003).Secure Systems Development with UML.
Springer Berlin / Heidelberg.

Jürjens, J. (2005). Sound methods and effective tools for
model-based security engineering with UML. InProc.
of ICSE.

Langevin, J., McCaul, M., Charney, S., and Raduege, H.
(2008). Securing cyberspace for the 44th presidency.
Technical report, DTIC Document.

Medvidovic, N. (1996). Formal modeling of software ar-
chitectures at multiple levels of abstraction. InProc.
of the California Software Symposium.

Mouratidis, H., Kolp, M., Faulkner, S., and Giorgini, P.
(2005). A secure architectural description language
for agent systems. InProc. of AAMAS. ACM.

A�Model-driven�Approach�for�Securing�Software�Architectures

601



Mutti, S., Neri, M. A., and Paraboschi, S. (2011). An eclipse
plug-in for specifying security policies in modern in-
formation systems. InProc. of the Eclipse-IT 2011.

Oladimeji, E., Supakkul, S., and Chung, L. (2007). A
Model-driven Approach to Architecting Secure Soft-
ware. InProc. of SEKE.

Patterson, D. A. (2002). A simple way to estimate the cost
of downtime. InProceedings of LISA, Usenix.

Pertet, S. and Narasimhan, P. (2005). Causes of failures in
web applications.CMU Technical Report.

Ren, J. and Taylor, R. N. (2005). A Secure Software Ar-
chitecture Description Language. InProc. of SSATTM
Workshop.

Robbins, J., Medvidovic, N., Redmiles, D., and Rosenblum,
D. (1998). Integrating architecture description lan-
guages with a standard design method. InProc. of
ICSE.

Sandhu, R. (1998). Role-based access control.Advances in
computers, 46.

Taylor, R., Medvidovic, N., Anderson, K., Whitehead, E.J.,
J., Robbins, J., Nies, K., Oreizy, P., and Dubrow, D.
(1996). A component- and message-based architec-
tural style for GUI software. IEEE Trans. on Soft.
Eng., 22(6).

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

602


