
Model-based Analysis of Embedded Systems: 
Placing It upon Its Feet Instead of on Its Head 

An Outsider’s View 

Peter Struss 
Comp. Sci. Dept., Tech. Univ. of Munich, Boltzmannstr. 3, 85748 Garching, Germany 

Keywords: Embedded Software, Cyber-physical Systems, Software Modeling, Failure-modes-and-effects Analysis, 
Functional Safety. 

Abstract: This position paper makes a case for a paradigm shift in modeling and analyzing systems with embedded 
software for tasks such as testing, fault and safety analysis. We propose a physics-centered rather than 
software-centered perspective, based on the argument that the behavior and misbehavior of the physical 
system determines the relevant aspects of the embedded software. The implications of such an approach are 
illustrated using a case study on failure-modes and effects analysis in the automotive industries. 

1 INTRODUCTION 

Nobody will doubt that embedded software is a 
special class of software. It is characterized as being 
a software component (or several ones) that is 
integrated in a physical device or plant and 
interacting with the physical components of this 
overall system. In cyber-physical systems (CPS), 
several systems with embedded software interact 
physically and/or through communication, which 
often results in a dynamic structure and context.  

We argue that many tasks in model-based 
development and analysis of systems with embedded 
software, such as design verification, failure-modes-
and-effects analysis (FMEA), diagnosis, test 
generation and testing, cannot be performed 
effectively and successfully, unless its specificity, 
namely being embedded in the physical system, 
dictates the style and content of the model and the 
analysis, rather than understanding systems 
engineering of CPS just as extending software 
engineering to physical systems. “Our modeling and 
approach does not distinguish between software and 
physical components” is not an advantage, but 
indicates a major lack.  

Our claim is not only that modeling of physical 
systems cannot be done in the style of modeling 
software. More than this: the behavior and 
modeling of the physical system determines the 
way of modeling the software and helps to 

simplify and focus it.  
In this paper, we motivate our position by 

general considerations about CPS and illustrate the 
resulting approach, which places the analysis upon 
the feet (the physics) instead of on its head (the 
software) using a case study in the automotive 
industries on failure-modes-an-effects analysis and 
functional safety analysis.  

2 CYBER-PHYSICAL SYSTEMS 

A CPS comprises a number of subsystems, which 
are systems composed of physical (mechanical, 
electrical, hydraulic, …) components and software 
components, whose interaction happens exclusively 
through a usually relatively small set of sensor 
signals as an input to and actuator signals as an 
output of the software component(s) (see Fig. 1). 
Different subsystems interact both via connections 
between their physical components and via 
communication between their software components. 
For instance, in a vehicle, the components of the 
drive train with their individual ECUs are examples 
for such subsystems. At a higher level, the drive 
train itself can be considered as a subsystem. The 
top-level system is the entire vehicle. 

The key issue here is that only the behavior of 
the physical system matters. For instance, from the 
perspective of safety analysis, it is important to note  

284 Struss P..
Model-based Analysis of Embedded Systems: Placing It upon Its Feet Instead of on Its Head - An Outsider’s View.
DOI: 10.5220/0004596102840291
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 284-291
ISBN: 978-989-8565-68-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



 

SW_x 

Physical System_x 

SW_y 

Physical System_y 

Environment 

Data 
Information 

Physical 
Interaction 

Physical 
Interaction 

Physical 
Interaction 

? 

 

Figure 1: Cyber-physical Systems. 

that it is solely the physical system, i.e. the vehicle 
(or its physical parts) that interacts with the 
environment. The embedded software never 
directly interferes with the environment. As a 
consequence, hazards, misbehaviors that bear the 
potential of damage in the environment, are defined 
exclusively at the intersection of the physical 
system and the (physical) environment. Whatever 
crazy operations may be carried out by the software 
– they are never a hazard per se. They may only 
cause one via the response of the physical system to 
the actuator signals. So far, no computer program 
has ever hit a pedestrian.  

As an important consequence, buggy software 
behavior matters if and only if it may cause the 
physical system to create a hazard. Therefore, our 
approach moves the (model of the) physical system 
into the center and models software – and 
especially software faults – solely with regard to the 
physical model. As a consequence, the relevant 
misbehavior of the physical system helps to simplify 
and focus the modeling and analysis of the 
embedded software: 
 While the inputs to the software (combinations of 

sensor values) form an infinite space from the 
frog’s perspective of the software, the surrounding 
physical system and its context reduce this to the 
physically possible subspace (one has to note, 
however, that this does not only include the 
nominal, but also faulty behavior). 

