
Platform-independence in Model-based Multi-device UI Development

David Raneburger1, Gerrit Meixner2 and Marco Brambilla3

1Institute of Computer Technology, Vienna University of Technology, Gusshausstr. 27-29, 1040 Vienna, Austria
2Faculty of Computer Science, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany

3Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy

Keywords: Multi-Device, Platform, Model-driven Development, Model-based Development, User Interface, Model
Driven Architecture, Cameleon Reference Framework.

Abstract: Platform-independence of a model clearly means that a certain model does not depend on characteristics
of a certain platform. The crucial issue in this definition to make it concise is: what is a platform? The
answer to this question is important as such a platform definition defines which characteristics must not be
considered in platform-independent models. This paper compares the notion of platform and the corresponding
implications in the Model Driven Architecture proposed by OMG and the Cameleon Reference Framework, a
framework that has been developed to classify model-based user interface generation approaches. In particular
we compare the implications of platform-independence in the context of different model-based user interface
development approaches that support multi-device UI development.

1 INTRODUCTION

One of the main promises of model-based software
development is to allow for building higher-level
models that do not require the designer to specify
all implementation details at the beginning of the de-
velopment process. Subsequently, such higher-level
models can be transformed to implementations for
different platforms, with the main intention to save
development time and effort. The term platform is
overloaded with different meanings, which may lead
to confusions if no concise specification is provided
for a certain development context.

The platform definition provided by the Model-
Driven Architecture (MDA) (Miller and Mukerjij,
2003) has a very wide scope, as it has been designed
to support model-based application development for
a wide range of different application domains. It
does not require the explicit consideration of hard-
ware characteristics. An MDA compliant platform
model may therefore consider hardware and software
characteristics, or software characteristics only.

If the MDA platform definition is applied in the
context of Model-based User Interface Development
(MBUID), a platform can be interpreted as user inter-
face toolkit (Truyen, 2006). Hence, MDA compliant
transformation approaches support multi-modal user
interface (UI) development. Such multi-modal UIs

typically combine different modalities (e.g., graphi-
cal, speech, or gesture UIs) to allow for a more nat-
ural and more robust interaction. Graphical User
Interfaces (GUIs) are special in comparison to se-
rial modalities like speech or gesture, as they allow
for parallel information exchange. GUIs shall fit the
screen of a certain device to achieve a good level of
usability. If hardware characteristics like screen size
are not considered in the platform model they have
either to be considered by the transformations, or dur-
ing the creation of the high-level model that specifies
the flow of information (e.g., which information is ex-
changed in parallel).

Models that implicitly consider hardware features
of the target platform are still platform-independent
models according to the MDA definition, as they do
not consider software features of the target device,
but they do not support multi-device UI development.
For supporting multi-device UI generation, platform-
independence must include independence of a cer-
tain software and independence of a certain hardware.
A device is thus specified through a platform defi-
nition that considers software and hardware charac-
teristics. Such a platform definition is provided by
the Cameleon Reference Framework (CRF) (Calvary
et al., 2003) that support the classification of UI gen-
eration approaches and their models in the context of
MBUID.

265Raneburger D., Meixner G. and Brambilla M..
Platform-independence in Model-based Multi-device UI Development.
DOI: 10.5220/0004593102650272
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 265-272
ISBN: 978-989-8565-68-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



This paper recaptures the MDA and CRF platform
definitions, showing that both definitions support the
inclusion of hardware characteristics in addition to
software characteristics in the platform model. We
show that such a platform definition supports model-
based multi-device UI development and illustrate its
implications on the involved models and the transfor-
mation approach through testing a one-to-one corre-
spondence between MDA models and CRF levels. To
test this correspondence, we classify the models of
six existing model-based UI generation approaches
that support multi-device UI generation. In particu-
lar we compare the recently adopted Object Manage-
ment Group standard IFML1(Interaction Flow Mod-
eling Language), four task-based approaches that are
well established in the MBUID community (Meixner
et al., 2011b) and contribute to a currently proposed
W3C standard2, and a Communication-Model-based
transformation approach that supports automated GUI
optimization for different devices (Raneburger et al.,
2011).

