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Abstract. Clustering is very often used for the purpose of automatic software
architecture reconstruction. This work investigates the importance of taking into
account different factors for the similarity metric, besides the traditional factor
based on direct coupling/cohesion: indirect coupling as computed from the topol-
ogy of the dependency graph, and global architectural layering resulting from the
orientation of dependencies. We experiment with using these factors, individu-
ally or combined, for defining the similarity metrics within a set of clustering
algorithms.

1 Introduction

Software architecture is a model of the software system expressed at a high level of
abstraction, concentrating on the interaction of “black box” elements. Knowing and
having an explicit representation of the system architecture is essential for understand-
ing, evaluating and maintaining a large software application. Often, the documentation
is incomplete, outdated or is completely missing, only the code being available. Recon-
structing the architectural model from the available code remains the saving alternative
in these cases.

The reverse engineering community developed many techniques to help reconstruct
the architecture of software systems, as they are surveyed and classified in [8]. Auto-
matic reconstruction techniques aim at finding the logical cluster structure of software
systems, with as few user intervention as possible and with minimal prior knowledge.
Software clustering refers to the decomposition of a software system into meaningful
subsystems. To be meaningful, the automatic approach must produce clusterings that
can help developers to understand the system, grouping together parts that relate to
each other from a logical design point of view.

Our goal is to improve automatic reconstruction techniques, in order to obtain a
reconstructed architectural model of a better quality - one which is evaluated to be
better by a human expert.

This article is organized as follows: Section 2 resumes the state of the art and builds
the motivation for our approach. Section 3 states the goals of this work and introduces
our reconstruction approach. Experimental results regarding the influence of different
similarity factors on the quality of the reconstructed model are described in Section 4.
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2 Background

Reconstructing the architecture of a software system dandae of the following ap-
proaches:

— The top-down approach, when certain assumptions of thealbggstem organiza-
tion are known and they are validated by examining the exjsitifacts with help
of interactive tools in a human-controlled reconstructioncess.

— The bottom-up approach, when (quasi)-automatic unsugeahtools build hypothe-
ses starting from the examination of the existing artifacts

In the category of top-down, human-controlled or interacfipproaches there are
notable tools such as: Rigi by H. Muller et al [14]; the ReftexModel technique of
Murphy, Notkin, and Sullivan [15]; the Reflexion model coméd with clustering [7];
ACDC - the pattern driven approach of Tzerpos and Holt [20].

In the category of bottom-up, automatic or quasi-autonagtfroaches for architec-
tural reconstruction, techniques have been imported flwrdbmain of data mining.
Clustering algorithms have been largely used in data mitorigentify groups of ob-
jects whose members are similar in some way. Clusteringrigthgos group together
entities into groups, by maximizing the sum of relationsHigtween entities grouped
together and minimizing the sum of relationships betwedferdint groups. In reverse
software engineering, clustering is used for architetttgeonstruction, by grouping
together in subsystems modules (classes, functions hetc)dlate to each other.

There are several research approaches in this domain, difiehby:

— the graph clustering algorithm which is used [22]
— the software-engineering defined criteria used for gragpiodules together (the
similarity metric)

The basic assumption driving this software clustering apph is that software sys-
tems are organized into subsystems characterized by attsshesion and loosely cou-
pling with each other. A reference tool of this category isBl, developed by Mitchell
and Mancoridis [12], using a search based algorithm (hithbing) and a modulariza-
tion quality metric MQ defined as a formula on coupling ande=bn.

As observed by many researchers, clustering software lmasadmetric for simi-
larity and dissimilarity derived only from coupling and @sion does not provide sat-
isfactory results [9]. Various researches have tried toaftware clustering by taking
into account other categories of informations as simifarietrics: A form of indirect
coupling is taken into account by Chiricota [6]. The LIMBOpapach of Andritsos and
Tzerpos [1] considers even non-software informationsh ischistorical data (time of
last modification, author) held by version control systeposatories, the physical or-
ganization of applications in terms of files and folders. Aetii and Letherbridge [3]
use for clustering the symbolic textual information avaliéain the identifier used as
names. Recent researches ([2], [5], [13], [10]) agree thatipervised clustering ap-
proaches based only on a coupling/cohesion criteria tepdouce results that are not
acceptable for the domain experts and propose differensumes for improvements.
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3  Our Work

3.1 Goal and Approach

Our goal is to investigate ways of improving the quality oftba-up, automatic, un-
supervised reconstruction. We have built the Architecieeonstruction Tool Suite
(ARTSs) as an extensible tool chain for experimenting wittledent methods for clus-
tering. In the architectural reconstruction communityréhkave been developed a lot
of different approaches and methods but they are used adabdtin isolation. Our
goal is to integrate into an architectural reconstructamiduite the different partial so-
lutions, in order to compare their relative efficiency angbadtudy the ways how they
can be combined. Also, we propose a new approach of inclutrgcted architectural
information in the grouping criteria.
The architecture of ARTS is depicted in Figure 1.