 Furthermore, what is considered a relevant 
misbehavior or hazard of the entire system 
determines a focus and weight on the analysis of 
the software components. 

We illustrate the principle of the primacy of the 
physical model using a recently performed case 
study, which included Failure-modes-and-effects 
(FMEA) and safety analysis of the drive train of a 
truck. The drive train comprises, besides 
mechanical, hydraulic, and electrical components, a 
number of Electronic Control Units (ECU) and, thus, 
is certainly an instance   of  the  class  of systems we  

 

Figure 2: Drive Train Model. 

are considering in this paper. The  goal  of  our work 
was the complete automation of the analysis based 
on a model of the system and its environment. This 
goal was accomplished as described in (Dobi et al., 
2013). 

We briefly sketch the system and the task in the 
following section, present the theoretical 
foundations of our solution (section 4) and of 
automated FMEA (section 5), and illustrate in 
section 6 the central thesis of this paper: the 
dominance of the behavior and model of the 
physical system over the software behavior and 
model. Section 7 extends this to the aspect of 
generating (safety) requirements on the embedded 
software. 

3 A CASE STUDY: SAFETY 
ANALYSIS OF A DRIVE TRAIN 

Our industrial partner, ITK Engineering AG, 
selected a drive train of a truck as the subject of a 
case study. Its structure is sketched in Fig. 2. The 
main part (in dark gray) comprises the engine, which 
produces torque for acceleration, but also for 
braking, the clutch, which may interrupt the 
propagation of torque, the transmission allowing to 
switch between forward and reverse torque (and 
idling), the retarder, a braking device that, when 
applied, counteracts the rotational motion through a 
propeller moving in oil, and the axle with the wheel, 
which transforms rotational acceleration into 
translational acceleration (and vice versa), and the 
wheel brakes. Components are controlled by 
specialized ECUs, which communicate with a 
central ECU that processes, for instance, the driver 
demands. The light-gray components are related to 
electrical aspects and are not discussed in this paper. 

The industrial partner also supplied us with 
documents on exemplary problems and manually 
generated safety analysis tables. The core of an entry 
in such a table links a component fault (e.g. 

Model-based�Analysis�of�Embedded�Systems:�Placing�It�upon�Its�Feet�Instead�of�on�Its�Head�-�An�Outsider's�View

285



“erroneous CLOSE command to the clutch”), a 
special driving situation (“engine running, vehicle 
standing”), and a type of scenario (“vehicle in front 
of pedestrian crossing”) with a hazard (“unintended 
forward acceleration”) and its impact on the 
environment (“injury of persons”). Relevant impacts 
are typically hit-ting objects or persons, where, 
obviously, the severity is influenced by the type of 
object. 

4 MODELING FOUNDATIONS  

4.1 Physical vs. Software Modeling 

At a very high level, the model of a cyber-physical 
system may not explicitly distinguish whether its 
subsystems of components are software modules or 
physical components, and they may be represented 
in a uniform way, e.g. as black boxes with some 
mapping from inputs to outputs or as transition 
systems. Often, these models try to capture the 
(intended) function of a system, rather than its entire 
possible behavior.  For instance, in early phases of 
design, it may not yet have been decided whether a 
certain subsystem will be realized by software, a 
physical system, or a combination of both.  

However, when the behavior has to be analyzed 
in detail, the different nature of software and 
physical components will often require models that 
appropriately capture the physical phenomena that 
determine system behavior. This is even mandatory 
when the consideration of faulty behavior is 
involved, as e.g. in diagnosis, testing, or safety 
analysis: While the space of bugs in the software 
components is created by erroneous (manual or 
automated) transformations on the path from 
requirements to code (and also inappropriate 
requirements), faults of physical components are 
exclusively subject to the physical defects, which 
often makes it possible to enumerate and model the 
relevant fault classes. Moreover, most physical 
components, e.g. in electrical, mechanical, 
hydraulic, and pneumatic circuits cannot be 
modeled by input-output behavior. Even if they 
have an intended preferred direction under nominal 
system behavior, this may be totally perturbed under 
the presence of a fault. Therefore, our approach 
presented is based on relational models of the 
physical components, which also induces a small set 
of generic high-level (fault) models of the software 
components.  

