
XACML and Risk-Aware Access Control

Liang Chen, Luca Gasparini and Timothy J. Norman

dot.rural Digital Economy Hub, University of Aberdeen, Aberdeen, U.K.⋆

Abstract. Risk-aware access control (RAAC) has shown promise as an approach
to addressing the increasing need to share information securely in dynamic envi-
ronments. For such models to realise their promise, however, principled, standard-
based software engineering methods are essential. XACML is an XML-based
OASIS standard for the specification and evaluation of access control policies. In
this paper we explore the use of XACML as a means of implementing RAAC.
We abstract core components of RAAC relevant to risk management, and show
how these may be implemented using standard XACML features.

1 Introduction

Inspired by addressing the increasing need to share information in dynamic environ-
ments, risk-aware access control (RAAC) has been the subject of considerable research
in recent years [1–6]. The core idea of RAAC is to develop an authorisation decision
function that is able to make decisions based on dynamic risk analysis: how much risk
is incurred by allowing access (risks associated with undesirable information disclosure
or modification, for example). RAAC systems are designed to be more permissive than
traditional access control mechanisms, in the sense that more risky access is allowed
provided that the risk is effectively managed. Typically, from the safety perspective, the
system employs some risk mitigation methods to account for and reduce such risks.

OASIS has introduced a standard XML-based language, namely the eXtensible Ac-
cess Control Markup Language (XACML) [7], for the specification and evaluation
of access control policies. It offers a standard policy exchange format, and supports
fine-grained authorisation policies that are implementation independent. Over the last
decade, XACML has attracted considerable interest from industry and the research
community. Despite the enthusiasm for RAAC and XACML, the use of XACML to
implement RAAC has not been studied with the except of Chen et al. [8]. In this paper
we present a simple and widely applicable approach to build RAAC using XACML.
Our main contributions can be summarised as follows.

– On the basis of the RAAC models developed by Chen et al. [3], we present a
model that abstracts common system components relevant to risk management.
These components can be naturally integrated into existing access control models,
making them risk-aware.

⋆ This research is supported by the award made by the RCUK Digital Economy programme to
the dot.rural Digital Economy Hub; award reference: EP/G066051/1.

Chen L., Gasparini L. and Norman T..
XACML and Risk-Aware Access Control.
DOI: 10.5220/0004609200660075
In Proceedings of the 10th International Workshop on Security in Information Systems (WOSIS-2013), pages 66-75
ISBN: 978-989-8565-64-8
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

– Exploring the RBAC profile of XACML [9], we illustrate how to define XACML
policies to implement the core components of our abstract model. The benefit here
is that, for those who implement RBAC using this profile, it would be straight-
forward to adopt our approach to incorporate risk management into their RBAC
solution.

– We show how risk assessment may be implemented in the XACML policy informa-
tion point. In particular, our approach supports risk assessment in a generic manner
without requiring modification of the XACML standard.

2 Background

2.1 XACML

XACML is an extensible, XML-encoded language that providesa standard format for
authorisation policies and access control decision requests and responses. XACML 3.0
was approved as an OASIS standard in January 2013 [7]. It includes a non-normative
data flow model, shown in Fig. 1, that describes the major components involved in
processing access requests.

User

PDP

PIPContext Handler

Obligations

Service
PEP

PAP

Resource

1

2 10

3 5 8 9

4

12

6

7

11

Fig. 1. The data-flow model for XACML [7].

Users of an XACML-aware application submit requests for resources through their
application (step 1). The application includes apolicy enforcement point (PEP) which
intercepts all access requests. The request is forwarded tothecontext handler (step 2),
which converts it into an XACML request context and sends it to a policy decision
point (PDP) (step 3). The PDP evaluates the request context by querying the relevant
XACML policies stored in apolicy administration point (PAP) (step 4). If those policies
refer to additional attributes that are not available in therequest context, the PDP will
request those attributes from the context handler (step 5),which obtains the relevant
attributes from apolicy information point (PIP) (steps 6-7). The PIP may be part of
the application, such as a username/password file, or external to the application, such
as an attribute authority. Then the context handler sends the requested attributes to the
PDP (step 8). The PDP evaluates the policies and renders a response to the PEP, which

67

is responsible for enforcing the authorisation decision and fulfilling any obligations
(steps 9-12). The possible decision values are: Permit, Deny, NotApplicable (no policies
or rules are applicable to the access request), or Indeterminate (some error occurs during
evaluation).

