XACML and Risk-Aware Access Control

Liang Chen, Luca Gasparini and Timothy J. Norman

dot.rural Digital Economy Hub, University of Aberdeen, Aberdeen, U.K.

Abstract. Risk-aware access control (RAAC) has shown promise as an approach
to addressing the increasing need to share information securely in dynamic envi-
ronments. For such models to realise their promise, however, principled, standard-
based software engineering methods are essential. XACML is an XML-based
OASIS standard for the specification and evaluation of access control policies. In
this paper we explore the use of XACML as a means of implementing RAAC.
We abstract core components of RAAC relevant to risk management, and show
how these may be implemented using standard XACML features.

1 Introduction

Inspired by addressing the increasing need to share information in dynamic environ-
ments, risk-aware access control (RAAC) has been the subject of considerable research
in recent years [1-6]. The core idea of RAAC is to develop an authorisation decision
function that is able to make decisions based on dynamic risk analysis: how much risk
is incurred by allowing access (risks associated with undesirable information disclosure
or modification, for example). RAAC systems are designed to be more permissive than
traditional access control mechanisms, in the sense that more risky access is allowed
provided that the risk is effectively managed. Typically, from the safety perspective, the
system employs some risk mitigation methods to account for and reduce such risks.

OASIS has introduced a standard XML-based language, namely the eXtensible Ac-
cess Control Markup Language (XACML) [7], for the specification and evaluation
of access control policies. It offers a standard policy exchange format, and supports
fine-grained authorisation policies that are implementation independent. Over the last
decade, XACML has attracted considerable interest from industry and the research
community. Despite the enthusiasm for RAAC and XACML, the use of XACML to
implement RAAC has not been studied with the except of Chen et al. [8]. In this paper
we present a simple and widely applicable approach to build RAAC using XACML.
Our main contributions can be summarised as follows.

— On the basis of the RAAC models developed by Chen et al. [3], we present a
model that abstracts common system components relevant to risk management.
These components can be naturally integrated into existing access control models,
making them risk-aware.

* This research is supported by the award made by the RCUK Digital Economy programme to
the dot.rural Digital Economy Hub; award reference: EP/G066051/1.

Chen L., Gasparini L. and Norman T..

XACML and Risk-Aware Access Control.

DOI: 10.5220/0004609200660075

In Proceedings of the 10th International Workshop on Security in Information Systems (WOSIS-2013), pages 66-75
ISBN: 978-989-8565-64-8

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

67

— Exploring the RBAC profile of XACML [9], we illustrate how toafine XACML
policies to implement the core components of our abstractahdhe benefit here
is that, for those who implement RBAC using this profile, itule be straight-
forward to adopt our approach to incorporate risk managéiném their RBAC
solution.

— We show how risk assessment may be implemented in the XACNltypaforma-
tion point. In particular, our approach supports risk assEst in a generic manner
without requiring modification of the XACML standard.

2 Background

2.1 XACML

XACML is an extensible, XML-encoded language that providestandard format for
authorisation policies and access control decision rag@es responses. XACML 3.0
was approved as an OASIS standard in January 2013 [7]. lidesla non-normative
data flow model, shown in Fig. 1, that describes the major amapts involved in
processing access requests.

Service
i I T
i

12

Context Handler PIP

111
==

Fig. 1. The data-flow model for XACML [7].

Users of an XACML-aware application submit requests fooveses through their
application (step 1). The application includepaticy enforcement point (PEP) which
intercepts all access requests. The request is forwardée tontext handler (step 2),
which converts it into an XACML request context and send®itifpolicy decision
point (PDP) (step 3). The PDP evaluates the request context byiggehe relevant
XACML policies stored in goolicy administration point (PAP) (step 4). If those policies
refer to additional attributes that are not available inrébguest context, the PDP will
request those attributes from the context handler (step/Bich obtains the relevant
attributes from gpolicy information point (PIP) (steps 6-7). The PIP may be part of
the application, such as a username/password file, or exterthe application, such
as an attribute authority. Then the context handler sereleeituested attributes to the
PDP (step 8). The PDP evaluates the policies and renderpenssto the PEP, which

68

is responsible for enforcing the authorisation decisiod fuffilling any obligations
(steps 9-12). The possible decision values are: Permity,D&tApplicable (no policies
or rules are applicable to the access request), or Indetatenjsome error occurs during
evaluation).