The characteristics of the models used in our 
solution are the following: 

 Compositional modeling: models of systems are 
obtained through aggregation of models of its 
parts, possibly across several layers of hierarchy. 

 Component-oriented modeling: the parts are 
components, i.e. the building blocks that are 
assembled to form the system and determine its 
behavior (both physical and software components). 
This is due to two reasons. Firstly, component 
models can be reused in different system models 
just as the components are reused in different 
systems. Secondly, components are the entities 
that are subject to faults, whose impact needs to be 
determined in safety analysis. 

 Qualitative behavior models reflect the qualitative 
and worst-case nature of the analysis. 

 Relational models (as opposed to transition 
systems) are chosen to represent these qualitative 
behavior descriptions, according to the 
considerations above and justified by the 
observation that hazards are commonly the result 
of a fault in one state of the physical system (rather 
than occurring after a sequence of state 
transitions). 

 Deviation models are used, since faults, hazards, 
and impact are characterized as (qualitatively) 
distinct from nominal behavior. 

In the following, we specify these characteristics 
more formally, though in a nutshell (For 
introductory material, see e.g. (Struss, 1997), 
(Struss, 2008). 

4.2 Component-Oriented Modeling 

A component type (used to create different 
instances) is represented under a structural and a 
behavioral perspective: 
 It has a number of typed terminals, which can be 

shared with other components.  
Thus, a system structure is described by as 
(COMPS, CONNECTIONS), where COMPS is a set 
of (typed) components and CONNECTIONS is a set 
of pairs of terminals of equal type belonging to 
different components. 

 A component Ci has a vector vi = (vik) of variables, 
comprising parameters and state variables, 
which are considered as internal and constant and 
changing dynamically, resp., and terminal 
variables. The latter are obtained from the 
instances of the terminal types, which have a set of 
associated variable types. 

The CONNECTIONS of a system structure induce a 
set VARIABLECONNECTIONS of pairs of 
corresponding terminal variables from connected 

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

286



components. Each variable connection introduces a 
mapping between the values of the connected 
variables: this is usually equality (for signals, 
voltage etc.), while for directed variables, such as 
torque and current, the sign is flipped.  
 A component Ci has a set of behavior modes 

{modei(Cj)}, where one mode, OK, corresponds to 
the nominal behavior of the component and the 
other ones denote different defects of the 
component.  

4.3 Qualitative Modeling 

Qualitative models describe component behavior in 
terms of variable domains DOM (vik) that are finite. 
Besides domains that are considered “naturally” 
discrete, such as Boolean for binary signals and 
{OPEN, CLOSED} for the state of a clutch, the 
domains of continuous variables are obtained by 
discretization and are usually finite set of intervals 
that reflect the essential distinctions needed for 
capturing the relevant aspects of component 
behavior:  
 

DOM (vik) = {Iikm    m=1, 2, …, n} 

4.4 Relational Modeling 

The behavior of a component under a particular 
behavior mode, modei(Cj), is represented as the set 
of qualitative tuples that are possible if this mode is 
present, i.e. as a relation 
 

Rij DOM(vi) = 
DOM (vi1)  DOM (vi2)  ...  DOM (vir) , 

 

or, in AI terminology, as a constraint (which means 
many operations on models introduced in the 
following can be realized using techniques of Finite 
Constraint Satisfaction).  

Each variable connection (vp, vq) introduces a 
relation Rpq capturing the mapping between 
domains. 

4.5 Compositional Modeling 

A model of an aggregate system is not unique, but 
dependent on the behavior modes of the 
components. A mode assignment MA = {modei(Cj)} 
specifies a unique behavior mode for each 
component, and a model of the system is obtained as 
the (natural) join (as in the relational algebra and 
SQL, see (Codd, 1970)) of the mode models: 

RMA=  Rpq   Rij . (1)
 

4.6 Deviation Models 

Some are stated in absolute terms ("zero braking 
torque exerted by brake") others are only described 
in relative terms ("reduced braking torque produced 
by a worn brake"), and so are definitions of hazards: 
"reduced deceleration of vehicle". Such models are 
meant to capture qualitative deviations from the 
nominal behavior, which is the basis for detecting 
deviations in the behavior of the entire system. 