XACML uses three basic elements in constructing authorisation policies:<Rule>,
<Policy> and<PolicySet>. A <Policy> is the smallest element that the PDP
can evaluate, which mainly comprises a<Target>, one or more<Rule>s and a rule-
combining algorithm. The<Target> defines a set of conditions that the attribute val-
ues in an access request must meet for the policy to apply to the request. A<Rule>
comprises an optional<Target>1 and<Condition> elements and anEffect at-
tribute. The<Condition> further restricts the applicability of the rule already im-
plied by the<Target> of the rule. TheEffect of the rule determines the outcome:
eitherPermit orDeny. A <Rule>may also include obligation expressions that refer
to operations that must be performed by the PEP in addition toenforcing the PDP’s
decision. More than one rule defined by a policy may be relevant to a request, and so
the rule-combining algorithm (Deny-overrides, for example), is used to combine out-
comes of these rules into a single decision. These<Policy>s may be grouped in
<PolicySet>s, each of which uses a policy-combining algorithm that determines
how the results of evaluating the policies should be combined.

2.2 An Abstract Model for RAAC

To provide a basis for our XACML-based mechanism for RAAC, wesummarise an
abstract model for RAAC based on earlier work by Chen et al. [3]. Let P be a set of
permissions. A permission represents an action-object pair for which a subject may be
authorised. LetS be a set of subjects, each representing an active entity in a system
that may request access to resources. In the context of RAAC,access control decisions
are made on the basis of a risk analysis. In general, the risk of granting a permission
to a subject can be interpreted as the likelihood of the permission being misused by
the subject. Determining the likelihood of misuse depends on various factors such as
the security attributes of subject (e.g. trustworthiness,roles or access history), the value
of the resource, and the context (e.g. device, location or current time) from which the
subject is requesting. We model an access request as a tuple〈s, p〉, wheres ∈ S and
p ∈ P . LetΣ denote a set of system states, and letK = {k ∈ R : 0 6 k 6 1} denote a
risk domain. We define a risk functionRisk : Q×Σ → K that takes as input an access
requestq = 〈s, p〉 ∈ Q and the current system stateσ ∈ Σ, and returns the riskk ∈ K
associated with the request. There are a number of ways of explicitly defining theRisk
function depending on system requirements and a concrete access control model. These
are domain-dependant, and thus outside the scope of this paper.

From the system’s perspective, we need to determine risk thresholds that the sys-
tem is willing to accept when granting access requests, and what kind of risk miti-
gation should be put in place if risky access is allowed. We define risk thresholds

1 This target may be omitted, in which case it is assumed to be the target of the policy to which
the rule belongs.

68

and risk mitigation on a per-permission basis. We write[k, k′) to denote therisk in-
terval {x ∈ K : k 6 x < k′}. Let O denote a set ofobligations, whereo ∈ O
is some action that must be taken by the system when enforcingan access control
decision (as in XACML [7]). Then we define arisk mitigation strategy to be a list
[〈k0, O0〉, 〈k1, O1〉, . . . , 〈kn−1, On−1〉, 〈kn, On〉], where0 = k0 < k1 < · · · < kn 6 1
andOi ⊆ O. Let M denote a set of risk mitigation strategies. We define a function
µ : P → M , whereµ(p) denotes the risk mitigation strategy associated with permis-
sionp. Informally, a risk mitigation strategyµ(p) for p ∈ P specifies that obligations
Oi will be executed if the risk of grantingp is within the interval[ki, ki+1). Note that
a special case of our approach is to define a single risk mitigation strategy that is appli-
cable to all permissions; the approach advocated in Cheng etal.’s work [4].

Formally, given a requestq = 〈s, p〉 and a system stateσ, we define an authorisation
functionAuth as,

Auth(q, σ) =

{

〈allow, Oi〉 if Risk(q, σ) ∈ [ki, ki+1), 1 6 i < n,

〈deny, On〉 otherwise.

In other words, the request〈s, p〉 is permitted but the system must enforce obligations
Oi if the risk of allowing〈s, p〉 belongs to[ki, ki+1], and the request〈s, p〉 is denied but
the system must performOn if the risk is greater than or equal tokn.

