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Abstract. Clustering is very often used for the purpose of automatic software
architecture reconstruction. This work investigates the importance of taking into
account different factors for the similarity metric, besides the traditional factor
based on direct coupling/cohesion: indirect coupling as computed from the topol-
ogy of the dependency graph, and global architectural layering resulting from the
orientation of dependencies. We experiment with using these factors, individu-
ally or combined, for defining the similarity metrics within a set of clustering
algorithms.

1 Introduction

Software architecture is a model of the software system expressed at a high level of
abstraction, concentrating on the interaction of “black box” elements. Knowing and
having an explicit representation of the system architecture is essential for understand-
ing, evaluating and maintaining a large software application. Often, the documentation
is incomplete, outdated or is completely missing, only the code being available. Recon-
structing the architectural model from the available code remains the saving alternative
in these cases.

The reverse engineering community developed many techniques to help reconstruct
the architecture of software systems, as they are surveyed and classified in [8]. Auto-
matic reconstruction techniques aim at finding the logical cluster structure of software
systems, with as few user intervention as possible and with minimal prior knowledge.
Software clustering refers to the decomposition of a software system into meaningful
subsystems. To be meaningful, the automatic approach must produce clusterings that
can help developers to understand the system, grouping together parts that relate to
each other from a logical design point of view.

Our goal is to improve automatic reconstruction techniques, in order to obtain a
reconstructed architectural model of a better quality - one which is evaluated to be
better by a human expert.

This article is organized as follows: Section 2 resumes the state of the art and builds
the motivation for our approach. Section 3 states the goals of this work and introduces
our reconstruction approach. Experimental results regarding the influence of different
similarity factors on the quality of the reconstructed model are described in Section 4.
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2 Background

Reconstructing the architecture of a software system can take one of the following ap-
proaches:

– The top-down approach, when certain assumptions of the overall system organiza-
tion are known and they are validated by examining the existing artifacts with help
of interactive tools in a human-controlled reconstructionprocess.

– The bottom-up approach, when (quasi)-automatic unsupervised tools build hypothe-
ses starting from the examination of the existing artifacts.

In the category of top-down, human-controlled or interactive approaches there are
notable tools such as: Rigi by H. Muller et al [14]; the Reflexion Model technique of
Murphy, Notkin, and Sullivan [15]; the Reflexion model combined with clustering [7];
ACDC - the pattern driven approach of Tzerpos and Holt [20].

In the category of bottom-up, automatic or quasi-automaticapproaches for architec-
tural reconstruction, techniques have been imported from the domain of data mining.
Clustering algorithms have been largely used in data miningto identify groups of ob-
jects whose members are similar in some way. Clustering algorithms group together
entities into groups, by maximizing the sum of relationships between entities grouped
together and minimizing the sum of relationships between different groups. In reverse
software engineering, clustering is used for architectural reconstruction, by grouping
together in subsystems modules (classes, functions, etc) that relate to each other.

There are several research approaches in this domain, whichdiffer by:

– the graph clustering algorithm which is used [22]
– the software-engineering defined criteria used for grouping modules together (the

similarity metric)

The basic assumption driving this software clustering approach is that software sys-
tems are organized into subsystems characterized by internal cohesion and loosely cou-
pling with each other. A reference tool of this category is Bunch, developed by Mitchell
and Mancoridis [12], using a search based algorithm (hill climbing) and a modulariza-
tion quality metric MQ defined as a formula on coupling and cohesion.

As observed by many researchers, clustering software basedon a metric for simi-
larity and dissimilarity derived only from coupling and cohesion does not provide sat-
isfactory results [9]. Various researches have tried to do software clustering by taking
into account other categories of informations as similarity metrics: A form of indirect
coupling is taken into account by Chiricota [6]. The LIMBO approach of Andritsos and
Tzerpos [1] considers even non-software informations, such as historical data (time of
last modification, author) held by version control system repositories, the physical or-
ganization of applications in terms of files and folders. Anquetil and Letherbridge [3]
use for clustering the symbolic textual information available in the identifier used as
names. Recent researches ([2], [5], [13], [10]) agree that unsupervised clustering ap-
proaches based only on a coupling/cohesion criteria tend toproduce results that are not
acceptable for the domain experts and propose different measures for improvements.
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3 Our Work

3.1 Goal and Approach

Our goal is to investigate ways of improving the quality of bottom-up, automatic, un-
supervised reconstruction. We have built the ArchitectureReconstruction Tool Suite
(ARTs) as an extensible tool chain for experimenting with different methods for clus-
tering. In the architectural reconstruction community there have been developed a lot
of different approaches and methods but they are used and studied in isolation. Our
goal is to integrate into an architectural reconstruction toolsuite the different partial so-
lutions, in order to compare their relative efficiency and also study the ways how they
can be combined. Also, we propose a new approach of includingextracted architectural
information in the grouping criteria.