XACML uses three basic elements in constructing authaosatolicies:<Rul e>,
<Pol i cy> and<Pol i cySet >. A <Pol i cy> is the smallest element that the PDP
can evaluate, which mainly comprises®ar get >, one or more<Rul e>s and a rule-
combining algorithm. TheTar get > defines a set of conditions that the attribute val-
ues in an access request must meet for the policy to appheteetuest. A<Rul e>
comprises an optionaiTar get > and<Condi t i on> elements and aff f ect at-
tribute. The<Condi t i on> further restricts the applicability of the rule already im-
plied by the<Tar get > of the rule. TheEf f ect of the rule determines the outcome:
eitherPer mi t orDeny. A <Rul e>may also include obligation expressions that refer
to operations that must be performed by the PEP in additienforcing the PDP’s
decision. More than one rule defined by a policy may be relewaa request, and so
the rule-combining algorithm (Deny-overrides, for exag)pls used to combine out-
comes of these rules into a single decision. TheBel i cy>s may be grouped in
<Pol i cySet >s, each of which uses a policy-combining algorithm that wheitees
how the results of evaluating the policies should be conthine

2.2 An Abstract Model for RAAC

To provide a basis for our XACML-based mechanism for RAAC, suenmarise an
abstract model for RAAC based on earlier work by Chen et dl.L{&t P be a set of
permissions. A permission represents an action-objecf@aivhich a subject may be
authorised. LefS be a set of subjects, each representing an active entity ystars
that may request access to resources. In the context of RAég@ss control decisions
are made on the basis of a risk analysis. In general, the figkamting a permission
to a subject can be interpreted as the likelihood of the peiom being misused by
the subject. Determining the likelihood of misuse depenusarious factors such as
the security attributes of subject (e.qg. trustworthinesles or access history), the value
of the resource, and the context (e.g. device, location oeatitime) from which the
subject is requesting. We model an access request as atupje wheres € S and
p € P. Let X denote a set of system states, andlet {k € R : 0 < k < 1} denote a
risk domain. We define a risk functidtisk : Q x X' — K that takes as input an access
requesty = (s,p) € @ and the current system statec 3/, and returns the risk € K
associated with the request. There are a number of ways b€iyplefining theRisk
function depending on system requirements and a concre¢sscontrol model. These
are domain-dependant, and thus outside the scope of thés.pap

From the system’s perspective, we need to determine rigshiolds that the sys-
tem is willing to accept when granting access requests, dmat kind of risk miti-
gation should be put in place if risky access is allowed. Wenderisk thresholds

1 This target may be omitted, in which case it is assumed toééatiget of the policy to which
the rule belongs.

69

and risk mitigation on a per-permission basis. We wfitgk’) to denote theisk in-
terval {x € K : & < = < E'}. Let O denote a set obbligations, whereo € O
is some action that must be taken by the system when enfoazingccess control
decision (as in XACML [7]). Then we define sk mitigation strategy to be a list
[<k0, Oo>, </€1, Ol>, ey <kn_1, On_1>, </€n, On>], where0 = ko <k <---<k,<1
andO; C O. Let M denote a set of risk mitigation strategies. We define a foncti
u: P — M, whereu(p) denotes the risk mitigation strategy associated with permi
sionp. Informally, a risk mitigation strategy(p) for p € P specifies that obligations
O; will be executed if the risk of granting is within the intervalk;, k;+1). Note that
a special case of our approach is to define a single risk rigigatrategy that is appli-
cable to all permissions; the approach advocated in Chealgstvork [4].

Formally, given a requegt= (s, p) and a system state we define an authorisation
functionAuth as,

Auth(g, o= {(allow, 0:) _if Risk(g;0) € [ki, hi1), 1 < i <,
(deny, O,,) otherwise

In other words, the requeét, p) is permitted but the system must enforce obligations
O; if the risk of allowing(s, p) belongs tdk;, k;+1], and the requess, p) is denied but
the system must perfor@,, if the risk is greater than or equal kg

We believe that these risk-based features can be natunadigrated into existing
access control models, making them risk-aware. In roled@scess control, for ex-
ample, we may introduce risk assessment on user-role &otivén this case, a subject
s € S is regarded as a user or a session, and a permigsio® as an approval to ac-
tivate a particular role. Of course, there exist other gmeshterpretations of subjects
and permissions for RBAC or other access control models.dsticases, a permission
is thought of as an approval to perform an operation on a piedeesource, and this is
the notion defined in the RBAC standard [10], whereas a stibfadd also be regarded
as a role or even a security group.