We use deviation models in the same way as in 
(Struss, 2004): the qualitative deviation of a variable 
v is defined as 

x:= sign(xact xnom) (2)

which captures whether an actual (observed, 
assumed, or inferred) value is greater, less or equal 
to the nominal value. The latter is the value to be 
expected under nominal behavior, technically: the 
value implied by the model in which all components 
are in OK mode. 

Qualitative deviation models can be obtained 
from standard models stated in terms of (differential) 
equations by canonical transformations, such as 
 

a + b = c  a ⊕ b = c 

a * b = c 

aact ⊗ b) ⊕ (bact ⊗ a)  ⊝ (a ⊗ b) = c, 
 

with the addition, multiplication, and subtraction 

operators of interval arithmetic: ⊕, ⊗, ⊝. 

5 AUTOMATED FMEA 

For both the analysis of hazards (unwanted behavir 
of a vehicle) and the overall impact analysis, we 
exploit an algorithm that has been used for FMEA 
(Picardi et al., 2004), (Struss and Fraracci, 2012). 
The algorithm is based on representing not only 
behavior models as finite relations (as described in 
4.4), but also effects and scenarios. Effects can 
naturally be stated as relations Ej on system 
variables that characterize the relevant aspects of 
system behavior, such as (the deviation of) the 
acceleration of a vehicle, while a scenario is 
typically a relation Sk on exogenous variables and 
internal states of the system like the position of the 
brake pedal (pushed or not) and the vehicle speed.  

The algorithm checks the presence of effects for 

Model-based�Analysis�of�Embedded�Systems:�Placing�It�upon�Its�Feet�Instead�of�on�Its�Head�-�An�Outsider's�View

287



each possible single fault in the system under each 
defined scenario. Using the relational representation, 
this means that for a mode assignment MAi that 
contains exactly one fault mode and OK modes 
otherwise, the respective behavior model RMAi is 
automatically composed according to (1). Then, for 
each scenario Sk and each effect Ej, it is determined 
whether 

 j(RMAi ⋈ Sk )  Ej , 

where j denotes the projection (as used in the 
relational algebra) to the variables of Ej. The 
positive case, i.e. the failure mode is included in 
effect, means that the effect will definitely occur. 
Stated in logic, this means that the fault entails the 
effect in this scenario. 

 j(RMAi ⋈ Sk )  Ej =  .  

If the intersection is empty, the effect does not 
occur. Logically, the effect is inconsistent with the 
fault mode and the scenario. 

 Otherwise, the effect possibly occurs, i.e. j(RMAi 

⋈ Sk ) covers both conditions under which the 

effect is present and others under which it does not 
occur – the effect is consistent with the fault mode 
and the scenario. 

In our project, we used the FMEA engine of Raz’r 
(OCC’M, 2013), which implements this approach to 
autmatically generate effects at different levels: 
 at the system level, i.e. the entire vehicle, in terms 

of unwanted accelration and deceleration of the 
truck 

 in the interation with the enviroinment, in terms of 
collisions with persons and other vehicles and 
objects. 

6 DRIVE TRAIN MODELS 

The components of the drive train determine the 
acceleration or deceleration of the vehicle. More 
precisely, engine, crank shaft, clutch, gear box, 
retarder, and wheel brakes together determine the 
torque on the axle, and the wheel in interaction with 
the road surface transforms the torque into a 
translational acceleration of the entire vehicle – or 
not, if the friction between road surface and tire is 
low. Things get even more complicated, when the 
road has a non-zero slope and gravity adds a force 
that accelerates (or decelerates) the vehicle – again, 
dependent on friction: with sufficient friction, the 
gravity component along the road will add another 

torque to the axle (which may be overcome by other 
torques), otherwise, it will directly contribute to the 
translational acceleration of the vehicle (sliding 
downhill).  

These considerations indicate that the modeling 
task is non-trivial. The issues to be addressed are 
 The overall (deviation of the) torque applied 

cannot be determined locally, but only as the 
combined impact of several components. 

 The transformation of torque into an accelerating 
force and vice versa 

 The modeling of software components and, 
especially, software faults, which seems to be in 
the complexity class of clearing out the Augean 
stables. 

We discuss these aspects in the following. 

