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Abstract: In this paper, we approach encryption through the properties of complex logarithm and the complex plane. 
We introduce a mathematical concept to be used in cryptography. As an example, we propose a new crypto-
system, by mixing known robust techniques such as chain-block encryption and AES-like structures toget-
her with complex exponentiation to provide robust encryption of plaintext messages. The proposed method 
implements encryption by transforming complex numbers into position vectors in a two-dimensional Carte-
sian coordinate system called the complex plane and utilizes the properties of the complex logarithm toget-
her with well-defined techniques from global standards (such as AES), in order to ensure robustness against 
cryptanalysis. This is made possible without implementing any computational costly algorithm. This has 
two important consequences: First, it may open up viable solutions to known limitations in cryptography 
such as relatively complex key schedules (i.e. in Feistel ciphers) and the need for relatively large keys used 
in encryption methods (bit-wise). Second, it proposes a new mathematical concept that can be used in future 
cryptosystems. An example of this is the preliminary cryptosystem found in this paper. We present its algo-
rithm and show that it can be implemented using fast mechanisms for encryption and decryption. 

1 INTRODUCTION 

The ever-growing computational capabilities of mo-
dern computers result in an ever-growing need for 
complex encryption methods and characteristics, 
such as the discovery of ever growing large prime 
numbers and complex key schedules to ensure secu-
rity in cryptosystems. In a few years, even AES en-
cryption might not be enough to overcome the com-
putational capabilities of computers-to-come. In this 
paper, we propose a new encryption model that can 
be used in cryptosystems. We provide an implemen-
tation of a possible encryption method that utilises 
the 1-to-many relation found inside the properties of 
a complex logarithm. 

In Section 2, we present known previous work 
on this area. In Section 3, we lay the grounds of our 
method by formally presenting the complex loga-
rithm using complex analysis. In Section 4, we de-
monstrate a possible use of the complex logarithm to 
encrypt simple plaintext messages and provide an e-
xample algorithm for possible implementation. We 
conclude this section by providing some insight on 
the robustness of this model using computational 
complexity and present all well-defined algorithmic 

steps used. Finally, in Section 5 we conclude and 
present out plans for future work.  

2 RELATED WORK 

US Government Federal Information Processing 
Standards publicly announced AES (Daemen et al., 
2003) as a standard in encryption, inside “FIPS PUB 
197 Advanced Encryption Standard (AES)” in 2001. 
No efficient attack can be mounted yet against AES, 
though Biryukov, Khovratovich and Nikolić in 
(Biryukov et al., 2009) successfully made a related-
key attack on the 192-bit and 256-bit versions of 
AES with a complexity of 296 for one out of every 
235 keys which exploits AES's somewhat simple key 
schedule. Bogdanov, Khovratovich and Rechberger, 
published in 2011 key-recovery attacks on full AES, 
based on bicliques (Bogdanov et al., 2011), faster 
than brute force by a factor of about four. It requires 
2126.1 operations to recover an AES-128 key. For 
AES-192 and AES-256, 2189.7 and 2254.4 operations 
are needed, respectively. 

Blowfish is known to be susceptible to attacks on 
reflectively weak keys. Schneier, Blowfish's (Sch-
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neier, 1994) and Twofish’s (Schneier, 1998) deve-
loper, supposingly said in 2007 "I'm amazed it's still 
being used. If people ask, I recommend Twofish in-
stead" (McConnachie, 2007). Twofish is yet unbro-
ken, though computational capability will eventually 
catch up since, as claimed in (Shiho, 2000), it will 
theoreticaly take roughly 251 chosen plain texts to 
find a good pair of truncated differentials to break 
Twofish. 

Technology is bound to catch up to all cryptosy-
stems and surpass their computational limits. For 
this reason, any new encryption method should be 
welcomed as future input to viable alternatives, es-
pecially suggestions that comply to the “low compu-
tational cost”-“high resilience to cryptanalysis” para-
digm. In this paper, we take the first necessary steps 
in trying to provide a new mathematical concept and 
suggest a new cryptographic algorithm that may lead 
to further solutions and viable cryptosystems. 

