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1Research Group in Cooperative Information System, University of Málaga, Málaga, Spain
2Research Group in Mathematics Applied to Computing, University of Málaga, Málaga, Spain

Keywords: Model-Driven Engineering, Model Quality, OCL, MDE, Logic, Functional Dependency, Data Model, Design
by Contract, Model Refactoring.

Abstract: Software verification and modeling quality are permanent challenges in software development. So, smarter
and more cohesive methods for the creation and maintenance of data models without loss of quality are re-
quired as model complexity increases in current academic and industrial MDE-based system designs. In-place
endogenous model transformations (refactorings) are an efficient and straightforward approach to deal with
data model complexity, but ad-hoc and frequent transformations must be performed to maintain model quality.
In this paper we explore an alternative method to ensure the quality of data models: correction by contract. We
propose a new method for the creation and maintenance of static data models (relational, entity-relationship or
class models) with enhanced quality. We will use an executable logic for functional dependencies to character-
ize data model redundancy and we define a set of OCL constraints to guide the construction and maintenance
of the models. We also illustrate this approach with a simplified intermediate metamodel (FDMM) for func-
tional dependencies over a data model to show the potential benefits of the method.

1 INTRODUCTION

Static models are at the main core of Model-driven
Engineering (MDE) allowing the creation of ab-
stract representations of knowledge associated with
any given domain. Transformation of models allows
model refactoring to “improve their internal structure
without changing their observable behaviour” (Bram-
billa et al., 2012, Chapter 8). (Mens and Gorp, 2006)
proposes a taxonomy of model transformations “that
allows us to group tools, techniques or formalisms
for model transformation based on their common
qualities”. Using this taxonomy, we find that we
need an endogenous in-place automated transforma-
tion that allows us to improve some model features or
to reduce syntactic complexity by refactoring, among
other uses.

Nevertheless, to achieve this goal, newer model
transformations have to be defined for every new
metamodel and the maintenance of the quality of the
models require newer refactorings as soon as these
models evolve or become more complex.

To prevent this, we propose the creation of mod-
els correct by contract. In other words, we establish
the necessary restrictions on the metamodel to allow
the creation of models correct from the beginning, so

there is no need to execute any endogenous transfor-
mation (i.e. refactoring) to maintain the quality of
these models after their creation.

Design by contract is a general software design
approach first presented in (Meyer, 1997, Chapter 11).
It prescribes that a designer should define the formal
and precise specification to be satisfied by software
components by means of the definition of precondi-
tions, postconditions and invariants, i.e. a contract.
Analogously to the creation of classes, we can define
how model elements creation and maintenance can be
restricted to be correct with a similar contract, as we
explain in detail in Section 3.1.

Considering that software components in MDE
are represented by their metamodels, the contracts
are defined on the metamodel level using OCL con-
straints. The set of OCL constraints of the contract
allows us to validate the correction of some aspects of
the models.

We propose a contract in a metamodel that is
based on the concept of functional dependency, the
core concept in the definition of the relational model.

To achieve an optimized model, the contract is
guided by a set of equivalences based on inference
rules of a functional dependency logic that allows us
to prevent data redundancy to be introduced in the cre-
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ation of the data model. Therefore, we propose the
use of the Simplification Logic for Functional Depen-
dencies (Cordero et al., 2002), whose inference rules
allow the design of efficient automated methods.

This paper is structured as follows. In section 2 we
make a brief introduction to the Simplification Logic
for Functional Dependencies (SLFD ) and present the
equivalences that inspire the constraints that are the
basis of the contract that we propose. Section 3 intro-
duces the metamodel for functional dependencies and
the specification of the design contract based on the
SLFD logic by means of the definition of OCL expres-
sions over the metamodel. Finally, we end with the
conclusions and future works section 4.

1.1 Related works

There are very few proposals dealing with the con-
cept of functional dependency in the context of MDE.
Nevertheless, there is much work where OCL is used
to describe some kind of contract to the creation and
maintenance of properties in models.