6.1 Physical Components 

We use deviation models as outlined in section 4.6.  
Faults may introduce non-zero deviations, e.g. the 
model of a worn brake would result in a deviating 
braking torque, which depends on the direction of 
the rotation (static friction) 
 

Tbrake =  
 

or the applied torque in case of kinetic friction 
 

Tbrake = Twheel 
 

Models of OK and faulty behavior are stated in 
terms of constraints on the deviations. For instance, 
a closed clutch simply propagates a deviating torque 
coming on the left from the engine to the right 
(flipping the sign): 



Tright = -left . 

Here, and throughout the paper, most variables have 
values from the domain Sign = {-, 0, +}: torques and 
forces, T and F, rotational and translational speeds, 
 and v. The commands and states explicitly 
discussed here have Boolean values {0, 1}.  

Space limitations do not permit presenting the 
entire model library (see Dobi et al., 2013) for 
details). In the following, we try to outline the key 
ideas and illustrate them by selected component 
models.  

The core purpose of the drive train component 
models is to determine the (deviation of the) torque 
acting on the axle, which determines the (deviation 
of the) translational acceleration of the vehicle (if 
the road surface permits). As stated above, the 
overall torque results from the interaction of all 
components, which potentially contribute to it. The 
engine can produce a driving torque, the braking 

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

288



elements (wheel brake, retarder, engine) may 
generate a torque opposite to the rotation, and the 
clutch and transmission may interrupt or reverse the 
propagated torque. 

Our current model is based on assuming that 
there are no cyclic structures among the 
mechanically connected components, which is the 
case in our application, but certainly also in a much 
broader class of systems. The component models 
link the torque (deviations) on the right-hand side to 
the one on the left-hand side, possibly adding a 
torque (deviation) generated by the respective 
component. Hence, at each location in the drive-train 
model, the (deviations of) torques represent the sum 
of all torques collected left of it.  

Whenever a terminal component (in our case the 
wheel) or a component in a terminal, i.e. open, state 
(the clutch and the transmission) is reached, the 
arriving torque is the total one for the section left, 
and for the open components, the torque on the 
right-hand side is zero, as exemplified by the clutch 
(state=0 means open): 

state=1  Tright = left 
state=0  Ttotal = left    Tright = 0. 

Determining the deviation models is not as 
straightforward, as it may appear, as we will explain 
using the model of retarder as an example. If 
engaged (state=1), it will generate a torque opposite 
to the rotation (zero, if there is no rotation) and add 
it to the left-hand one. The base model is obvious: 

Tright = left  Tbrake 
state = 1  Tbrake = -  
state = 0  Tbrake = 0 , 

where  denoted addition of signs. The first line 
directly translates into a constraint on the deviations: 

Tright = left  Tbrake 

However, determining Tbrake requires consideration 
of how the actual state is related to the nominal one, 
which depends on the control command to the 
component, and, to complicate matters, not on the 
actual command, but the command that 
corresponds to the nominal situation. This means 
we have to model possibly deviating commands, and 
we apply the concept and even the definition of a 
deviation also to Boolean variables. For instance, in 
the retarder model, state = - means state = 0 (i.e. it 
is not engaged) although it should be 1, and state = 
+ expresses that it is erroneously engaged. Such 
deviations could be caused by retarder faults, e.g. 
stuck-engaged. However, in the context of our 
analysis, we must consider the possibility that the 
commands to the retarder are not the nominal ones 

(caused by a software fault or the response of the 
correct software to a deviating sensor value). Under 
multiple faults, a component fault may even mask 
the effect of a wrong command (the retarder stuck 
engaged compensates for cmd = -). In the OK 
model of the retarder, it does what the command 
requests and the deviations of the command and 
state (i.e. the real, physical state) are identical: 

state = cmd . 

For a stuck engaged fault, however, Table 1 captures 
the constraint on the deviations: 
 

Table 1. Retarder stuck engaged - Deviation constraint. 

cmd cmd state 
1 0 0 
0 0 + 
0 - 0 
1 + + 

Here, the third row represents the masking case 
mentioned above, while the first one reflects that the 
physical state coincides with the command, while in 
the second one, it does not. 

From state, Tbrake is determined by 

Tbrake = -   state, 

where  denotes multiplication of signs. This 
completes the model of the retarder.  