3 THE LOGARITHM OF A 
COMPLEX NUMBER 

In complex analysis, a complex logarithm is the 
inverse of a complex exponential, similar to natural 
logarithm. Ln(x) is the inverse of the real exponen-
tial function ex. Thus, a logarithm of z is a complex 
number w such that ew = z. The basis of our encryp-
tion method relies on the fact that, for one complex 
value w, there are infinitely many logarithms, becau-
se we can choose any integer k since the complex 
exponential is many-to-one (Zill et al., 2011). 

The logarithm of any number, real or complex, 
can assume an infinite number of (complex) values, 
all with the same modulus, but with different phase 
angles.  

3.1 Complex Exponentiation 

The complex exponential function is not one-to-one, 
and all values of e୸, z complex are assumed in any 
infinite horizontal strip of width 2π in the z-plane 
(Zill et al., 2011).  

Complex exponentiation is formally defined 
as		e୧୲ ൌ cosሺtሻ ൅ i ∗ 	sinሺtሻ. Thus, 
 

eሺ୶ା୧∗୷ሻ ൌ 	 e୶ሺୡ୭ୱሺ୷ሻା୧	∗	ୱ୧୬ሺ୷ሻሻ 
																										ൌ 	 e୶ሺୡ୭ୱሺ୷ሻሻ ൅ i ∗ e୶ሺୱ୧୬ሺ୷ሻሻ 

 

This is the formula for the exponential of a general 
complex number z = x + i * y expressed in Cartesian 
coordinates. In short, this can be rewritten into e୸ = 
w, where z and w are both complex. From here, we 

know that z = Log (w), thus, if we let w = a + i * b, 
and we solve for x and y in terms of a and b, we get 
the equation for the complex logarithm. 
 

a= e୶ ∗ ୡ୭ୱሺ୷ሻ (eq. 1)

b= e୶ ∗ ୱ୧୬ሺ୷ሻ (eq. 2)
 

a2 + b2 = eሺଶ୶ሻ	∗	ୡ୭ୱሺ୷ሻ
మ
+ eሺଶ୶ሻ	∗	sinሺ୷ሻ

మ
              

= eሺଶ୶ሻ	∗	ሺୡ୭ୱሺ୷ሻ
మ	ା	ୱ୧୬ሺ୷ሻమሻ              

= eሺଶ୶ሻ 

 

since cos(y)2 + sin(y)2 = 1 for all y. So, using this, 
we get: 
 

2x = Log	ሺaଶ 	൅	bଶሻ 
 

x = 
୐୭୥	൫ୟమାୠమ൯

ଶ
         

= Log (ඥሺaଶ ൅ bଶሻሻ        
 

and ඥሺaଶ ൅ bଶሻሻ can be written as |w|, which is the 
magnitude of the complex number w. 

We then compute y by dividing (eq. 2) by (eq. 
1), shown above: 

 

b
a
ൌ
sinሺyሻ
cosሺyሻ

ൌ tanሺyሻ 

y ൌ arctan
b
a

 
 

If we combine all the above, we get: 
 

x = Log (|w|),  y	 ൌ 	Arg	ሺwሻ ൅ 	2	 ∗ 	Pi	 ∗ 	k 
 

z ൌ 	x	 ൅ 	i ∗ y	
z ൌ Logሺ|w|ሻ ൅ 	i ∗ ሺArgሺwሻ ൅ 	2 ∗ Pi ∗ kሻ, 

 

for any integer k. But z = Log(w), so 
 

Logሺwሻ ൌ Logሺ|w|ሻ ൅ i ∗ ሺArgሺwሻ ൅ 2 ∗ Pi ∗ kሻ, (eq. 3)
 

for any integer k.  

3.2 Inverting the Complex Exponential 
Function 

For one complex value w, there are infinitely many 
logarithms, because we can choose any integer k in 
(eq. 3) above. These infinitely many numbers form a 
sequence and are all mapped to the same number by 
the exponential function. Thus, the complex expo-
nential is many-to-one, a property on which we are 
going to base our encryption method.  

