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Abstract: Analyses of flow and transport in the shallow subsurface require information about spatial and statistical 
distributions of soil hydraulic properties (water content and permeability, their dependence on capillary 
pressure) as functions of scale and direction. Measuring these properties is relatively difficult, time 
consuming and costly. It is generally much easier, faster and less expensive to collect and describe the 
makeup of soil samples in terms of textural composition (e.g. per cent sand, silt, clay and organic matter), 
bulk density and other such pedological attributes. Over the last two decades soil scientists have developed a 
set of tools, known collectively as pedotransfer functions (PTFs), to help translate information about the 
spatial distribution of pedological indicators into corresponding information about soil hydraulic properties. 
One of the most successful PTFs is the nonlinear Rosetta neural network model developed by one of us. 
Among remaining open questions are the extents to which spatial and statistical distributions of Rosetta 
hydraulic property outputs, and their scaling behavior, reflect those of Rosetta pedological inputs. We 
address the last question by applying Rosetta, coupled with a novel statistical scaling analysis recently 
proposed by three of us, to soil sample data from an experimental site in southern Arizona, USA. 

1 INTRODUCTION 

Soil hydraulic properties (such as volumetric water 
content, permeability and their functional relations 
to capillary pressure) required for subsurface flow 
and transport analyses can be measured in the field 
and/or the laboratory at a considerable investment of 
time and money. One alternative is to estimate these 
properties indirectly by means of pedotransfer 
functions (PTFs, for a review see Pachepsky and 
Rawls, 2004) on the basis of pedological indicators 
such as soil particle size distribution, bulk density 
and organic matter content that are much simpler 
and less costly to determine. PTFs range from 
simple look-up tables to advanced statistical 
analyses such as support vector machines (e.g. 
Twarakavi et al., 2009). One of the most powerful 
and increasingly popular tools of this kind is the 
nonlinear Rosetta neural network code of Schaap et 
al. (2001), which comprises a set of five hierarchical 
PTFs tailored to varied circumstances ranging from 
data-poor to data-rich. Inputs may be limited to soil 
composition data such as per cent sand, silt and clay 
or include additional information about soil bulk 

density and one or two measured pairs of water 
content and capillary pressure data. Output consists 
of parameters defining the van Genuchten (1980) – 
Mualem (1976) constitutive relationships between 
water content, hydraulic conductivity and capillary 
pressure. The code has been calibrated against 
pedological and hydraulic data obtained from 
laboratory analyses of 2134 soil samples from across 
the United States. The calibration was combined 
with the non-parametric bootstrap method (Efron 
and Tibshirani, 1993) to allow assessing Rosetta's 
predictive uncertainty. Assuming that the calibration 
data set of 2134 samples represents correctly the 
underlying soil population, multiple random subsets 
(or replicas) of the original dataset were created 
through sampling with replacement: 100 replicates 
of saturated hydraulic conductivity and 50 replicates 
of van Genuchten – Mualem constitutive parameters 
(Schaap and Leij, 1998). Rosetta was calibrated 
separately against each replicate data set, each 
calibrated version was used to predict hydraulic 
parameters on the basis of the original 2134 input 
data, and the results summarized in terms of sample 
mean and standard deviation of each predicted 
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parameter (Schaap et al., 2001). The latter two 
statistics are taken to represent the mean and the 
uncertainty of the corresponding neural network 
predictions, which vary with each individual set of 
input data. 

Due to their reliance on diverse data bases 
obtained using varied measurement techniques, it is 
not uncommon for different PTFs to produce 
mutually inconsistent outcomes (Schaap and Leij, 
1998). Most PTFs have a modest accuracy when 
estimated hydraulic parameters are compared with 
experimental values (Schaap et al., 2004). In the 
case of Rosetta, correlation coefficients between 
experimental and estimated constitutive parameters 
of the van Genuchten water retention model range 
between 0.3 and 0.9 (Schaap et al., 2001). The root-
mean square error between measured and estimated 
water contents range from 0.04 to 0.08 cm3/cm3, 
depending on model used. Correcting for capillary 
pressure-dependent bias reduces this error only 
slightly (Schaap et al., 2004). 