6.2 Software Models 

Since the drive train contains a number of ECUs, we 
also need to include models of software and its 
faults in our library. Remember: all that matters 
about software faults is their impact on the physical 
system, more precisely, on the controlled actuator. 
Deviations in an actuator signal will often cause a 
deviating behavior of the respective actuator. If there 
is no command to the brakes although the braking 
pedal is pushed, then the brakes do not perform as 
expected under nominal behavior (and potentially 
cause a collision). And if a continuous signal like the 
one controlling the amount of injected fuel is too 
low, this may result in a reduced acceleration of the 
vehicle.  
Such deviations in actuator signal can have two 
reasons:  
 The software works correctly but based on a 

deviating input from sensors or other ECUs (e.g.  a 
wrong measurement of the outside temperature 
may lead to an inadequate computation of the 
amount of fuel to be injected. 

 The software is buggy and therefore produces a 
wrong output (e.g. due to a wrong computation of 

Model-based�Analysis�of�Embedded�Systems:�Placing�It�upon�Its�Feet�Instead�of�on�Its�Head�-�An�Outsider's�View

289



the fuel amount). 

This means: the OK model of software functions 
needs to capture how deviating input from sensors or 
input other ECUs influences potential deviations in 
the actuator signals.  

For instance, assume that the command to 
engage the retarder as an additional braking element 
is based on the rotational speed  exceeding a 
threshold. In our context, the only interesting aspect 
is how the (correct) function propagates a deviation 
of a sensor value (or a missing one). Slightly 
simplified, this can be stated as 

 

cmd = _s , 
 

where _s is the sensor signal and cmd is defined 
w.r.t. the domain {0, 1} of cmd. If the _s is too low 
(high), i.e. deviates negatively (positively) and, 
hence, reaches the threshold too early (too late), this 
causes the command to be sent too early (too late), 
i.e. the command deviates positively (negatively): 

 Untimely (or early) command: cmd = + 
 Missing (or late) command: cmd = - 

These are also the definitions of the only relevant 
faults of the software function, regardless of how 
they are produced in detail. For instance, the 
threshold being too high (low) has the same impact 
as the sensor signal being too low (high). However, 
for Software FMEA and safety analysis, the detailed 
nature of the fault does not matter.  

The same applies to continuous actuator signals, 
such as the fuel injection, where the faults represent 
signal too low and too high, respectively.  

This provides evidence for our claim that putting 
safety analysis back on its feet and the physical 
model in the center, greatly simplifies the modeling 
and analysis of the embedded software. In particular, 
for the purpose of hazard analysis, we obtain a small 
set of reusable software models for our library. Of 
course, if we do have a more detailed model of the 
software, also the fault models can be more specific.  

6.3 Results 

The automated FMEA generates models of the entire 
system with one fault injected at a time and checks 
for the effects on the vehicle (“hazards” like 
“reduced deceleration”) or on the environment 
(collisions). Based on the modeling principles 
outlined above, this includes sensor and software 
faults. Figure 3 shows an example of the results, 
which are presented in (Dobi et al., 2013). 
 

 

Figure 3: Hazard analysis for “vehicle start”. 

7 DERIVING (SAFETY) 
REQUIREMENTS 

In the work presented above, the models were used 
for determining hazards and their impact on the 
environment, i.e. for analysis only. However, the 
model also forms the basis for the derivation of 
safety requirements and, hence, can contribute to re-
design for safety. We illustrate this potential in an 
abstract way: First, in the analysis step, a particular 
physical scenario, SP, (say, heavy braking on a 
slope) is mapped to the input channel of the software 
by the physical model, MP, as a set of sensor signals, 
or, rather ranges of sensor signals, (pressure, wheel 
speeds, etc.), 

IS=I (MP ⋈SP ) , 

where I denotes the projection to the input channel 
of the embedded software.  

The software model MS needs to determine the 
respective output in terms of actuator signals (e.g. to 
the valves controlling the braking)  

OS=O (MS ⋈IS), 

where O is the projection to the output channel.  
Based on the scenario SP and OS, which is the input 
to the physical system, again the physical model MP 
determines the behavior of the physical system with 
respect to its environment:  

BE =E (SP⋈MP ⋈OS ), 

where E is the projection to the interface of the 
physical system to the environment (e.g. too high 
deceleration), which may then, through a context 

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

290



model MC lead to a relevant impact on the 
environment. 