2 BACKGROUND

This section presents the platform definitions of the
MDA and the CRF together with the context in which
they have been developed.

2.1 Model Driven Architecture

The Object Management Group’s (OMG) MDA
(Miller and Mukerjij, 2003) distinguishes three dif-
ferent types of models that reside on different levels
of abstraction. These levels are (from abstract to con-
crete):

1. the Computation Independent Model (CIM),

2. the Platform Independent Model (PIM) and

3. the Platform Specific Model (PSM).

The Computation Independent Model is on the
highest level of abstraction and therefore also plat-
form independent. It describes the usage scenarios
in which the system will be used, specifying exactly
what the system is expected to do. These models are
sometimes referred to as domain, business, or require-
ment models in the context of MDA.

The Platform Independent Model describes the
system to be built, without specifying details on the
implementation platform that will be used. It will be

1http://www.omg.org/spec/IFML/
2http://www.w3.org/wiki/Model-Based_User_

Interfaces

suited for a particular architectural style, but can be
mapped onto different platforms. Requirements spec-
ified through a certain platform model must not be
considered in a PIM.

The Platform Specific Model specifies how a sys-
tem is implemented upon or uses a particular plat-
form. This model needs to specify all details neces-
sary to derive the Implementation of the system.

MDA applies Model Transformations to transform
PIMs to PSMs. Such transformations need to pro-
vide the additional information required to produce
the PSM from the PIM. Sometimes, no transforma-
tion between CIM and PIM is possible, as CIMs may
not be specified in a formal way, or could describe
completely manual behaviors, not implemented on
any platforms.

Platform is probably the most fundamental con-
cept, as the MDA promises of resilience to technology
obsolescence, rapid portability, increased productiv-
ity, shorter time-to-market, consistency and reliability
of produced artifacts (Truyen, 2006) are based on the
abstraction from a certain platform.

According to MDA, platform is defined in the fol-
lowing way:

“A platform is a set of subsystems and
technologies that provide a coherent set of
functionality through interfaces and specified
usage patterns, which any application sup-
ported by that platform can use without con-
cern for the details of how the functional-
ity provided by the platform is implemented
(Miller and Mukerjij, 2003).”

A platform is represented as a platform model,
which is defined as:

“A platform model provides a set of
technical concepts, representing the different
kinds of parts that make up a platform and
the services provided by that platform. It also
provides, for use in a platform specific model,
concepts representing the different kinds of el-
ements to be used in specifying the use of the
platform by an application. A platform model
also specifies requirements on the connection
and use of the parts of the platform, and the
connections of an application to the platform.
A generic platform model can amount to a
specification of a particular architectural style
(Miller and Mukerjij, 2003).”

The MDA platform and the platform model defi-
nition do not distinguish hardware and software of a
system explicitly. Thus, such models may consider
hardware characteristics in addition to software char-

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

266



acteristics, but the corresponding definitions do not
enforce their consideration.

2.2 Cameleon Reference Framework

Model-based UI Development uses models to spec-
ify all aspects that are involved in the development of
user interfaces. MBUID approaches typically refine
high-level interaction models over different levels of
abstraction to source code that represents the UI. The
Cameleon Reference Framework (CRF) supports the
classification of UIs that support multiple targets, or
multiple contexts of use in the field of context aware
computing (Calvary et al., 2003). It additionally intro-
duces the notion of plasticity. Multi-targeting focuses
on the technical aspects of context adaptations, while
plasticity provides a way to qualify the usability of an
adapted UI. Thus, a plastic UI preserves its usability
on all targets. The CRF is an established approach in
the MBUID community and can be used to specify
methods and tools (for run- and design-time UI gen-
eration), with the intention to ease understanding and
comparing them.