The architecture of ARTs is depicted in Figure 1.
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Fig. 1. The Architectural Reconstruction Toolsuite (ARTs).

The input for ARTs is a primary structural and dependency model extracted from
code by static analysis and represented according to the UNIQ-ART meta-model [17].
The primary models represent relationships between theUnits(classes or modules) and
their parts, and may describe systems implemented in objectoriented (Java, C#) or
procedural (C) languages.

Each tool of this chain accepts different plug-ins in order to customize it.
The central tool is theClusterFinder, which operates on a weighted graph repre-

senting an abstraction of the system in order to produce its decomposition into clusters.
It may be implemented by different clustering algorithms. Currently we have imple-
mented both flat decomposition algorithms as well as hierarchical decomposition algo-
rithms. The algorithms are:

– Minimum Spanning Tree based algorithms (MST [23] and MMST [4])
– Metric Based ([6]);
– Search based (hill-climbing)
– Hierarchical clustering: Single Linkage, Complete Linkage, Weighted Average,

Unweighted Average
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The DSMBuilder selects information from the primary model and creates the ab-
stract weighted graph. Different grouping criteria can be used (in isolation or composed)
as factors leading to the weights values, as detailed in subsection 3.2.

In order to improve the clustering process, some preprocessings and postprocess-
ings can be performed, optionally, independent of the chosen clustering algorithm. We
implemented elimination of omnipresent modules [14] and orphan adoption [19].

A clustering method, defined by the combination of grouping factors, clustering
algorithm, pre- and postprocessings, is evaluated by comparing its result with a given
authoritative decomposition. The evaluation methods (theComparer) are detailed in
subsection 3.3.

3.2 Grouping Criteria

Following three criteria can be used (in isolation or composed) to build the similarity
metrics:

– the strength of the direct dependencies coupling (DC)
– indirect coupling (IC)
– global architectural information regarding the architectural layer (LA)

The direct coupling factor, which is the baseline grouping criteria, can be adjusted
by applying factors derived from the indirect coupling or global architectural informa-
tion. The similarity metric value between two units A and B isgiven by aggregating the
individual factors:

Similarity(A,B) = DC(A,B) · IC(A,B) · LA(A,B)

Also, in future work new grouping criteria could be added, for example introduc-
ing another factor derived from the symbolic textual information extracted from the
identifier names.

The Direct Coupling Factor (DC). The main factor is the direct coupling factor which
quantifies the statical dependencies between units. An unitA depends on a unit B if
there are explicit references in A to elements of B.

In previous work [18] we empirically defined 11 different dependency types, char-
acterized by a dependency type weightwDepType. The values of the weights have been
empirically finetuned in order to reflect the relative importance of different dependen-
cies types for the strength of the coupling.

The value of the direct coupling factor between A and B is given by the sum of all
dependency types that exist between them:

DC(A,B) =
∑

DepType

wDepType · countDepType(A,B)

For certain dependency types such as function calls or variable accesses, the spe-
cific weightwDepType is adjusted with a countercountDepType(A,B) representing the
relative number of the accesses from A to B, reported to the total number of possible
accesses.

48



The Indirect Coupling Factor (IC). We start from the observation that if two units A
and B have neighbors (units they interact with) which also interact with each other, this
corresponds to a form of indirect coupling. In this case, thetwo units A and B have a
higher probability to be part of the same subsystem (cluster).

First we calculate the ESM (Edge Strength Metric, defined in [6]) value for each
edge of the given dependency graph.

To determine the importance of ESM value, a confidence levelcl ∈ [0; 1] is intro-
duced when computing the indirect coupling factor IC:

IC(A,B) = ESM(A,B) · (1− cl)

Thus the higher the pre-given confidence level, the higher the impact of the IC factor
and the higher the importance given to cycles, with 0 meaningit will have no impact
in the algorithm used and 1 meaning it will have maximum impact (and as some of the
edges will have an ESM value of 0, it will practically cut someof the edges before the
algorithm).

The Architectural Layer Distance Factor (LA). One of the advantages of top-down
reconstruction approaches is that they start with some general assumptions about the
global architecture. In a bottom-up unsupervised approachwe may not have such a-
priori global architectural knowledge. We propose a new approach of includingex-
tracted architectural information in the grouping criteria.