An outstanding precedent in the use of OCL as
a contract language may be found in (Clavel et al.,
2009) where the unsatisfiability of OCL invariants,
pre and postconditions are introduced as “a power-
ful tool” for automated reasoning tools. By the other
side, in (Siikarla et al., 2004), the declarative and
specificative power of OCL are studied in deep. The
joint use of pre and postconditions and invariants was
originally proposed in (Lano and Kolahdouz-Rahimi,
2012), where model transformation is defined as an
UML use case with some logic predicates control-
ling it. Our approach is based on all these works, but
we are focused on model creation and maintenance of
properties instead of model transformations.

Finally, closer to our approach, we may cite (Ake-
hurst et al., 2002) which describes an automated
method for the normalization of database systems
through the creation of an UML profile for database
modeling “to encode the definitions of the four nor-
mal forms” and a transformation rule “for converting
a data model from one normal form to a higher nor-
mal form”. This approach relies on model transfor-
mations whenever a normal form should be reached.
In our approach, no transformation is needed. Models
are always simplified from construction or invalidated
by means of logic constraints over the model, so that
the user is warned on where the redundancy is and
advised on how it can be avoided.

2 SIMPLIFICATION LOGIC

The Simplification Logic for Functional Dependen-
cies, denoted as SLFD , was first introduced in
(Cordero et al., 2002). This logic is equivalent to
Armstrong’s Axioms (Armstrong, 1974) which are
strongly based on the transitivity paradigm. Transitiv-
ity is the main obstacle to design efficient automated
methods directly based on the inference system.

SLFD was designed with the idea of removing re-
dundant attributes and the main inspiration was to re-
place the transitivity rule by a simplification rule that
allows the design of automated methods.

Before describing the inference system of this
logic, let us define some preliminary concepts nec-
essary for its understanding. We begin by introducing
the notion of functional dependency (FD), which cap-
tures a relationship between two set of attributes such
that if two tuples agree on attributes of the first set,
then they also agree in the second one.

Definition 1. Let A be a set of attributes and let
X ;Y � A . We say that a relation R satisfies the func-
tional dependency X 7!Y if, for all t; t 0 2 R we have
that: tX = t 0X implies that tY = t 0Y .

The kernel of the Simplification Logic is its novel
sound and complete axiomatic system introduced as
follows:

Definition 2. The axiomatic system has one axiom
scheme:

bAxFDc ‘ X 7!Y; where Y � X

The inference rules are the following:

bFragc X 7!Y ‘ X 7!Y 0 if Y 0 � Y
(Fragmentation rule)

bCompc X 7!Y; U 7!V ‘ XU 7!YV
(Composition rule)

bSimpc X 7!Y; U 7!V ‘ (U�Y )7!(V �Y )
if X �U and X \Y =?

(Simplification rule)
Where XY denotes X [Y and X �Y denotes the set
difference.

The deduction (‘) and equivalence (�) are de-
fined as usual: We say that a FD j is deduced from a
set of FDs G, denoted G ‘ j, if there exists a chain of
FDs j1 : : :jn such that jn = j and, for all 1 � i � n,
we have that ji 2 G, ji is an axiom or is obtained by
applying an inference rule to the formulas in fj j j 1�
j < ig.

We say that the sets G and G0 are equivalent, de-
noted G � G0, if for all FD j, we have that G ‘ j if
and only if G0 ‘ j.

SLFD has allowed the design of efficient auto-
mated methods: in (Mora et al., 2004) an automated
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method to remove redundancy was developed, (Mora
et al., 2012) introduces an efficient algorithm based
directly on SLFD to compute the closure of a set of
attributes and finally in (Cordero et al., 2013) a novel
algorithm to find all minimal keys based on SLFD has
been presented.

The design of these methods are due to the dif-
ferent orientation of SLFD axiomatic system. More
specifically, the characteristics of the logic are the fol-
lowing:

� Formulas are reduced FDs, i.e. formulas of the
form X 7!Y where X \Y =?.

� SLFD automated methods look for formulas with
the maximum set of attributes in the right hand
side. While other classical methods exhaustively
use fragmentation rule to get unitary FDs, which
increase the set of the input, SLFD applies union
as much as possible to reduce the number of FDs.

� Simplification rule is centered in the elimina-
tion of redundant attributes, which provides a
rule which allows to remove redundancy inside
the FDs. The classical redundancy removal is
strongly based on the need to remove the whole
FD.

These issues may be introduced by means of a
set of equivalences. We remark that all these equiv-
alences, when read from left to right, are a guide to
obtain a simpler set of FD from its original set.