We believe that these risk-based features can be naturally integrated into existing
access control models, making them risk-aware. In role-based access control, for ex-
ample, we may introduce risk assessment on user-role activation. In this case, a subject
s ∈ S is regarded as a user or a session, and a permissionp ∈ P as an approval to ac-
tivate a particular role. Of course, there exist other possible interpretations of subjects
and permissions for RBAC or other access control models. In most cases, a permission
is thought of as an approval to perform an operation on a protected resource, and this is
the notion defined in the RBAC standard [10], whereas a subject could also be regarded
as a role or even a security group.

In order to illustrate the features of RAAC, we introduce a concrete example for
accessing patient records in an emergency situation. One evening, Alice is knocked
unconscious in a car accident and is taken into the emergencydepartment by ambulance.
The emergency doctor treating her, Bob, would like to view her summary care record
(SCR) in order to find out whether there are any important factors to consider, such as
allergies to medications. However, Bob is not allowed to access the SCR via the current
activatedDoctor role. In this case, Bob attempts to activate theEmergencyDoctor
role, and the system determines whether to grant this request based on risk assessment.
The risk computation depends on two factors associated withthe request: the level of
competence of Bob to activate this role, and the context (e.g. emergency situation) in
which the request was submitted. Eventually, the system deems the risk is acceptable
and allows Bob to activate theEmergencyDoctor role, thereby allowing him to
access Alice’s SCR. Meanwhile, all those activities are noted in an audit trail, and result
in an alert being automatically sent to a privacy officer.

69

3 Encoding RAAC using XACML

In this section we present an approach to implementing the features of RAAC using
XACML. In order to set a context for illustrating our approach, we describe our risk-
aware policies based on the XACML RBAC profile [9].

3.1 Risk Mitigation Policies

The XACML RBAC profile (RB-XACML) is designed to address the core and hier-
archy components of RBAC. It mainly defines three generic XACML policies: a Role
<PolicySet>, a Permission<PolicySet> and a Role Assignment<Policy> or
<PolicySet>. A Role<PolicySet> associates a role identifier with a single Per-
mission<PolicySet> using a<PolicySetIdReference> element. A Permis-
sion<PolicySet> is used to define a set of permissions, and such a<PolicySet>
may reference another Permission<PolicySet> to implement role inheritance. To
implement the emergency example described in Sect. 2.2, we can simply define a Role
<PolicySet> for EmergencyDoctor which references a Permission
<PolicySet>. The Permission<PolicySet> specifies the permission for read-
ing patients’ SCRs, and references a Permission<PolicySet> associated with the
normalDoctor role, thereby simulating role inheritance.

RB-XACML states that “a role attribute for a given user is a valid assignment at the
time the access decision is requested, and the assignment ofrole attributes to users . . . is
outside the scope of the XACML PDP” [9]. Instead,role enabling authorities (REAs)
are used to determine the values of a user’s role attributes.One possible suggestion is
that the REA might act as a separate PDP and use a Role Assignment <PolicySet>
to determine whether a user can enable a particular role. In order to comply with RB-
XACML, we believe that it is most natural to define risk assessment and risk mitigation
in conjunction with Role Assignment<PolicySet> to implement risk-aware RBAC
using XACML. A pseudo Role Assignment<PolicySet> is shown below, which
comprises a<Target> element (lines 02-06) and a<PolicyIdRef> element (line
07). The<Target> specifies that the<PolicySet> is only applicable to subjects
who have a particular attribute (their email name is in the “nhs.com” namespace). It also
restricts the resource and action attributes in the requestto beEmergencyDoctor
role andEnableRole respectively. The<PolicyIdRef> points to a Risk Mitiga-
tion<Policy> that further prevents subjects from enabling theEmergencyDoctor
role by assessing the risk of their requests.