In order to illustrate the features of RAAC, we introduce aaete example for
accessing patient records in an emergency situation. Oswirgy, Alice is knocked
unconsciousin a car accident and is taken into the emergipartment by ambulance.
The emergency doctor treating her, Bob, would like to viewdemmary care record
(SCR) in order to find out whether there are any importanofaco consider, such as
allergies to medications. However, Bob is not allowed taeasdhe SCR via the current
activatedDoct or role. In this case, Bob attempts to activatefiner gencyDoct or
role, and the system determines whether to grant this régaeed on risk assessment.
The risk computation depends on two factors associatedthéthiequest: the level of
competence of Bob to activate this role, and the context gargergency situation) in
which the request was submitted. Eventually, the systermddbe risk is acceptable
and allows Bob to activate thener gencyDoct or role, thereby allowing him to
access Alice’s SCR. Meanwhile, all those activities aredat an audit trail, and result
in an alert being automatically sent to a privacy officer.

70

3 Encoding RAAC using XACML

In this section we present an approach to implementing tatufes of RAAC using
XACML. In order to set a context for illustrating our apprbaeve describe our risk-
aware policies based on the XACML RBAC profile [9].

3.1 Risk Mitigation Policies

The XACML RBAC profile (RB-XACML) is designed to address there and hier-
archy components of RBAC. It mainly defines three generic KAGolicies: a Role
<Pol i cySet >, a PermissiorPol i cySet > and a Role AssignmertPol i cy> or
<Pol i cySet >. A Role<Pol i cySet > associates a role identifier with a single Per-
mission<Pol i cySet > using a<Pol i cySet | dRef er ence>element. A Permis-
sion<Pol i cySet > is used to define a set of permissions, and sucRd i cy Set >
may reference another PermissioRol i cySet > to implement role inheritance. To
implement the emergency example described in Sect. 2.2awsimply define a Role
<Pol i cySet > for EmergencyDoctor which references a ' Permission
<Pol i cySet >. The PermissiorkPol i cySet > specifies the permission for read-
ing patients’ SCRs, and references a PermissiBal i cy Set > associated with the
normalDoct or role, thereby simulating role inheritance.

RB-XACML states that “a role attribute for a given user is ddrassignment at the
time the access decision is requested, and the assignneite aftributes to users is
outside the scope of the XACML PDP” [9]. Insteadle enabling authorities (REAS)
are used to determine the values of a user’s role attrib@ies.possible suggestion is
that the REA might act as a separate PDP and use a Role AssigrPa i cySet >
to determine whether a user can enable a particular roleder @o comply with RB-
XACML, we believe that it is most natural to define risk assesst and risk mitigation
in conjunction with Role AssignmertPol i cy Set > to implement risk-aware RBAC
using XACML. A pseudo Role AssignmertPol i cySet > is shown below, which
comprises &Tar get > element (lines 02-06) and<Pol i cyl dRef > element (line
07). The<Tar get > specifies that thePol i cySet > is only applicable to subjects
who have a particular attribute (their email name is in thes'nom” namespace). It also
restricts the resource and action attributes in the reqods¢ Ener gencyDoct or
role andEnabl eRol e respectively. ThePol i cyl dRef > points to a Risk Mitiga-
tion<Pol i cy> that further prevents subjects from enablingEner gencyDoct or
role by assessing the risk of their requests.

00 <!-- Role Assignment <PolicySet> -->

01 <PolicySet PolicySetld="energencydoctor:role:requirenents"...>

02 <Tar get >

03 <AnyOf ><Al | O ><Mat ch>has enmi| address *@hs. conx/ Mat ch></ Al | Of ></ AnyOf >
04 <Anyf ><Al | O ><Mat ch>Ener gencyDoct or </ Mat ch></ Al | O ></ AnyCf >

05 <Anyf ><Al | O ><Mat ch>Enabl eRol e</ Mat ch></ Al | OF ></ AnyCOf >

06 </ Tar get >
07 <Pol i cyl dRef >r m audi t </ Pol i cyl dRef >
08 </ PolicySet>