Theorem 1. Let X 7!Y;U 7!V be two functional de-
pendencies.

1. fX 7!Vg � fX 7!(V �X)g
2. fX 7!Y;X 7!Vg � fX 7!YVg
3. If X �U and X \Y =? then

fX 7!Y;U 7!Vg � fX 7!Y;(U�Y )7!(V �Y )g

4. If X �UV and X \Y =? then

fX 7!Y;U 7!Vg � fX 7!Y;U 7!(V �Y )g

The above equivalences will be named respec-
tively Reduction Equivalence (a particular case of
Fragmentation), Union Equivalence (a particular case
of Composition), Simplification Equivalence (based
on the Simplification Rule) and Right Simplifica-
tion Equivalence (derived from Simplification Equiv-
alence that allows us to remove redundancy in the
right side of the formula).

These four equivalences are the basis of the con-
tract presented in this paper and they will induce a
set of OCL constraints (invariants, pre and postcondi-
tions) to ensure the quality of the models with no loss
of semantics.

3 SLFD-simplified DATA MODEL

In this section, we describe the definition of the con-
tract that will allow us to create SLFD-simplified mod-
els. Also, we show a simple example to prove its ben-
efits.

The metamodel of figure 1, based on the meta-
model presented in (Enciso et al., 2012), is the basis
to the definition of the necessary constraints to vali-
date the correctness (by contract) of the models.

Figure 1: Metamodel for Functional Dependencies
(FDMM). Class operations are defined only to maintain the
quality of the data model, not to represent executable or
simulation behaviour of any implementation derived from
the model.

3.1 The Metamodel Contract

Bertrand Meyer, in (Meyer, 1997), define the concept
of design by contract as the formal specification of the
rights and obligations established between the soft-
ware components and its clients. The definition of
the contract on the software components is done by
using two types of assertions: pre/postconditions and
invariants. The invariants allow to express the global
properties to be satisfied by all instances of a class,
while pre and postconditions describe the contract of
the class methods.

Analogously, since the software components in a
MDE system are represented by metamodels, so the
contracts can be defined as constraints on its model el-
ements (invariants) and its model elements operations
(pre and postconditions) (Cabot and Gogolla, 2012).
In our case, OCL (OMG, 2012) is used to establish the
design contract of models conforming to these meta-
models.

The violation of an OCL invariant triggers a
warning indicating that a model is not in a SLFD-
simplified state. The satisfaction of an OCL precondi-
tion (of a simplification operation) provides an advice
to the user to perform the corresponding optimization.
Thus, the OCL postcondition of that particular oper-
ation will be satisfied. Note that, if no other precon-
ditions are satisfied, the global state will change to
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SLFD-simplified and there will be no other violation of
invariants.

We have performed a practical proof of concept of
this method using the Dresden OCL toolkit (Demuth,
2004) with a comprehensive set of test models with
good results. We choose this toolkit because common
modeling tools with built-in OCL does not support
advanced validation features (like pre and postcondi-
tions).

3.2 OCL Invariant

The invariant is defined in the context of the func-
tional dependency element, so that it is possible to
identify the element not meeting that constraints.
context FunctionalDependency
inv:

let X: Set(Attribute) =
self.leftEnd->asSet() in

let Y: Set(Attribute) =
self.rightEnd->asSet() in

(1) Y->intersection(X)->isEmpty()
and

(2) FunctionalDependency.allInstances()->
excluding(self)->forAll(uv|
let U: Set(Attribute) =

uv.leftEnd->asSet() in
let V: Set(Attribute) =

uv.rightEnd->asSet() in
X <> U and

(U->includesAll(X) implies
U->intersection(Y)->isEmpty())

and
(U->union(V)->includesAll(X) implies
V->intersection(Y)->isEmpty()))

The first part of the invariant states that both sides
of every dependency should have disjoint attribute
sets to preserve the Reduction Equivalence. The sec-
ond part of invariant establishes the conditions to ad-
dress the Union, Simplification and Right Simplifi-
cation Equivalence. We evaluate each dependency
with all the other dependencies of the set by iter-
ating over all instances of functional dependencies
(allInstances) and excluding the dependency cur-
rently being validated (excluding(self)).