If w1 and w2 are two solutions, then	e୵ଵି୵ଶ ൌ
	1, in order for w1 and w2 to differ by an integer 
multiple of	2	 ∗ 	π	 ∗ 	i (Figueroa-O’Farrill, 2004). 
Any permissible value of w is a called an argument 
for z and is denoted by arg(z). We therefore define 
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logሺzሻ 	ൌ 	ln	|z| 	൅ 	i ∗ argሺzሻ. To get an actual (sin-
gle-valued) function, we must make particular choi-
ces of arg(z) for each z (Figueroa-O’Farrill, 2004). 
Restricting the values of a multiple-valued function 
to make it single-valued in some region (in the abo-
ve example in some neighbourhood of z0) is called 
choosing a branch of the function (Figueroa-O’ 
Farrill, 2004).  

Let G be an open connected subset of C not 
containing the origin. By a branch of arg z in G is 
meant a continuous function a in G such that, for 
each z in G the value a(z) is a value of arg z. By a 
branch of log z in G is meant a continuous function l 
in G such that, for each z in G, the value l(z) is a 
logarithm of z (Sarason, 2007). 

Let a, be a complex number. Then, following 
what we have shown in section 2.1, we can show 
that, for all z not equal to 0, the a-th power ݖ௔ is 
 

zୟ ൌ ea	∗	logሺzሻ ൌ ea	∗	Log	ሺ|z|	൅	i	∗	a	∗	argሺzሻሻ 
 

Depending on a, there are infinite values for	zୟ for k 
= 0, +-1, +-2 etc. Depending on a, we will have 
either one, finitely many or infinitely many values of 
exponent (i * 2π * a * k). If a is an integer, then the-
re is only one value for	ݖ௔. If a	 ൌ

୮

୯
  is rational, then 

 ௔ has a finite number of values but, if a is irrationalݖ
then ݖ௔ has infinite number of values. Similarly, if a 
is not real, in our case, if it is a complex number, 
then a	 ൌ 	a	 ൅ 	i	 ∗ 	b with b not equal to 0,  then ݖ௔ 
will have an infinite number of values (Figueroa-
O’Farrill, 2004). This is the core of the presented 
method. 

e୸ is holomorphic (i.e. is a complex-valued func-
tion that is complex differentiable in every point in 
its domain) since it satisfies the Cauchy-Riemann 
equations (Sarason, 2007). Thus, log z can have one 
or more branches, depending on the open connected 
set G used. The use of branches gives a way of deal-
ing with inverses of functions that are not one-to-one 
(Sarason, 2007). We consider using a set G with the-
se properties in order to encrypt our messages and 
keep the one-to-many property of the complex loga-
rithm. 

4 THE COMPLEX LOGARITHM 
ENCRYPTION METHOD 

Encryption is the standard means of rendering a 
communication private (Rivest et al., 1978). The 
sender enciphers each message before transmitting it 
to the receiver, thus rendering it unreadable (cipher 
text) by an eavesdropper. 

4.1 Encryption 

Here we propose an algorithm implementing the 
complex logarithm at its core and give a high-level 
description of its steps. It is divided in four basic 
steps and, essentially, is a mix of methods, using the 
theoretical base of chain-block ciphering (Ehrsam et 
al., 1976) and the notion behind the AES encryption 
algorithm (Daemen et al., 2003). Nevertheless, with 
the necessary mutations, complex exponentials 
might be a good alternative to XOR-ing keys in ot-
her algorithms, such as known Feistel ciphers. 

Essentially, our proposal replaces the Round Key 
step in AES with a new one, in which the encryption 
is not performed by using sub-keys derived from the 
main key. Instead, a chain encryption is used where 
the previous complex number that resulted from ݖ௜

௔ 
is used as an exponential a in the following ݖ௜ାଵ

௔  
function. This provides an “avalanche effect” since 
any erroneous result in solving	ݖ௔ in any step of the 
way, will propagate the error on all coming complex 
functions during the decryption process. This feature 
results in increased security against known attacks, 
such as the “known-plaintext” attack.  