The Architecture Reconstruction Toolsuite
Factors Methods Algorithm Methods Algorithmg .
Clustering
weighted 1 weighted 1 dusters 1 clusters ! Method :
DSM graph | General ~ |9r@PN |- cluster General __,| Compare EVEEE g
Builder "| Preprocess "|  Finder Postprocess
4
Structural Reference
Model Architectural
(UNIQ-ART) Decomposition

Fig. 1. The Architectural Reconstruction Toolsuite (ARTS).

The input for ARTs is a primary structural and dependency ehedtracted from
code by static analysis and represented according to thQtMRT meta-model [17].
The primary models represent relationships betweetthies(classes or modules) and
their parts, and may describe systems implemented in objgmtted (Java, C#) or
procedural (C) languages.

Each tool of this chain accepts different plug-ins in ordecastomize it.

The central tool is th€lusterFinder, which operates on a weighted graph repre-
senting an abstraction of the system in order to produceitsmposition into clusters.
It may be implemented by different clustering algorithmsiri@ntly we have imple-
mented both flat decomposition algorithms as well as hibreat decomposition algo-
rithms. The algorithms are:

Minimum Spanning Tree based algorithms (MST [23] and MMS]} [4

— Metric Based ([6]);

Search based (hill-climbing)

Hierarchical clustering: Single Linkage, Complete LinkaygVeighted Average,
Unweighted Average
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The DSMIBuilder selects information from the primary model and creates the a
stract weighted graph. Different grouping criteria can sedy(in isolation or composed)
as factors leading to the weights values, as detailed inestibs 3.2.

In order to improve the clustering process, some preprowssind postprocess-
ings can be performed, optionally, independent of the anokestering algorithm. We
implemented elimination of omnipresent modules [14] anghan adoption [19].

A clustering method, defined by the combination of groupiactdrs, clustering
algorithm, pre- and postprocessings, is evaluated by cdngpas result with a given
authoritative decomposition. The evaluation methods @bmparer) are detailed in
subsection 3.3.

3.2 Grouping Criteria

Following three criteria can be used (in isolation or congat)go build the similarity
metrics:

— the strength of the direct dependencies coupling (DC)
— indirect coupling (IC)
— global architectural information regarding the architeat layer (LA)

The direct coupling factor, which is the baseline groupiriteda, can be adjusted
by applying factors derived from the indirect coupling oolghl architectural informa-
tion. The similarity metric value between two units A and Bjigen by aggregating the
individual factors:

Similarity(A, B) = DC(A, B) - IC(A,B) - LA(A, B)

Also, in future work new grouping criteria could be added,dgample introduc-
ing another factor derived from the symbolic textual infation extracted from the
identifier names.

The Direct Coupling Factor (DC). The main factor is the direct coupling factor which
guantifies the statical dependencies between units. AnAudigpends on a unit B if
there are explicit references in A to elements of B.

In previous work [18] we empirically defined 11 different éegency types, char-
acterized by a dependency type weighi.,ryp. The values of the weights have been
empirically finetuned in order to reflect the relative importe of different dependen-
cies types for the strength of the coupling.

The value of the direct coupling factor between A and B is gilg the sum of all
dependency types that exist between them:

DC(A,B) = Z WDepType * COUNL DepType (A, B)
DepType

For certain dependency types such as function calls orblariccesses, the spe-
cific weightw peprype is adjusted with a countebunt pe,rype (4, B) representing the
relative number of the accesses from A to B, reported to tted tumber of possible
accesses.
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The Indirect Coupling Factor (IC). We start from the observation that if two units A
and B have neighbors (units they interact with) which algerict with each other, this
corresponds to a form of indirect coupling. In this case,tihe units A and B have a
higher probability to be part of the same subsystem (cluster

First we calculate the ESM (Edge Strength Metric, definedi) yalue for each
edge of the given dependency graph.

To determine the importance of ESM value, a confidence l@vel [0; 1] is intro-
duced when computing the indirect coupling factor IC:

IC(A,B) = ESM(A, B) - (1 — cl)

Thus the higher the pre-given confidence level, the higleesintipact of the IC factor
and the higher the importance given to cycles, with 0 meaitingll have no impact
in the algorithm used and 1 meaning it will have maximum intgand as some of the
edges will have an ESM value of 0, it will practically cut soonfedhe edges before the
algorithm).

The Architectural Layer Distance Factor (LA). One of the advantages of top-down
reconstruction approaches is that they start with somergeassumptions about the
global architecture. In a bottom-up unsupervised appreeehnay not have such a-
priori global architectural knowledge. We propose a newraggh of includingex-
tracted architectural information in the grouping criteria.