It is presently unclear to what extent do spatial 
and statistical distributions of Rosetta hydraulic 
property outputs, and their scaling behavior, reflect 
those of Rosetta pedological inputs. In this paper we 
address, in a preliminary manner, the question to 
what degree are the statistical scaling properties of 
Rosetta inputs reflected in those of the model's 
outputs. We do so by analyzing, and comparing, the 
statistical scaling properties of Rosetta inputs and 
outputs using input soil sample data from an 
experimental site near Maricopa, Arizona, USA 
(Schaap, 2013). Our statistical scaling analysis is 
based on an approach recently proposed by Neuman 
et al. (2013 and references therein). 

2 STATISTICAL SCALING OF 
NEURAL NETWORK INPUTS 

We start by analyzing the statistical scaling behavior 
of soil texture data measured to a depth of 15 meters 
over an area of 3600 m2 at the Maricopa 
experimental site, operated by the University of 
Arizona (headquartered in Tucson). These data 
constitute inputs into the Rosetta neural network 
model. The sampling network, depicted in Figure 1, 
comprises 1029 measurement locations distributed 
along several vertical wells and a horizontal transect. 
A more complete description of the site and the 
network is given by Schaap (2013). 

Our texture data consist of relative fractions fi, 0 
 fi  1, of three texture categories i = sa, si and cl 
representing sand, silt and clay, respectively. In 

addition to the original measurements, fi, we also 
consider two corresponding principal components, 
PC1 and PC2, as defined by Schaap (2013). Here we 
focus on statistical scaling of vertical increments in 
these variables. 
 

 

Figure 1: Spatial distribution of soil sampling network at 
Maricopa experimental site. Grey scale represents 
measured relative silt fraction, fsi. 

Figure 2 juxtaposes sequences of vertical increments 
in fsa, fsi and fcl, computed along the various 
sampling boreholes in Figure 1, at vertical 
separation distances (lags) sv = 0.4, 2.0 and 5.0 m. 
The increments are seen to vary randomly and 
intermittently. 

 

 
Figure 2: Sequences of N vertical increments in fsa, fsi and 
fcl at lags sv = 0.4, 2.0 and 5.0 m. 

Frequency distributions of vertical increments, like 
those of the principal components PC1 and PC2 in 
Figure 3, tend to be symmetric and exhibit heavy 
tails. As illustrated in Figure 3, they can be fitted 
quite well by the maximum likelihood (ML) method 
to -stable probability density functions (pdfs) with 
stability indices  ≤ 2, where  = 2 corresponds to 
the normal (Gaussian) pdf. ML fits of normal pdfs to 
the empirical distributions are included in Figure 3 
for reference. Whereas the tails of -stable pdfs with 
 < 2 fall off as a power law, those of the normal pdf 
decay exponentially. ML estimates of  associated 
with vertical increments of PC1 and PC2 increase 
from 1.85 at a lag of 0.4 m to 2 at lags exceeding 2 
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m. Kolmogorov – Smirnov and Shapiro – Wilk tests 
at significance level of 0.05 do not, in most cases, 
support a hypothesis that increments associated with 
estimates of  > 1.9 derive from a normal pdf. 

 

 
Figure 3: Frequency distributions of increments of (a) PC1 
and (b) PC2 at two lags. Also shown are ML fits of -
stable (red solid) and normal (dashed) pdfs. 

Next we compute structure functions q
NS  defined as 

qth order sample statistical moments of absolute 
vertical increments in a sample of size N. Figure 4 
plots sample structure functions of orders 1, 2 and 3 
associated with vertical increments of PC1 and PC2 
as functions of vertical lag on logarithmic scale. In 
each case there is a mid-range of lags within which 
the data can be fitted by regression to straight lines 
at high levels of confidence as indicated by 
coefficients of determination, R2, close to 1. This 
implies that, in a midrange of lags, each structure 
function scales as a power of lag; Figure 4 lists 
corresponding power exponents, which we designate 
by (q), ranging from 0.34 to 0.74 in the case of PC1 
and from 0.21 to 0.49 in the case of PC2. We refer to 
this way of determining power scaling exponents for 
various orders q of a structure function as method of 
moments (M). 