One kind of architectural information which may be extracted in a bottom-up ap-
proach is layering information. Units belonging to a layer may depend only on units
belonging to lower layers. Layers are determined by applying a partitioning algorithm
like [16] on the directed graph of dependencies. In future implementations, an algo-
rithm such as [11] may improve the determination of layers also in the presence of
cyclic dependencies.

We make the observation that two units which are situated in layers of very different
levels are highly unlikely to be part of the same architectural subsystem, even if there
is a strong dependency between them. On the other hand, two units that are situated on
the same or on close layers have a higher chance to be part of the same architectural
subsystem. This observation is reflected in the architectural layer distance factor.

We defineδ as the absolute value of the difference between the layers ofA and B,
divided to the total number of layers in order to normalize the value:

δ(A,B) =
|Layer(A)− Layer(B)|

TotalLayers

The similarity metric is proportional with the architectural layer distance factor LA,
defined as:

LA(A,B) = Ladjustement(δ(A,B))

The layer distance adjustement is a decreasing function

Ladjustement : [0, 1] → [0, 1]
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We experimented with layer distance adjustement functionsdecreasing at different
rates, such as linear or exponential.

When applying any of the adjustement functions, units that are mutually dependent
and are situated on the same layer haveδ = 0, and the value of the linear or expo-
nential adjustement function is 1, thus the similarity is given only by the dependency
strength. For any other case, the bigger the distance is, thesmaller will be the value of
the adjustement function, reducing accordingly the dependency strength.

3.3 Evaluation Approach

In our case, a clustering method is defined by the combinationof: grouping factors,
clustering algorithm, pre- and postprocessings. The existing approaches of evaluating
clustering methods can be divided into two categories: approaches which rely on a
authoritative decomposition and approaches which do not rely on such. Evaluation cri-
teria which do not rely on reference decompositions, such asthe MQ metric [12], are
not suitable for our purpose because they already quantify coupling and cohesion as
main grouping criteria. Since our work investigates the importance of different group-
ing criteria, the only way to evaluate the results of a clustering method is to measure
how close they are to the decomposition indicated by a human expert.

A clustering method is evaluated by comparing the results itproduces for a set of test
systems with the corresponding authoritative decompositions of these systems. It may
be arguable that different experts may indicate different decompositions, at different
granularity levels, but this can be handled if the referencedecompositions are specified
hierarchical.

Different strategies for comparing the similarity degree of two decompositions of
the same system have been proposed [21]. In this work we have so far used the MoJo
metric, but other metrics(such as Precision/Recall, EdgeSim, etc) could be also used in
theComparator. The MoJo metrics counts the minimum number of operations (moves
and joins) one needs to perform in order to transform one decompositionC1 into another
decompositionC2. The direct MoJo metric is actually a dissimilarity measure, since a
big value of the metric indicates that the decompositions are not similar. In order to
have a similarity measure, we use another quality measurement based on MoJo, the
MoJo similarity measurement which is defined as:

similarityMoJo(C1, C2) = [1−
MoJo(C1, C2)

N
]× 100%

This metric describes the normalized similarity degree of two clusterings,C1 and
C2, of a system withN units. Since the MoJo metric is not symmetric, for a pairC1,C2

the metric is applied in both directions and the maximum value is taken.
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4 Results

4.1 Tuning of Algorithms

First, all implemented algorithms required a tuning process in order to establish the
ranges of optimal values for their specific parameters.

Each algorithm has its very own set of specific parameters: The MST algorithm
has as parameter aThreshold value that is used by the algorithm as a decision factor
when edge removal is considered; The MMST algorithm has as parameter aCloseness
factor value that represents the threshold used by the algorithm asa decision factor
when uniting two clusters is considered. The Metric Based algorithm has as parameter
a Threshold value that is used as a decision factor when considering removing an edge
together with the ESM metric value. The Hill Climbing algorithm has as parameters the
climbDegree which specifies how many of the possible variations should beconsidered
at each step and thegenerationMethod. The Hierarchical algorithms have as parameters
agranularity factor which determines the point of cutting off the final clusters.

In order to determine the optimal parameter values, we proceeded as follows: We
choose a set of test systems to be clustered and we determinedtheir reference decom-
positions, either by detailed code inspection or by requesting the opinion of their de-
velopers. For each algorithm, several runs have been made with different values for the
specific parameters, for all test system. We noticed that theparameter values for which
the obtained decomposition is closest to the reference (themaximum of the MoJo sim-
ilarity) may vary from one system to another, thus some average values have been de-
termined as the recommended values for the parameters of each algorithm. Discussing
the exact parameter values obtained by tuning for each algorithm is not relevant for the
main goal this paper; for example, an analysis of parameter values for the MST and
MMST algorithms has been included in our previous work [18].