3.3 OCL Pre and Postconditions

The pre and postconditions guide the application of
the corresponding operations on the model elements.
More specifically, we define an operation for every
equivalence of the theorem 1:
context FunctionalDependency

reduction(): FunctionalDependency
context FDSet

union(): OrderedSet(FunctionalDependency)
simplify(): OrderedSet(FunctionalDependency)

r_simplify(): OrderedSet(FunctionalDependency)

Notice that the reduction operation is defined
within the context of the FunctionalDependency el-
ement while the rest of operations are defined within
the context of FDSet element.

Reduction. This operation ensures an empty inter-
section between the left and right sets of attributes of
a functional dependency.
context FunctionalDependency::reduction()
pre:
let X: Set(Attribute) =

self.leftEnd->asSet() in
let Y: Set(Attribute) =

self.rightEnd->asSet() in
not Y->intersection(X)->isEmpty()

post:
let X: Set(Attribute) =

self.leftEnd->asSet() in
let Y: Set(Attribute) =

self.rightEnd->asSet() in
Y->intersection(X)->isEmpty()

Union. This operation is applied to those dependen-
cies in the total set with the same left hand sides. The
postcondition describes that all dependencies whose
left hand side are equal each other are now joined to-
gether in a single dependency whose right hand side is
the result of the union of the original right hand sides.
context FDSet::union()
pre: dependencies->exists(xy, uv|
let X: Set(Attribute) =

xy.leftEnd->asSet() in
let U: Set(Attribute) =

uv.leftEnd->asSet() in
xy.id <> uv.id and X = U

)
post: dependencies->forAll(xy|
let X: Set(Attribute) =

xy.leftEnd->asSet() in
let Y: Set(Attribute) =

xy.rightEnd->asSet() in
dependencies@pre->forAll(uv| -- (note 1)
let U: Set(Attribute) =

uv.leftEnd->asSet() in
let V: Set(Attribute) =

uv.rightEnd->asSet() in
X = U implies Y->includesAll(V)))

Simplify. This operation reduces a given depen-
dency by removing attributes on both sides of the de-
pendency if there exists another dependency such that
its left hand side is a subset of the left hand side of the
target dependency.
context FDSet::simplify()
pre: self.dependencies->exists(xy, uv|
let X: Set(Attribute) =

1@pre: refer to the value of a feature before the opera-
tion execution (in the state checked in the precondition).
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xy.leftEnd->asSet() in
let Y: Set(Attribute) =

xy.rightEnd->asSet() in
let U: Set(Attribute) =

uv.leftEnd->asSet() in
let V: Set(Attribute) =

uv.rightEnd->asSet() in
xy.id <> uv.id and
Y->intersection(X)->isEmpty() and
U->includesAll(X) and
(not U->intersection(Y)->isEmpty() or
not V->intersection(Y)->isEmpty()))

post: self.dependencies->forAll(xy, uv|
let X: Set(Attribute) =

xy.leftEnd->asSet() in
let Y: Set(Attribute) =

xy.rightEnd->asSet() in
let U: Set(Attribute) =

uv.leftEnd->asSet() in
let V: Set(Attribute) =

uv.rightEnd->asSet() in
xy.id <> uv.id and
Y->intersection(X)->isEmpty() and
U->includesAll(X) and
U->intersection(Y)->isEmpty() and
V->intersection(Y)->isEmpty())

R-Simplify. This operation extends the simplify
rule when the above operation cannot be applied be-
cause the subset inclusion does not fulfills between
the two left had sides but the inclusion is validated
between the left had side of a given dependency and
all the attributes of the target one. In this operation,
attributes are removed only in the right hand side of
the target dependency.
context FDSet::r_simplify()
pre: self.dependencies->exists(xy, uv|
let X: Set(Attribute) =

xy.leftEnd->asSet() in
let Y: Set(Attribute) =

xy.rightEnd->asSet() in
let U: Set(Attribute) =

uv.leftEnd->asSet() in
let V: Set(Attribute) =

uv.rightEnd->asSet() in
xy.id <> uv.id and
Y->intersection(X)->isEmpty() and
U->union(V)->includesAll(X) and
not V->intersection(Y)->isEmpty())

post: self.dependencies->forAll(xy, uv|
let X: Set(Attribute) =

xy.leftEnd->asSet() in
let Y: Set(Attribute) =

xy.rightEnd->asSet() in
let U: Set(Attribute) =

uv.leftEnd->asSet() in
let V: Set(Attribute) =

uv.rightEnd->asSet() in
xy.id <> uv.id and
Y->intersection(X)->isEmpty() and
U->union(V)->includesAll(X) and
V->intersection(Y)->isEmpty())

3.4 An Illustrative Example

To illustrate the benefits of our approach, we show
how the OCL constraints (the contract) guide the cre-
ation and evolution of a model of functional depen-
dencies based on the FDMM (fig.1).