In particular, the CRF introduces four levels of ab-
straction. These are (from abstract to concrete):

1. Tasks & Concepts,

2. Abstract User Interface (AUI),

3. Concrete User Interface (CUI) and

4. Final User Interface (FUI).

The Tasks & Concepts level contains interaction
models, specifying the interaction between the user
and the system to be built, and models of the domain
of activity (Vanderdonckt, 2008).

The Abstract User Interface level typically con-
tains a presentation and a dialog model that render
the domain concepts into canonical expressions that
are independent from any concrete interactors avail-
able on a certain platform.

The Concrete User Interface level contains mod-
els in which the canonical expressions have been re-
placed through concrete interactors that specify the
look and feel of the user interface, but are still inde-
pendent from a certain toolkit.

The Final User Interface represents the UI source
code that can be compiled and run.

MBUI typically applies model-to-model transfor-
mations between the upper three levels of abstraction
and model-to-code transformations for concrete to fi-
nal UI transformations.

The term platform is here tailored to UI develop-
ment and defined as part of the context of use, together

with the user and the environment3. The platform
consists of:

“a set of hardware (e.g., processor, screen,
and mouse) and software resources (e.g.,
operating system, technological space) that
function together to form a working computa-
tional unit whose state can be observed and/or
modified by a human user. Single resources
(processor, peripheral devices etc.) are un-
able, individually, to provide this functional-
ity. A platform may be either elementary or
form a cluster of platforms. Synonyms: target
platform.”

The CRF platform definition explicitly distin-
guishes hardware and software of a computational
unit. The consideration of both, hardware and soft-
ware characteristics, is important in the context of UI
development as it allows for tailoring a UI to a certain
device, and thus to achieve a good level of usability.

3 COMPARISON OF MDA AND
CRF ON
PLATFORM-INDEPENDENCE
IN MODEL-BASED UI
DEVELOPMENT

A platform definition that shall support multi-device
UI development needs to consider software and hard-
ware characteristics of a device. Considering this in-
formation in the platform definition implies that it
does not have to be considered in other high-level ap-
plication models. Encapsulating this information in
the platform model therefore supports the creation of
platform-independent high-level models, as the plat-
form information is added during their transformation
to PSMs.

An MDA platform specifies a coherent set of
functionalities through interfaces and usage patterns.
Examples are operating systems, programming lan-
guages, databases, middleware solutions or user in-
terfaces (Truyen, 2006). The MDA platform defini-
tion is very generic and does not inhibit its interpre-
tation as depending on software alone or on software
and hardware together (e.g., a smartphone with a cer-
tain operating system and physical characteristics like
memory or screen size).

It is recommendable to refine the MDA platform
definition for a certain application domain to facil-
itate its applicability and avoid misunderstandings.

3see also http://www.w3.org/wiki/Model-Based_
User_Interfaces

Platform-independence�in�Model-based�Multi-device�UI�Development

267



The CRF platform definition can be seen as such a
refined definition for the MBUID domain. A CRF
platform consists of hardware (physical) properties
(e.g., screen size and resolution, supported interaction
modalities) and software properties, meaning toolkits
that implement a certain modality (e.g., Java Swing or
HTML). A platform definition that contains software
and hardware characteristics supports multi-device UI
development and allows to establish a clear one-to-
one correspondence between MDA models and CRF
levels. This one-to-one correspondence is shown in
Table 1 and was most probably intended when the
CRF was defined, as the MDA definition was already
available and established then. Additionally, it has al-
ready been used during the initial development of the
UsiXML approach that is also presented in the next
section (Vanderdonckt, 2005).

Table 1: Correspondence Scheme.