71

We define a risk mitigation strategy in a Risk MitigatigRol i cy> that is treated
as a first-class entity. In other words, any Risk MitigatioPol i cy> can be refer-
enced in any Role Assignmerfol i cySet > without re-specifying the risk miti-
gation strategy. A Risk MitigatiorPol i cy> for the emergency example is shown
below. This<Pol i cy> consists of acVar i abl eDef i ni ti on> element and two
<Rul e> elements. Note that the€Tar get > element in this<Pol i cy> is empty, in
which case it is implied by theTar get > of the Role Assignmer¢Pol i cySet >.
The<Vari abl eDef i ni ti on>(lines 02-04) is used to define a risk threshold for the
mitigation strategy, which essentially splits the risk don0, 1] into two risk intervals
[0,0.7) and [0.7,1]. Clearly, we can_define an arbitrary number of such
<Vari abl eDef i ni t i on>elements (risk thresholds) to have more fine-grained risk
intervals. Specifying the risk thresholds in these vagalihstead of hard-coding them
in the rule conditions provides a flexible way to update anthitain the risk mitigation
policy. Specifically, a policy administrator only needs twange those variable defini-
tions in order to change the risk thresholds for existing ifgervals.

Now it becomes very natural to write different rules thaerdb these variables to
implement a risk mitigation strategy. The firdRul e> (lines 05-28) haPer mi t asits
effect when the condition is satisfied (lines 06-19); thatfie risk value for the access
request lies in the intervd0, 0.7). Note that the<At t r i but eDesi gnat or > ele-
ment is-used to retrieve a risk value for the access requestha returned value must
meet the specified criteria such as within ez ess- r i sk category and being issued
by a trusted authority (line 09). We describe how this metmanvorks in the next sec-
tion. Similarly, the secondRul e> (lines 29-36) haBeny as its effect if the risk value
lies in the interval [0.7,1]. Additionally, = both rules contain
<Ol i gat i onExpr essi on> elements (lines 21, 22 and 35), each of which repre-
sents an obligation. AgCbl i gat i onExpr essi on> can include an arbitrary num-
ber of attribute assignments that forms éinguments of the action defined by the obliga-
tion. For example, the obligation expression withlyst em al ert > id (lines 22-26)
defines an email attribute which indicates that the systesbliged to send an email to
a privacy officer. When evaluating thi€bl i gat i onExpr essi on>,the PDP deter-
mines the value for <enmill D> at runtime by the means of an
<At tri but eDesi gnat or >, and sends the resulting obligation to the PEP in the
response context. As stated in the XACML specification, tB® Rself has to know
how to handle the obligation when receiving the responsehioend, we propose a
concrete form of the XACML obligation service for interpreg and enforcing differ-
ent types of obligations. We provide some more detail of ayslementation of this
obligations service in Sect. 4.

00 <!-- Risk Mtigation <Policy> -->

01 <Policy Policyld="rmaudit" Rul eConbini ngAl gld="first-applicable">
02 <Vari abl eDefinition Variabl el d="risk-threshol d-1">

03 <AttributeVal ue>0. 7</ Attri but eVal ue>

04 </ Vari abl eDefi ni ti on>

05 <Rule Ruleld="first-risk-interval" Effect="Permt">

06 <Condi ti on><Apply Functionl d="function:and">
07 <Appl y Functi onl d="doubl e- gr eat er -t han-or - equal ">
08 <Apply Functionl d="functi on: doubl e- one- and- onl y" >

09 <Attribut eDesi gnator Category="access-risk" Attributeld="risk" |ssuer="TA"/>

72

10 </ Appl y>

11 <Atti but evVal ue>0</ Attri but eval ue>

12 </ Appl y>

13 <Apply Functionld="function: doubl e-1 ess-than">

14 <Apply Functionld="function: doubl e- one- and-onl y">

15 <Attribut eDesi gnator Category="access-risk" Attributeld="risk" |ssuer="TA"/>
16 </ Appl y>

17 <Vari abl eRef erence Vari abl el d="ri sk-threshol d-1"/></ Vari abl eRef er ence>

18 </ Appl y>

19 </ Appl y></ Condi ti on>

20 <Obl i gat i onExpressi ons>

21 <Obl i gati onExpressi on Cbligationld="system|og">...</CbligationExpression>

22 <Obl i gati onExpression Cbligationld="systemalert">

23 <At tribut eAssi gnnent Expression Attributeld="enailld">

24 <AttributeDesignator Attributeld="officer-email" Category="access-subject"/>
25 </ Attribut eAssi gnment Expr essi on>

26 </ Cbl i gati onExpr essi on>

27 </ Ol i gati onExpressi ons>

28 </Rule>
29 <Rule Rul eld="second-risk-interval" Effect="Deny">

30 <Condi ti on><Appl y Functi onl d="doubl e-greater-than-or-equal ">

31 <Apply Functionld="functi on: doubl e- one-and-onl y">

32 <Attri buteDesignator Category="access-risk" Attributeld="risk" |ssuer="TA"/>
33 </ Appl y>