Also, tuning has shown that general pre- and postprocessings such as elimination of
omnipresent modules (library classes) and orphan adoptionhave a clear positive impact
and have been included by default in all further experiments.

4.2 Evaluation of the Impact of different Grouping Criteria

After the step of tuning each algorithm, we carried out experiments in order to compare
the results when composing the grouping criteria from different factors : Direct coupling
only (DC) which represents the baseline of other comparisons, Direct coupling and
Layer architecture (DC + LA), Direct coupling and Indirect coupling (DC + IC), Direct
coupling, Indirect coupling and Layer architecture (DC + IC+ LA).

We carried out these experiments looking for the impact of using different grouping
criteria on the quality of the automatic decomposition, measured by its closeness to the
authoritative decomposition.

Table 1 contains the results obtained when applying the different clustering algo-
rithms, with different grouping criteria, for the clustering of a test system. The test
system analyzed in Table 1 is the ARTs toolsuite implementation, a medium-sized sys-
tem of 360 classes, and its architecture is well known to the experimenters. The table
presents the maximum values of the MoJo similarity metric, obtained for any specific
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parameter settings for each algorithm. Columns∆1, ∆2 and∆3 compute the differ-
ences in MoJo similarity, obtained when using different additional factors vs. the base-
line factor.

Table 1.Experimental results - influence of different grouping factors on the clustering results.

Factors DC DC + LA ∆1 DC + IC ∆2 DC+IC+LA ∆3

[0] [1] [1]-[0] [2] [2]-[0] [3] [3]-[0]

Algorithms

MST 64.2 75.8 11.6 55.6 -8.6 71.1 6.9

MMST 57.5 65.6 8.1 50.7 -6.8 60.3 2.8

Metric 70.8 74.6 3.8 76.2 5.4 72.2 1.4

HillClimb 47.8 61.2 13.4 49.1 1.3 59.1 11.3

SL 71.3 82.7 11.4 71.5 0.2 81.2 9.9

WA 66.9 76.5 9.6 64.3 -2.6 73.8 6.9

average

improvements 9.65 -1.85 6.53

As the table shows, including an Architectural Layer factorin all clustering algo-
rithms always produces decompositions that are closer to the reference solution. Includ-
ing an Indirect Coupling factor, however, does not have a clear positive impact on the
quality of the resulting decomposition. Including both Architectural Layer and Indirect
Coupling factors is not better than using only the Architectural Layer factor.

We have used several other test systems, some open source software such as junit,
xercesImpl, jEdit, Ant and some developed as our universityprojects. We determined
their reference decompositions either by performing detailed analysis of their code or
by asking their developers. The sizes of the test systems go from 110 classes up to 1400
classes. By experimenting also with these systems, we obtained average improvement
values for∆1, ∆2, ∆3 in ranges similar to these presented in Table 1.

We conclude that the architectural layer factor always improves the quality of the
clustering result, and the exponential adjustement function works better than the linear
one. From a quantitative point of view, the improvements arebiggest for systems with
many classes that that have many dependencies spanning big layer distances.

From our experiments we concluded that the Indirect Coupling factor does not bring
real improvements. It also has a negative effect on many cases. Although it may seem
surprising, we can explain this finding by the following facts: the Indirect Coupling as
defined by the Edge Strength Metric hampers the grouping of inheritance hierarchies;
also, in the case of smaller systems, the Indirect Coupling metric tends to agglomerate
everything in a few very big clusters. The granularity of theselected reference model
also affects the results, positive results were obtained onlarge and/or complex systems
or when using a more coarse grained reference model.

Also, the experiments pointed out another aspect which is worth to be investigated
in future work - how the different factors of the similarity metric may have an influence
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on the stability of the clustering algorithms, by increasing the range of parameter values
that lead to optimal results and thus simplifying the tuningof the algorithms.

5 Conclusions

Taking into account global architectural information is essential for improving the re-
sults of coupling/cohesion guided software architecture reconstruction. In the case of
unsupervised automatic software clustering, we propose tomake such global architec-
tural information available in form of the Architectural Layer distance factor, which can
be computed at the reconstruction time in a bottom-up mannerand used as part of the
grouping criteria. Our experiments show that this way of taking into account the global
topology of the whole dependency graph in form of the Architectural Layer distance
factor is more effective than taking into account only localtopologies of the depen-
dency graph in form of the Indirect Coupling factor. This conclusion applies to all the
investigated clustering algorithms, thus it demonstratesthat the improvement is due to
the grouping criteria.
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