00 <!-- Role Assignment <PolicySet> -->

01 <PolicySet PolicySetId="emergencydoctor:role:requirements"...>

02 <Target>

03 <AnyOf><AllOf><Match>has email address *@nhs.com</Match></AllOf></AnyOf>

04 <AnyOf><AllOf><Match>EmergencyDoctor</Match></AllOf></AnyOf>

05 <AnyOf><AllOf><Match>EnableRole</Match></AllOf></AnyOf>

06 </Target>

07 <PolicyIdRef>rm:audit</PolicyIdRef>

08 </PolicySet>

70

We define a risk mitigation strategy in a Risk Mitigation<Policy> that is treated
as a first-class entity. In other words, any Risk Mitigation<Policy> can be refer-
enced in any Role Assignment<PolicySet> without re-specifying the risk miti-
gation strategy. A Risk Mitigation<Policy> for the emergency example is shown
below. This<Policy> consists of a<VariableDefinition> element and two
<Rule> elements. Note that the<Target> element in this<Policy> is empty, in
which case it is implied by the<Target> of the Role Assignment<PolicySet>.
The<VariableDefinition> (lines 02-04) is used to define a risk threshold for the
mitigation strategy, which essentially splits the risk domain [0, 1] into two risk intervals
[0, 0.7) and [0.7, 1]. Clearly, we can define an arbitrary number of such
<VariableDefinition> elements (risk thresholds) to have more fine-grained risk
intervals. Specifying the risk thresholds in these variables instead of hard-coding them
in the rule conditions provides a flexible way to update and maintain the risk mitigation
policy. Specifically, a policy administrator only needs to change those variable defini-
tions in order to change the risk thresholds for existing risk intervals.

Now it becomes very natural to write different rules that refer to these variables to
implement a risk mitigation strategy. The first<Rule> (lines 05-28) hasPermit as its
effect when the condition is satisfied (lines 06-19); that is, the risk value for the access
request lies in the interval[0, 0.7). Note that the<AttributeDesignator> ele-
ment is used to retrieve a risk value for the access request, and the returned value must
meet the specified criteria such as within theaccess-risk category and being issued
by a trusted authority (line 09). We describe how this mechanism works in the next sec-
tion. Similarly, the second<Rule> (lines 29-36) hasDeny as its effect if the risk value
lies in the interval [0.7, 1]. Additionally, both rules contain
<ObligationExpression> elements (lines 21, 22 and 35), each of which repre-
sents an obligation. An<ObligationExpression> can include an arbitrary num-
ber of attribute assignments that forms thearguments of the action defined by the obliga-
tion. For example, the obligation expression with<system:alert> id (lines 22-26)
defines an email attribute which indicates that the system isobliged to send an email to
a privacy officer. When evaluating this<ObligationExpression>, the PDP deter-
mines the value for <emailID> at runtime by the means of an
<AttributeDesignator>, and sends the resulting obligation to the PEP in the
response context. As stated in the XACML specification, the PEP itself has to know
how to handle the obligation when receiving the response. Tothis end, we propose a
concrete form of the XACML obligation service for interpreting and enforcing differ-
ent types of obligations. We provide some more detail of our implementation of this
obligations service in Sect. 4.