On this basis, safety requirements for the 
embedded software may be determined by back-
propagating a safety requirement on the behavior of 
the physical system to the software: avoiding the 
impact by avoiding the hazard BE establishes a 
revised system response B’E, (e.g. the negation of 
BE). MP infers a required modified software output 
in scenario SP 

O’S =O (B’E⋈MP ⋈SP ), 

i.e. the requirement on the modified software model 
M’S 

M’S ⋈IS =O (B’E⋈MP ⋈SP ), 

or stated in a functional view: 

M’S : I (MP ⋈SP )   O (B’E⋈MP ⋈SP ). 

Again, this illustrates the primacy of the physical 
perspective, because both the scenario and the 
behavior requirement are formulated at the level of 
the physical interaction, and the model of the 
physical system determines the requirements on the 
software. 

8 SUMMARY 

The case study and its results support our claim that 
modeling and model-based analysis of embedded 
software is both greatly improved and simplified by 
a modeling perspective that focuses on the model of 
the physical system.  

We successfully applied this approach also in 
another case study to automated FMEA of a braking 
system (Struss and Fraracci, 2012).  

The modeling applied in these case studies 
avoids some of the most frequent pitfalls or 
inadequacies in modeling physical components in 
software and systems engineering, namely 
 modeling function instead of behavior, which is 

strongly related to 
 modeling them in a context-dependent, rather than 

generic manner, 
 modeling components with input-output behavior, 

which is related to 
 modeling them using finite state machines instead 

of (abstractions of) (differential equations). 
The results obtained have triggered interest in 
pursuing this line of research. We are currently 
preparing a collaborative project involving 
automotive companies and academic partners 

(representing model-based approaches from AI and 
software engineering) that aim at providing tools for 
functional safety that are compliant with the 
standards and processes. This will require 
embedding the analytic part covered here with 
higher-level models from design and also feeding 
back its results to the process of responding to 
severe shortcomings by developing appropriate 
safety functions. Steps towards formal foundations 
for an integration of the model-based systems and 
software engineering technologies will be required 
for this. 

ACKNOWLEDGEMENTS 

I would like to thank our partners from ITK for 
providing their domain knowledge and their patience 
and Sonila Dobi and Alessandro Fraracci for their 
support. Special thanks to Oskar  from OCC’M 
software for producing a very efficient 
implementation of the FMEA algorithm.  

REFERENCES 

Codd, E. F., 1970. A Relational Model of Data for Large 
Shared Data Banks", in Communications of the ACM 

Dobi, S., Fraracci, A., Gleirscher, M., Spichkova, M., 
Struss, P., 2013. Model-based Hazard and Impact 
Analysis, Tech. Report, TU Munich, Comp. Sci. Dept. 

OCC'M Software GmbH, 2011. Raz'r Model Editor 
Version 3. Interactive Development Environment for 
Model-based Systems. http://www.occm.de/ 

Picardi, C., Console, L., Berger, F., Breeman, J., Kanakis, 
T., Moelands, J., Collas, S., Arbaretier, E., De 
Domenico, N., Girardelli, E., Dressler, O., Struss, P., 
Zilbermann, B., 2004. AUTAS: a tool for supporting 
FMECA generation in aeronautic systems. In:  
Proceedings ECAI-2004 Valencia, Spain, pp. 750-754 

Struss,P., 2004. Models of Behavior Deviations in Model-
based Systems. In. Proceeding of ECAI-2004 
Valencia, Spain, pp. 883-887. 

Struss, P., 1997. Model-based and qualitative reasoning: 
An introduction. In: Annals of Mathematics and 
Artificial Intelligence 19 (1997) III-IV, Elsevier, pp. 
355 - 381, 1997. 

Struss, P., 2008. Model-based Problem Solving In: van 
Harmelen, F., Lifschitz, V., and Porter, B. (eds.). 
Handbook of Knowledge Representation, Elsevier, pp. 
395-465 

Struss, P., Fraracci, A., 2012. Modeling Hydraulic and 
Software Components for Automated FMEA of a 
Braking System. In: Dearden, R. and Snooke, N. 
(eds.). Proceedings of the 23rd Workshop on the 
Principles of Diagnosis. Great Malvern, UK. 

Model-based�Analysis�of�Embedded�Systems:�Placing�It�upon�Its�Feet�Instead�of�on�Its�Head�-�An�Outsider's�View

291