We consider the example presented in (Ullman
and Widom, 1997, Chapter 3) that describes the re-
lation Movies as follows:

title year studioName starName
Start Wars 1977 Fox Carrier Fisher
Start Wars 1977 Fox Mark Hamill
Start Wars 1977 Fox Harrison Ford
Mighty Ducks 1991 Disney Emilio Estevez
Wayne’s World 1992 Paramount Dana Carvey
Wayne’s World 1992 Paramount Mike Meyers
Sleepy Hollow 1999 Paramount Johnny Depp

In the previous data table, the following functional
dependency2 holds:
1. starName, title, year -> studioName

In a new iteration of the design of the model (made
by the same designer or by a cooperator) new at-
tributes are incorporated to the relation: the director
of the movie, an indicator saying if the star is the di-
rector’s pet actor and the movie revenues. This new
attributes rely on these new functional dependencies:
2. starName,title,year -> director, petActor,

revenues
3. starName,director -> petActor
4. title,year -> studioName, director

When validating the whole set of dependencies we
find that the model violates the contract: the invari-
ant is not satisfied by any dependency and the pre-
conditions of the operations union, simplify and
r simplify are satisfied.

To obtain a SLFD-simplified model, we follow the
advise to apply these operations:
� The union operation is applied on the model, so

that dependencies 1 and 2 should be fused in one
dependency:

starName,title,year -> studioName,director,
petActor,revenues

� The r simplify operation is applied. The depen-
dency obtained from the previous union should be
simplified with the dependency 3:

starName,title,year -> studioName,director,
revenues

� The simplify operation is applied. The depen-
dency obtained from the previous simplification
should be simplified with the dependency 4:

2We use hereafter an informal notation to improve read-
ability fully interchangeable with its XMI counterpart.
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starName,title,year -> revenues

Now, we get a new model that is SLFD-simplified
(invariants and postconditions are satisfied, but pre-
conditions are not):

1. starName,title,year -> revenues
2. starName,director -> petActor
3. title,year -> studioName,director

Notice that this new set has been reduced in the
number of dependencies and in the number of at-
tributes inside the dependencies.

4 CONCLUSIONS AND FUTURE
WORKS

We have seen that it is possible to create and main-
tain some quality standards of data models of func-
tional dependencies just by defining a contract on the
FDMM. This contract is defined using only OCL ex-
pressions embedded in the metamodel and it is used
both to validate the global state of the model and to
warn about the need to apply simplification opera-
tions.

Our contribution in centered in the field of MDE
models quality enhancement by reusing the concept
of design-by-contract (Meyer, 1997), formal methods
from previous research efforts (Enciso et al., 2012;
Cordero et al., 2002) and the standard language for
the design of smart models, OCL (OMG, 2012). Nev-
ertheless, the approach to correction-by-contract in
model creation is new (to our best knowledge) and a
promising perspective to be consider in future works.

We plan to extend this method to the most com-
mon metamodels for static models like relational,
entity-relationship and UML class models. For this,
it would be necessary to study the interpretation of
the concept of functional dependency in these meta-
models and adapt the contract defined for the FDMM
accordingly, so that the semantics of the set of func-
tional dependencies are preserved although some syn-
tactical differences may exist.

We have illustrated that, even when there is a rea-
sonably good elicitation of functional dependencies,
some redundancy may arise when the model is main-
tained. In this scenario, our method can help to con-
trol the introduction of redundancies and avoiding
loss of quality.

The method presented in this paper is strongly
based on a set of equivalences that characterizes the
strength of the axiomatic system of the SLFD . These
equivalences induce a set of OCL constraints (invari-
ants, pre and postconditions) which allow us to ensure

the quality of the models while they are created such
that no further transformation is required.
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