00 <!-- Risk Mitigation <Policy> -->

01 <Policy PolicyId="rm:audit" RuleCombiningAlgId="first-applicable">

02 <VariableDefinition VariableId="risk-threshold-1">

03 <AttributeValue>0.7</AttributeValue>

04 </VariableDefinition>

05 <Rule RuleId="first-risk-interval" Effect="Permit">

06 <Condition><Apply FunctionId="function:and">

07 <Apply FunctionId="double-greater-than-or-equal">

08 <Apply FunctionId="function:double-one-and-only">

09 <AttributeDesignator Category="access-risk" AttributeId="risk" Issuer="TA"/>

71

10 </Apply>

11 <AttibuteValue>0</AttributeValue>

12 </Apply>

13 <Apply FunctionId="function:double-less-than">

14 <Apply FunctionId="function:double-one-and-only">

15 <AttributeDesignator Category="access-risk" AttributeId="risk" Issuer="TA"/>

16 </Apply>

17 <VariableReference VariableId="risk-threshold-1"/></VariableReference>

18 </Apply>

19 </Apply></Condition>

20 <ObligationExpressions>

21 <ObligationExpression ObligationId="system:log">...</ObligationExpression>

22 <ObligationExpression ObligationId="system:alert">

23 <AttributeAssignmentExpression AttributeId="emailId">

24 <AttributeDesignator AttributeId="officer-email" Category="access-subject"/>

25 </AttributeAssignmentExpression>

26 </ObligationExpression>

27 </ObligationExpressions>

28 </Rule>

29 <Rule RuleId="second-risk-interval" Effect="Deny">

30 <Condition><Apply FunctionId="double-greater-than-or-equal">

31 <Apply FunctionId="function:double-one-and-only">

32 <AttributeDesignator Category="access-risk" AttributeId="risk" Issuer="TA"/>

33 </Apply>

34 <VariableReference VariableId="risk-threshold-1"></Apply></Condition>

35 <ObligationExpression ObligationId="system:log">...</ObligationExpression>

36 </Rule>

37 </Policy>

It can be seen that we can define two or more<Rule>s in the Risk Mitigation
<Policy>, each of which corresponds to checking a risk interval. For the sake of read-
ability, we arrange these rules in order of the risk intervals from low to high ([0, 0.7)
to [0.7, 1], for example). This naturally leads us to use thefirst-applicable
algorithm [7, Appendix C] for combining the results of rulesin the Risk Mitigation
<Policy>. This algorithm forces the evaluation of the rules in the order listed in the
policy, and ensures that for a particular rule, if its targetand condition are evaluated to
True, then the result for the policy is the effect of the rule (Permit or Deny). For
example, if the<Rule> in lines 05-28 evaluates toPermit, then the second<Rule>
is not evaluated, and a value ofPermit is returned for the<Policy> (lines 01-37).

3.2 Risk Assessment

Recall that, given an access request, a Role Assignment<PolicySet> is evaluated to
Permit for the request only if the conditions defined in its target are met by the request
and its associated Risk Mitigation<Policy> evaluates toPermit (which means the
risk of granting this request lies in an acceptable risk interval). Let us now look at how
to use XACML to compute the risk associated with an access request in more detail. As
we mentioned, the risk calculation generally depends on various factors associated with
the entities appearing in the request. Since XACML itself supports the use of attributes
when constructing request contexts and policies, it is natural to express these factors as

72

attributes and choose an suitable XACML function to combinethese attributes into a
risk value in the rule condition. As a generic solution, however, the XACML predefined
functions are limited; it is also not clear whether XACML accommodates the definition
of an arbitrary new function, such as the complex formula used to compute risk in
multi-level security [4]. Instead we propose a method in which the risk calculation is
conducted in the PIP. As shown in the previous section, we introduce a special attribute,
namelyrisk, under theaccess-risk category and require that the values for this
attribute are issued by a special trusted authority. When evaluating the Risk Mitigation
<Policy>, the PDP is instructed to request values for this risk attribute in the request
context from the context hander. The context handler may retrieve this risk value from
the PIP and then supply the required values into the request context. This suggests that
the PIP should be able to compute the risk value at run-time when requested by the
context handler, and this complies with the requirement of RAAC regarding dynamic
risk analysis.

We explored this approach by implementing our medical emergency example based
on Balana2. The Balana implementation provides interfaces that allowus to extend
the PIP to perform risk retrieval and risk calculation in a modular way as shown in
Fig. 2. This was done by extending theAttributeFinder module with three ad-
ditional modules, each of which is responsible for finding attributes relevant to a par-
ticular category (subject, resource or environment). ThisRiskAttributeFinder
module is responsible for finding a risk value correspondingto theaccess-risk
category. It may obtain these values by querying an externalsystem (an anomaly de-
tection system, for example) (step w) or a risk assessment module built inside the PIP
(step 1). In the later case, a genericRiskAssessment module is used to connect
the RiskAttributeFinder module with the other three modules. Specifically,
theRiskAttributeFinder calls theRiskAssessment (step 1), supplying at-
tributes obtained from the request context (typically, thesubject-id and the resource-id).
On the basis of this information, theRiskAssessment obtains additional attributes
(subject, resource and environment) that are needed for therisk computation from the
three standard modules (steps 2a-2c), and computes a risk value according to a specific
method (step 3). In our implementation we instantiate theRiskAssessmentmodule
with a method that accumulates risk factors (competence andenvironmental threat) into
a single value.

4 Discussion

There is a considerable body of work on risk-aware access control, much of it focusing
on developing models for incorporating risk in multi-levelsecurity [4, 6] and role-based
access control [1, 2]. Very little of that research is concerned with the design of autho-
risation architectures that accommodate the awareness of risk, with the exception of
Chen et al. [8]. This work extends the XACML standard with newXML schema for
policies and additional components to support risk-adaptive access control. In contract,

2 Balana is an open source Java implementation of XACML 3.0, extending the Sun XACML 2.0
implementation: http://xacmlinfo.com/category/balana/.