Following, we present a high-level encryption al-
gorithm using our complex logarithm method. For a 
better understanding of the Complex Exponential 
step of the following algorithm, the reader can sum-
marize the above mathematics in the following equa-
tion, where 	ݖ௔ ൌ ሺܽ ൅ ܾ݅ሻሺܿ൅݀݅ሻ	(Weisstein, Wolfram 
Web Resource): 
 

ሺܽ ൅ ܾ݅ሻሺ௖ାௗ௜ሻ	= 

ൌ ሺܽଶ ൅ ܾଶሻ
ሺ௖ା௜ௗሻ

ଶ ∗ ݁௜ሺ௖ା௜ௗሻୟ୰୥	ሺ௔ା௜௕ሻ 
 

Thus, the steps of the algorithm are the following: 
 

1. Complex Randomization: A first complex num-
ber is derived from the binary representation of 
the first bit-block of the plaintext together with a 
random generator to generate a within the chosen 
open, connected group G. The resulting complex 
number must conform to set G used. Padding is 
used in order to ensure security of the first 
encryption (exponentiation) round, as with most 
algorithms of the kind (i.e. ElGamal). 

 

2. Initial Round 
- Generate random complex number a that 
conforms to open group G selected. 
- Combine first two parts of plaintext to create 
first complex number z1 (each part serves for 
real and imaginary part, respectively). 

- Compute complex exponential	ݖ଴
௔ =	C଴. 
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Figure 1: Visual representation of the proposed complex exponential algorithm. 

3. Loop for i = 1, 2, ..., k : 
- Substitute Bytes: non-linear substitution. Each 
byte is replaced on the basis of a lookup table. 
- Shift Rows: Transposition step. Each row is 
shifted cyclically.  
- Mix Columns: Mixing operation which opera-
tes on the columns of the state, combining bytes 
in each column. 
- Combine first two parts of plaintext to create 
first complex number. 

- 	C୧ିଵ= a.  
- Compute complex exponential		ݖ௜ାଵ

௔ = 	C୧ାଵ. 
 

4. Final Round 
- Substitute Bytes 
- Shift Rows 

- Compute complex exponential		ݖ௞
௔. 

 

Fig. 1 provides a representation of the above algo-
rithm, with a visual analysis of the above mentioned 
procedure. 

4.2 Decryption 

Most cryptosystems implement decryption as the 
inverse process used in encrypting a plaintext. Simi-
larly, if someone knows the branch k used in com-
puting the logarithm of a complex exponential, then 
he can reverse the entire process by computing each 
complex exponential ݖ௜

௔	and using it as input to com-
pute	ݖ௜ିଵ

௔ . 
All necessary steps are already formalized since 

they follow the same notion as with chain -block 
ciphers and the AES encryption/decryption method. 
Assuming an appropriate branch cut for the complex 
logarithm, logarithms of complex numbers can be 

reduced to elementary functions of real numbers 
(Sarason, 2007). Keeping that in mind, the decryp-
tion’s computational time is depended on the com-
putation cost of the logarithm. Since complex loga-
rithms can be computed using Taylor series, the 
computational cost is within acceptable time bounds. 

4.3 Overall Security 

We mentioned above in Section 4.2 that logarithms 
of complex numbers can be reduced to elementary 
functions of real numbers. For example: 
 

Lnሺa ൅ ibሻ ൌ
1
2
∗ Lnሺaଶ ൅ bଶሻ ൅ i ∗ arctan	ሺ

b
a
ሻ 

 

For a negative real number x<0, if we take into con-
sideration a chosen branch cut, we have 
 

Lnሺxሻ ൌ Lnሺabsሺxሻሻ ൅ i ∗ Pi 
 

The aforementioned algorithm is used in the imple-
mentation of a cryptosystem using complex expo-
nential. One part of the security of the presented en-
cryption method depends on the properties of the 
underlying group G used for zୟ as well as any pad-
ding scheme and steps borrowed from well-defined 
cryptosystems such as AES. For further information 
on how group G affects the complex logarithmic 
branches, refer to complex analysis presented in 
Section 3.2.  