One kind of architectural information which may be extracite a bottom-up ap-
proach is layering information. Units belonging to a layeayndepend only on units
belonging to lower layers. Layers are determined by appglgipartitioning algorithm
like [16] on the directed graph of dependencies. In futurplémentations, an algo-
rithm such as [11] may improve the determination of layeso ah the presence of
cyclic dependencies.

We make the observation that two units which are situatealierk of very different
levels are highly unlikely to be part of the same architeataubsystem, even if there
is a strong dependency between them. On the other hand, fitecthet are situated on
the same or on close layers have a higher chance to be pae ghthe architectural
subsystem. This observation is reflected in the architatkayer distance factor.

We defined as the absolute value of the difference between the layeksanid B,
divided to the total number of layers in order to normalize talue:

5(A.B) - |Layer(A) — Layer(B)]

Total Layers

The similarity metric is proportional with the architecalifayer distance factor LA,
defined as:
LA(A, B) = Ladjustement(§(A, B))

The layer distance adjustement is a decreasing function

Ladjustement : [0,1] — [0, 1]
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We experimented with layer distance adjustement functitatseasing at different
rates, such as linear or exponential.

When applying any of the adjustement functions, units thahautually dependent
and are situated on the same layer have 0, and the value of the linear or expo-
nential adjustement function is 1, thus the similarity igegi only by the dependency
strength. For any other case, the bigger the distance isntladler will be the value of
the adjustement function, reducing accordingly the depeaglstrength.

3.3 Evaluation Approach

In our case, a clustering method is defined by the combinatiogrouping factors,
clustering algorithm, pre- and postprocessings. Theiagistpproaches of evaluating
clustering methods can be divided into two categories: @ggres which rely on a
authoritative decomposition and approaches which do mypbresuch. Evaluation cri-
teria which do not rely on reference decompositions, sudha$1Q metric [12], are
not suitable for our purpose because they already quardifipling and cohesion as
main grouping criteria. Since our work investigates theanmtance of different group-
ing criteria, the only way to evaluate the results of a clistemethod is to measure
how close they are to the decomposition indicated by a humpere

A clustering method is evaluated by comparing the resubioiiuces for a set of test
systems with the corresponding authoritative decompustof these systems. It may
be arguable that different experts may indicate differexttaginpositions, at different
granularity levels, but this can be handled if the referede@mpositions are specified
hierarchical.

Different strategies for comparing the similarity degréeveo decompositions of
the same system have been proposed [21]. In this work we loefaz ssed the MoJo
metric, but other metrics(such as Precision/Recall, Edge&c) could be also used in
the Comparator. The MoJo metrics counts the minimum number of operatiore/és
and joins) one needs to performin order to transform onemeositionC into another
decompositiorCs,. The direct MoJo metric is actually a dissimilarity meassiace a
big value of the metric indicates that the decompositiomesrat similar. In order to
have a similarity measure, we use another quality measurebased on MoJo, the
MoJo similarity measurement which is defined as:

_ MOJO(Cl, CQ)

similarityMoJo(Cy, Ce) = |1 N

] x 100%

This metric describes the normalized similarity degreenaf tlusterings(; and
C», of a system withV units. Since the MoJo metric is not symmetric, for a [gairC-
the metric is applied in both directions and the maximum eaduaken.
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4 Results

4.1 Tuning of Algorithms

First, all implemented algorithms required a tuning precesorder to establish the
ranges of optimal values for their specific parameters.

Each algorithm has its very own set of specific parameters: MIBT algorithm
has as parameter®reshold value that is used by the algorithm as a decision factor
when edge removal is considered; The MMST algorithm has espeter aCloseness
factor value that represents the threshold used by the algorithendecision factor
when uniting two clusters is considered. The Metric Basgdréthm has as parameter
aThreshold value that is used as a decision factor when consideringviegan edge
together with the ESM metric value. The Hill Climbing algbrn has as parameters the
climbDegree which specifies how many of the possible variations shoulddmsidered
at each step and tlgenerationMethod. The Hierarchical algorithms have as parameters
agranularity factor which determines the point of cutting off the final clusters.

In order to determine the optimal parameter values, we e as follows: We
choose a set of test systems to be clustered and we deterth@iedeference decom-
positions, either by detailed code inspection or by redqugshe opinion of their de-
velopers. For each algorithm, several runs have been maldelifferent values for the
specific parameters, for all test system. We noticed thgpdinemeter values for which
the obtained decomposition is closest to the referencanrfth@mum of the MoJo sim-
ilarity) may vary from one system to another, thus some @exalues have been de-
termined as the recommended values for the parameterstobégarithm. Discussing
the exact parameter values obtained by tuning for eachitiigois not relevant for the
main goal this paper; for example, an analysis of parametiereg for the MST and
MMST algorithms has been included in our previous work [18].