34 <Vari abl eRef erence Variabl el d="ri sk-threshol d- 1"></ Appl y></ Condi ti on>

35 <ol i gati onExpression Obligationld="system|og">...</CbligationExpression>

36 </ Rule>
37 </ Policy>

It can be seen that we can define two or meRul e>s in the Risk Mitigation
<Pol i cy>, each of which corresponds to checking a risk interval. Restke of read-
ability, we arrange these rules in order of the risk intes\fabm low to high (0,0.7)
to [0.7,1], for example). This naturally leads us to use fhe st - appl i cabl e
algorithm [7, Appendix C] for combining the results of ruliesthe Risk Mitigation
<Pol i cy>. This algorithm forces the evaluation of the rules in theepiited in the
policy, and ensures that for a particular rule, if its targed condition are evaluated to
Tr ue, then the result for the policy is the effect of the ruRe(i t or Deny). For
example, if the<Rul e> in lines 05-28 evaluates fer ni t , then the secondRul e>
is not evaluated, and a valuelér mi t is returned for thePol i cy> (lines 01-37).

3.2 Risk Assessment

Recall that, given an access request, a Role Assignai®aiti cy Set > is evaluated to
Per m t forthe requestonly if the conditions defined in its targetrmet by the request
and its associated Risk MitigatictiPol i cy> evaluates téPer mi t (which means the
risk of granting this request lies in an acceptable riskrirg. Let us now look at how
to use XACML to compute the risk associated with an acceasastdn more detail. As
we mentioned, the risk calculation generally depends oiowafactors associated with
the entities appearing in the request. Since XACML itseffrts the use of attributes
when constructing request contexts and policies, it ismata express these factors as

73

attributes and choose an suitable XACML function to comithese attributes into a
risk value in the rule condition. As a generic solution, heerethe XACML predefined
functions are limited; it is also not clear whether XACML aotmodates the definition
of an arbitrary new function, such as the complex formuladusecompute risk in
multi-level security [4]. Instead we propose a method inahhthe risk calculation is
conducted in the PIP. As shown in the previous section, wedinice a special attribute,
namelyr i sk, under theaccess- ri sk category and require that the values for this
attribute are issued by a special trusted authority. Whatuating the Risk Mitigation
<Pol i cy>, the PDP is instructed to request values for this risk attélin the request
context from the context hander. The context handler maievet this risk value from
the PIP and then supply the required values into the reqoestxt. This suggests that
the PIP should be able to compute the risk value at run-timenwlquested by the
context handler, and this complies with the requirementAAR regarding dynamic
risk analysis.

We explored this approach by implementing our medical esrargexample based
on Baland The Balana implementation provides interfaces that allmato extend
the PIP to perform risk retrieval and risk calculation in adular way as shown in
Fig. 2. This was done by extending tBét ri but eFi nder module with three ad-
ditional modules, each of which is responsible for findingilawtes relevant to a par-
ticular category (subject, resource or environment). RiiskAt tri buteFi nder
module is responsible for finding a risk value correspondmthe access-ri sk
category. It may obtain these values by querying an exteysiem (an anomaly de-
tection system, for example) (step w) or a risk assessmedtitaduilt inside the PIP
(step 1). In the later case, a geneRicskAssessnent module is used to connect
the Ri skAttri but eFi nder module with the other three modules. Specifically,
theRi skAttri but eFi nder calls theRi skAssessment (step 1), supplying at-
tributes obtained from the request context (typically,gtibject-id and the resource-id).
On the basis of this information, tH& skAssessnent obtains additional attributes
(subject, resource and environment) that are needed farstheomputation from the
three standard modules (steps 2a-2c), and computes a higkaecording to a specific
method (step 3). In our implementation we instantiateRhek Assessnent module
with a method that accumulates risk factors (competenceavidonmental threat) into
a single value.