In the following subsections, we shall focus our 
attention in analysing the Complex Exponential part 
of the method, since this is the base axis of our main 
contribution in this article. Padding, Byte substituti-
on etc. are known and well-established techniques in 
cryptography (Daemen et al., 2003). In this light, we 
will only present them briefly based on knowledge 
from (Daemen et al., 2003). 
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- Substitute bytes: This operation provides the 
non-linearity in the cipher. 

- Shift rows and Mix columns provide diffusion in 
the cipher (i.e. making the relationship between 
plaintext and cipher text as complex as possible). 

 

As we have proven earlier in section 3, computing 
the logarithm of a complex exponential using two 
complex numbers is, under restrictions, a one-to-ma-
ny relation. This applies to plaintext binary represen-
tations and encrypted ones. In the aforementioned 
algorithm, chain encryption is used between ݖ௜

௔ 
and		݅ݖ൅1

ܽ , providing the “avalanche effect” mention-
ed earlier which increases the difficulty in cryptana-
lyzing a text encrypted with the above method.  

Our encryption method is probabilistic, meaning 
that a single plaintext can be encrypted to many pos-
sible cipher texts, without the consequence of size 
expansion between plaintext and cipher text, such as 
with the case of ElGamal (ElGamal, 1985). Perfect 
secrecy states that a cipher text leaks no information 
about the plaintext (to any, even an all-powerful ad-
versary). This is equivalent to stating that the proba-
bility that a given message maps to a given cipher 
text is exactly identical for every pair of messages 
and cipher texts (for randomly chosen keys) (Raghu-
nathan, 2011). The chain exponential encryption is 
depended on a random first complex number. This 
choice propagates to all exponential computations 
afterwards thus, if the first random complex is diffe-
rent each time, same plain texts encrypt to different 
cipher texts with no relation whatsoever.  

4.4 Efficiency and Computational 
Costs 

Knowing that logarithms of complex numbers can 
be reduced to elementary functions of real numbers 
for a specific branch as we presented earlier, the 
computational cost of this complex exponentiation 
step is the same as computing an elementary functi-
on of a real logarithm.  

Most algorithms compute elementary functions 
by composing arithmetic operations. Some known 
algorithms use Taylor series applicable to logarithm, 
with O ((log n) 2 M (n)) complexity (Chudnovsky et 
al., 1988). This shows that encryption and decrypti-
on algorithms for our method can be relatively fast 
with no excessive computational cost. On a sample 
encryption-decryption test we tested in our labs, 
simple transformations of a simple plaintext abide to 
the computational costs presented earlier (a simple 
plain text sentence was encrypted and decrypted in 
less than 0.1 sec (computer time) using open-source, 
ready-made complex number calculators). 

5 CONCLUSIONS 

We proposed a method for implementing a secret-
key cryptosystem using complex logarithms and an 
AES-like structure. Its security rests in part on the 
difficulty in computing chained functions of comp-
lex logarithms in specific open connected groups 
(logarithms computed using the notion of chain-
block encryption for the avalanche effect in the one-
to-many relations between complex logarithms and 
their exponentials).  

If the security of our method proves to be ade-
quate or our complex logarithm complex proves use-
ful in cryptosystems, it introduces a new concept in 
secure communications and also opens up alternati-
ves in creating robust key-schedules or more. In this 
case, the method could be utilized for hardening the 
protection of critical applications or infrastructures 
(Iliadis, 2000, Lekkas, 2006, Marias, 2007). 

Future work on the subject with involve real-
world encryptions on relatively big files and tho-
rough testing of the proposed cryptosystem on nu-
merous attacks, involving semantic analysis, known-
plaintext attacks etc. in order to prove its robustness. 
On top of that, the average computational complexi-
ty in cryptanalyzing cipher texts must be tested and 
proven true, either through reductions in Complexity 
Theory using similar, proven algorithms or through 
extended testing. 
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