Also, tuning has shown that general pre- and postprocessingh as elimination of
omnipresent modules (library classes) and orphan adop#eaa clear positive impact
and have been included by default in all further experiments

4.2 Evaluation of the Impact of different Grouping Criteria

After the step of tuning each algorithm, we carried out eipents in order to compare
the results when composing the grouping criteria from diffiiefactors : Direct coupling
only (DC) which represents the baseline of other compasis@irect coupling and
Layer architecture (DC + LA), Direct coupling and Indirecupling (DC + IC), Direct
coupling, Indirect coupling and Layer architecture (DC +1CA).

We carried out these experiments looking for the impact ofgudifferent grouping
criteria on the quality of the automatic decomposition, sugad by its closeness to the
authoritative decomposition.

Table 1 contains the results obtained when applying therdifft clustering algo-
rithms, with different grouping criteria, for the clustegi of a test system. The test
system analyzed in Table 1 is the ARTs toolsuite implemenrtah medium-sized sys-
tem of 360 classes, and its architecture is well known to ¥peementers. The table
presents the maximum values of the MoJo similarity metritamed for any specific
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parameter settings for each algorithm. Colunahis A2 and A3 compute the differ-
ences in MoJo similarity, obtained when using differentiaddal factors vs. the base-
line factor.

Table 1. Experimental results - influence of different grouping faiston the clustering results.

Factors |DC|DC+LA| Al |DC+IC| A2 |[DC+IC+LA| A3
o [ |[-o1 21 |2-0] B8] |[BIO]
Algorithms
MST 64.22 758 | 11.6| 55.6 | -8.6 71.1 6.9
MMST |57.5 65.6 | 8.1 | 50.7 | -6.8 60.3 2.8
Metric 70.8 74.6 3.8 76.2 54 72.2 1.4
HillClimb |47.8 61.2 | 13.4| 49.1 1.3 59.1 11.3
SL 71.3 827 | 11.4| 715 | 0.2 81.2 9.9
WA 66.9 76.5 9.6 64.3 | -2.6 73.8 6.9

average
improvements 9.65 -1.85 6.53

As the table shows, including an Architectural Layer fadtoall clustering algo-
rithms always produces decompositions that are closeetefierence solution. Includ-
ing an Indirect Coupling factor, however, does not have argh®sitive impact on the
quality of the resulting decomposition. Including both Aitectural Layer and Indirect
Coupling factors is not better than using only the Architeat Layer factor.

We have used several other test systems, some open sousarsafuch as junit,
xercesIimpl, jEdit, Ant and some developed as our univesitjects. We determined
their reference decompositions either by performing tedaanalysis of their code or
by asking their developers. The sizes of the test system®ogo¥10 classes up to 1400
classes. By experimenting also with these systems, wermuataiverage improvement
values forA1, A2, A3 in ranges similar to these presented in Table 1.

We conclude that the architectural layer factor always maps the quality of the
clustering result, and the exponential adjustement fanatiorks better than the linear
one. From a quantitative point of view, the improvementshaggest for systems with
many classes that that have many dependencies spanniraybiglistances.

From our experiments we concluded that the Indirect Cogpgéotor does not bring
real improvements. It also has a negative effect on manyscadnough it may seem
surprising, we can explain this finding by the following faahe Indirect Coupling as
defined by the Edge Strength Metric hampers the groupingharitance hierarchies;
also, in the case of smaller systems, the Indirect Coupliafgsimtends to agglomerate
everything in a few very big clusters. The granularity of #edected reference model
also affects the results, positive results were obtainddmge and/or complex systems
or when using a more coarse grained reference model.

Also, the experiments pointed out another aspect which ishato be investigated
in future work - how the different factors of the similarityetnic may have an influence



53

on the stability of the clustering algorithms, by increaggdiine range of parameter values
that lead to optimal results and thus simplifying the turofithe algorithms.

5 Conclusions

Taking into account global architectural information is@stial for improving the re-

sults of coupling/cohesion guided software architectemnstruction. In the case of
unsupervised automatic software clustering, we proposesatce such global architec-
tural information available in form of the Architecturalyer distance factor, which can
be computed at the reconstruction time in-a bottom-up maamemused as part of the
grouping criteria. Our experiments show that this way oirtgknto account the global

topology of the whole dependency graph in form of the Arattiteal Layer distance

factor is more effective than taking into account only lotglologies of the depen-
dency graph in form of the Indirect Coupling factor. This clusion applies to all the

investigated clustering algorithms, thus it demonstrétasthe improvement is due to
the grouping criteria.
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