Figure 5 shows how the power-law scaling 
exponent, (q), determined for PC1 and PC2 by the 
method of moments, varies with the order q of their 
structure functions up to q = 6. The exponent (q) is 
seen to scale in a nonlinear fashion with q, 
delineating a convex curve. Included in Figure 5 are 
straight lines passing through (1) and the origin. 

 

 
Figure 4: Structure functions of order q = 1, 2 and 3 of 
vertical (a) PC1 and (b) PC2 increments versus lag. 
Regression lines (R2 values listed) indicate power-law 
scaling (equations listed) in midranges of lags. 

 
Figure 5: Variations of power-law scaling exponent (q) 
corresponding to PC1 and PC2 with order q of their 
respective structure functions obtained by the method of 
moments. Straight lines pass through (1) and the origin. 

Power-law scaling of -stable increments such 
that illustrated in Figures 4 and 5, including 
breakdown in power-law scaling at small and large 
lags and nonlinear variation of the power-law 
scaling exponent (q) with q, have been shown by us 
elsewhere to be typical of samples from sub-
Gaussian random fields or processes subordinated to 
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truncated fractional Brownian motion (tfBm) and/or 
truncated fractional Gaussian noise (tfGn); for up-to-
date descriptions consult Guadagnini et al. (2012), 
Siena et al. (2012), Neuman et al. (2013) and Riva et 
al. (2013a,b). Whereas nonlinear variation of (q) 
with q had previously been attributed in the 
literature to multifractals and/or fractional Laplace 
motions, we note that fBm and/or fGn are 
monofractal self-affine. 

Like fBm and fGn, their truncated tfBm and tfGn 
versions are characterized by a single power-law 
scaling exponent, H, known as the Hurst coefficient. 
One way to estimate H is from the slope of a straight 
line that passes through (1) and (0). The two 
straight lines in Figure 5 thus imply that PC1 is 
characterized approximately by a Hurst exponent H 
= 0.34 and PC2 by H = 0.21. Both estimates are 
smaller than corresponding estimates of 1/, 
implying that PC1 and PC2 are anti-persistent in the 
vertical direction, varying in a rough rather than in a 
smooth manner as indeed do the underlying textural 
indicators fsa, fsi and fcl in Figure 2. 

Similar statistical scaling behaviors are exhibited 
by other Rosetta input variables. 

3 STATISTICAL SCALING OF 
NEURAL NETWORK OUTPUTS  

Having characterized statistical scaling of Rosetta 
inputs, we now perform a similar analysis of 
selected outputs generated by the neural network 
model. Rosetta generates output hydraulic soil 
properties at all sampling locations at the Maricopa 
experimental site (Figure 1). Here we focus on 
statistical scaling of vertical increments of log 
hydraulic conductivity, Y = log10K, at full soil 
saturation. Figure 5 juxtaposes sequences of such 
increments computed by Rosetta along the various 
sampling boreholes in Figure 1, at vertical 
separation distances (lags) sv = 0.4, 2.0 and 5.0 m.  
The increments are seen to vary randomly and 
intermittently, as did the corresponding Rosetta 
inputs in Figure 2. 

Frequency distributions of vertical Y = log10K 
increments in Figure 7 tend to be symmetric and 
exhibit heavy tails, as did those of Rosetta input 
variables in Figure 3. Like the latter, frequency 
distributions of Rosetta output estimates in Figure 7 
can be fitted reasonably well by ML to -stable pdfs 
with stability indices  ≤ 2. ML fits of normal pdfs 
to the empirical distributions are included in Figure 
7 for reference. ML estimates  of    associated  with 

 
Figure 6: Sequences of N vertical increments of log 
saturated hydraulic conductivity, Y = log10K, at lags sv = 
0.4, 2.0 and 5.0 m. 

vertical Y = log10K increments increase from 1.68 at 
a lag of 0.2 m to 2.0 at lags exceeding 0.8 m. 
Kolmogorov – Smirnov and Shapiro – Wilk tests at 
significance level of 0.05 yield ambiguous results, 
neither overwhelmingly supporting nor clearly 
rejecting a hypothesis that increments associated 
with estimates of  > 1.9 derive from a normal pdf. 