4 Discussion

There is a considerable body of work on risk-aware accessapmuch of it focusing
on developing models for incorporating risk in multi-legekurity [4, 6] and role-based
access control [1, 2]. Very little of that research is coneerwith the design of autho-
risation architectures that accommodate the awarenesskofwith the exception of
Chen et al. [8]. This work extends the XACML standard with nédL schema for
policies and additional components to support risk-aslagtccess control. In contract,

2 Balana is an open source Java implementation of XACML 3.@reling the Sun XACML 2.0
implementation: http://xacmlinfo.com/category/balana

74

Policy Information Point (PIP)

.
| RiskAttributeFinder]¢ wom--q--

SubjectAttributeFinder EETDGEEEE | =
2a
2b
ResourceAttributeFinder «---y----1 -

A

RiskAssessment

2c

EnvirAttributeFinder -z == -

N /

Fig. 2. The extended PIP architecture for supporting risk assestsme

our approach to implementing RAAC is fully compliant withettKACML standard
without introducing extra elements.

The XACML standard treats an obligation as an attributegassent, and leaves
the interpretation of these obligations to the PEP. In theCKA. technical commit-
tee, there is some work, called “Obligation Families” [1dhich attempts to define
additional mechanisms for obligation processing and eefment, but this is prelimi-
nary and is not reflected in the current XACML standard. ladteve implement the
XACML obligation service as a comprehensiaigation handler that supports obli-
gation monitoring and enforcement. In particular, our msgd architecture of the obli-
gation service supports handlinguser obligationswhich are used as one type of risk
mitigation methods in RAAC [3]. Space does not permit a dedapresentation and
evaluation of our approach, however, this will be the suigpéfuture work.

Building upon our implementation of the proposed risk-aavaACML architecture
developed upon Balana, another avenue for future work ippdyahis approach in a
real-world system. Within the context of the TRUMP projeete are applying RAAC
models as part of a trusted infrastructure for mobile health application for chronic
illness including diabetes.

5 Conclusions

In this paper we have proposed an approach that uses stakdamdL features to
implement RAAC. We provided a simple and flexible way to erecagdk mitigation
and risk-aware authorisation by risk mitigatisRol i cy>s, and illustrated how these
policies can be referenced in other policies making thekaaisare. Although we illus-
trate our approach in the RB-XACML setting, our approactei$-sontained and can
be employed on any existing XACML applications. We also d&sed our approach to

3 http://www.trump-india-uk.org.

75

utilizing the PIP for risk attribute retrieval and risk calation. This separation of risk
assessment (PIP) and risk-aware policy evaluation (PDRfpoms with the spirit of
the XACML standard for developing distributed authorisatsystems.

References

1.

2.

3.

10.

11.

Bijon, K. Z., Krishnan, R., Sandhu, R. S.: Risk-aware RBg&3sions. In: Proceedings of
the 8th International Conference on Information Systentaufy. (2012) 59-74

Chen, L., Crampton, J.: Risk-aware role-based accegsoton: Proceedings of the 7th

International Workshop on Security and Trust Managem@11) 140-156

Chen, L., Crampton, J., Kollingbaum, M. J., Norman, TQbligations in risk-aware access
control. In: Proceedings of the Tenth Annual Conference wvaBy, Security and Trust.

(2012) 145-152

. Cheng, P. C., Rohatgi, P., Keser, C., Karger, P. A., WadgbeM., Reninger, A. S.: Fuzzy

multi-level security: An experiment on quantified risk-ptiee access control. In: Proceed-
ings of the 2007 IEEE Symposium on Security and Privacy. (2@22-230

. Kandala, S., Sandhu, R. S., Bhamidipati, V.: An attrithaeed framework for risk-adaptive

access control models. In: Proceedings of the Sixth Intienma Conference on Availability,
Reliability and Security. (2011) 236-241

. Ni, Q., Bertino, E., Lobo, J.: Risk-based access conyrstiesns built on fuzzy inferences. In:

Proceedings of the 5th ACM Symposium on Information, Corapand Communications
Security. (2010) 250-260

. OASIS: eXtensible Access Control Markup Language (XAQMersion 3.0. (2013) OASIS

Standard (E. Rissanen, editor).

. Chen, C., Han, W., Yong, J.: Specify and enforce the padicif quantified risk adaptive

access control. In: Proceedings of the 14th Internationaf€ence on Computer Supported
Cooperative Work in Design. (2010) 110-115

. OASIS: XACML v3.0 Core and hierarchical Role Based Accéssitrol (RBAC) profile

Version 1.0. (2010) Committee Specification (E. Rissanditog).

American National Standards Institute: American NaldStandard for Information Tech-
nology — Role Based Access Control. (2004) ANSI INCITS 3592

OASIS: XACML v3.0 Obligation Families Version 1.0. (ZO0OOASIS Working Draft (E.
Rissanen, editor).