73

 Policy Information Point (PIP)

RiskAttributeFinder

EnvirAttributeFinder

ResourceAttributeFinder

SubjectAttributeFinder

RiskAssessment

3

1
w

x

y

z

2a

2b

2c

Fig. 2. The extended PIP architecture for supporting risk assessment.

our approach to implementing RAAC is fully compliant with the XACML standard
without introducing extra elements.

The XACML standard treats an obligation as an attribute assignment, and leaves
the interpretation of these obligations to the PEP. In the XACML technical commit-
tee, there is some work, called “Obligation Families” [11],which attempts to define
additional mechanisms for obligation processing and enforcement, but this is prelimi-
nary and is not reflected in the current XACML standard. Instead, we implement the
XACML obligation service as a comprehensiveobligation handler that supports obli-
gation monitoring and enforcement. In particular, our proposed architecture of the obli-
gation service supports handling ofuser obligations which are used as one type of risk
mitigation methods in RAAC [3]. Space does not permit a detailed presentation and
evaluation of our approach, however, this will be the subject of future work.

Building upon our implementation of the proposed risk-aware XACML architecture
developed upon Balana, another avenue for future work is to apply this approach in a
real-world system. Within the context of the TRUMP project3, we are applying RAAC
models as part of a trusted infrastructure for mobile healthcare application for chronic
illness including diabetes.

5 Conclusions

In this paper we have proposed an approach that uses standardXACML features to
implement RAAC. We provided a simple and flexible way to encode risk mitigation
and risk-aware authorisation by risk mitigation<Policy>s, and illustrated how these
policies can be referenced in other policies making them risk-aware. Although we illus-
trate our approach in the RB-XACML setting, our approach is self-contained and can
be employed on any existing XACML applications. We also discussed our approach to

3 http://www.trump-india-uk.org.

74

utilizing the PIP for risk attribute retrieval and risk calculation. This separation of risk
assessment (PIP) and risk-aware policy evaluation (PDP) conforms with the spirit of
the XACML standard for developing distributed authorisation systems.

References

1. Bijon, K. Z., Krishnan, R., Sandhu, R. S.: Risk-aware RBACsessions. In: Proceedings of
the 8th International Conference on Information Systems Security. (2012) 59–74

2. Chen, L., Crampton, J.: Risk-aware role-based access control. In: Proceedings of the 7th
International Workshop on Security and Trust Management. (2011) 140–156

3. Chen, L., Crampton, J., Kollingbaum, M. J., Norman, T. J.:Obligations in risk-aware access
control. In: Proceedings of the Tenth Annual Conference on Privacy, Security and Trust.
(2012) 145–152

4. Cheng, P. C., Rohatgi, P., Keser, C., Karger, P. A., Wagner, G. M., Reninger, A. S.: Fuzzy
multi-level security: An experiment on quantified risk-adaptive access control. In: Proceed-
ings of the 2007 IEEE Symposium on Security and Privacy. (2007) 222–230

5. Kandala, S., Sandhu, R. S., Bhamidipati, V.: An attributebased framework for risk-adaptive
access control models. In: Proceedings of the Sixth International Conference on Availability,
Reliability and Security. (2011) 236–241

6. Ni, Q., Bertino, E., Lobo, J.: Risk-based access control systems built on fuzzy inferences. In:
Proceedings of the 5th ACM Symposium on Information, Computer and Communications
Security. (2010) 250–260

7. OASIS: eXtensible Access Control Markup Language (XACML) Version 3.0. (2013) OASIS
Standard (E. Rissanen, editor).

8. Chen, C., Han, W., Yong, J.: Specify and enforce the policies of quantified risk adaptive
access control. In: Proceedings of the 14th International Conference on Computer Supported
Cooperative Work in Design. (2010) 110–115

9. OASIS: XACML v3.0 Core and hierarchical Role Based AccessControl (RBAC) profile
Version 1.0. (2010) Committee Specification (E. Rissanen, editor).

10. American National Standards Institute: American National Standard for Information Tech-
nology – Role Based Access Control. (2004) ANSI INCITS 359-2004.

11. OASIS: XACML v3.0 Obligation Families Version 1.0. (2007) OASIS Working Draft (E.
Rissanen, editor).

75