Figure 8 plots sample structure functions of 
integer orders 1 – 6 associated with vertical Y = 
log10K increments as functions of vertical lag on 
logarithmic scale. As in the case of Rosetta inputs 
(Figure 4), here again each sample structure function 
exhibits a mid-range of lags within which it can be 
fitted by regression to a straight line at a high level 
of confidence as indicated by coefficients of 
determination, R2, close to 1. In this midrange of 
lags, each structure function scales as a power of 
lag; Figure 8 lists corresponding power exponents 
(q) ranging from 0.68 to 1.30. 

 
Figure 7: Frequency distributions of Y = log10K at four 
lags. Also shown are ML fits of -stable (red solid) and 
normal (dashed) pdfs. 
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Figure 8: Structure functions of integer orders q = 1 – 6 of 
vertical Y = log10K increments versus lag. Regression lines 
(R2 values listed) indicate power-law scaling (equations 
listed) in midranges of lags. 

 
Figure 9: Variations of power-law scaling exponent (q) 
corresponding to Y = log10K with order q of its structure 
function obtained by the method of moments. Straight 
lines pass through (1) and the origin. 

Figure 9 shows how the power-law scaling 
exponent, (q), determined for Rosetta output log 
saturated hydraulic conductivities by the method of 
moments, varies with the order q of its structure 
function up to q = 6. As in the case of Rosetta inputs 
in Figure 5, (q) delineates a convex curve. Included 
in Figure 9 are straight lines passing through (1) 
and the origin. The latter yields an estimated Hurst 
exponent H = 0.39 which, like in the Rosetta input 

case, is smaller than corresponding estimates of 1/ 
and thus imply that Y = log10K is anti-persistent in 
the vertical direction, varying in a rough rather than 
in a smooth manner as do the Rosetta input variables 
fsa, fsi and fcl in Figure 2. 

Similar statistical scaling behaviors are exhibited 
by other Rosetta output variables. 

4 CONCLUSIONS  

We have analyzed, and presented selected examples 
of, the statistical behaviours of soil pedological 
indicators at an experimental site in southern 
Arizona that have served as inputs into a neural 
network model of soil properties at the site. We have 
conducted a similar analysis on soil hydraulic 
property predictions by the same neural network 
model and illustrated them on log saturated 
hydraulic conductivity model outputs. We found 
that, like the neural network inputs (and we believe 
many other earth, environmental as well as a range 
of other variables), our neural network output 
predictions exhibited the following statistical scaling 
behaviours: 

1. Symmetric frequency distributions of spatial 
increments (illustrated in vertical but observed 
also in horizontal directions) tending to possess 
heavy tails. 

2. Good maximum likelihood fits of increment 
frequency distributions to -stable probability 
density functions with power-law tails. 

3. Structure functions scaling as powers of 
separation distance, or lag, in intermediate 
ranges of lags. 

4. Breakdown in such power-law scaling at small 
and large lags. 

5. Nonlinear convex scaling of power-law 
exponents with order of the corresponding 
structure functions. 

6. Highly intermittent, anti-persistent spatial 
variability characterized by relatively small 
Hurst exponent estimates. 

Such behaviour has been shown by us elsewhere to 
be characteristic of samples from sub-Gaussian 
random fields or processes subordinated to truncated 
fractional Brownian motion (tfBm) and/or truncated 
fractional Gaussian noise (tfGn). Whereas nonlinear 
scaling of power-law exponents with structure 
function order had previously been attributed in the 
literature to multifractals and/or fractional Laplace 
motions, we note that fBm and/or fGn are 
monofractal self-affine. 
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Future work will focus on ways to condition sub-
Gaussian random fields or processes on multiscale, 
space-time distributed earth and environmental 
measurements and on the statistical scaling of 
corresponding extreme values and/or events. 
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