MDA CRF
CIM $ Tasks & Concepts Level
PIM $ AUI Level
PSM $ CUI Level
ISM $ FUI Level

High-level interaction models, typically used to
specify the interaction between the user and a sys-
tem, together with models that specify the concepts
of a certain application domain (i.e., domain models)
are CIMs. Such models reside on the tasks&concepts
level and can be used as a basis for multi-device UI
development if they do not consider any platform
characteristics. There is no need to consider hardware
and software characteristics of a certain platform in
the models used on the tasks&concepts level if these
characteristics are specified in the platform model.

A PIM that is derived from a CIM is still platform-
independent. Thus AUI models derived from platform
independent models that reside on the tasks&concepts
level correspond to PIMs.

Platform specific information is added during the
transformation of an AUI model to a certain CUI
model, which means that PSMs reside on CUI level.

Finally the PSM is transformed to the source code
that implements the UI. Thus, the implementation (or
Implementation Specific Model (ISM)) corresponds
to the FUI.

So, what does this assignment imply for models
on Tasks&Concepts level and implicitly also for AUI
models derived from them? Models on these levels
must not restrict the rendering possibilities that are
supported through the platform model.

The implication for the domain model is that it
needs to define all concepts of the application domain,

regardless whether they are used by a certain model
(that may already be device-dependent).

The implication for the high-level interaction
model is that it must not constrain the amount of
exchanged information (e.g., based on the available
screen space). This means that all information that
can be exchanged at a certain point in time needs to
be modeled as concurrently available.

The same implication as for the high-level inter-
action model is valid for the abstract user interface
model. An AUI model still needs to specify all canon-
ical expressions that render the information specified
as concurrently available in the high-level interaction
model, as part of the same presentation (i.e., presen-
tation or dialog model unit).

In terms of GUI development this means that both,
the high-level interaction models and AUI models
such models, assume a “potentially infinite” screen.
Specifying information as concurrently available on
Tasks&Concept and on AUI level allows for splitting
it to different (smaller) screens according to platform
constraints on concrete user interface level. Tailor-
ing the UI to fit a limited screen on CUI level allows
for top-down multi-device UI generation (i.e., starting
from the Tasks&Concept or AUI level). Doing it the
other way round (i.e., combining information bottom
up from the CUI level) is hard to achieve as it requires
the analysis of dependencies between the exchanged
information to detect which information can be ex-
changed in parallel on a device with a larger screen.

The remainder of this paper tests whether existing
MBUID approaches support multi-device UI gener-
ation and discusses whether the meta-models of the
corresponding models can be assigned according to
the one-to-one correspondence scheme presented in
Table 1.

4 CLASSIFYING MBUID
APPROACHES AND THEIR
MODELS

Model-based UI development approaches typically
support multi-platform development. Their presen-
tation, however, frequently focuses on the involved
models and does not provide a clear definition of the
platform model used, which has already been raised
as an issue at the Model-Driven Development of Ad-
vanced User Interfaces Workshop (Van den Bergh
et al., 2010). In this section we classify the models of
six MBUID approaches that support multi-platform
development to test the correspondence scheme intro-
duced in Table 1. Table 2 lists the approaches and as-

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

268



signs their models to MDA levels using the CRF plat-
form definition. The remainder of this section sum-
marizes each approach and discusses the assignment
of Table 2 in detail.

4.1 Interaction Flow Modeling
Language (IFML)

The Interaction Flow Modeling Language4 (IFML)
supports the creation of visual models of user in-
teractions and front-end behavior in software sys-
tems, independently of a certain execution platform
and has been adopted as a standard by the OMG5

in March 2013. IFML is a PIM-level language in
MDA parlance, and it perfectly fits into the AUI level
of the CRF. The Business Process Model and Nota-
tion (BPMN) language may be used in the context of
IFML to provide CIM models. The Web Extension
of IFML, called WebML6 (Ceri et al., 2009) extends
the general purpose IFML concepts with some more
precise UI characteristics, considering the peculiarity
of the user interaction on the Web, while still keep-
ing a platform-independent vision (both in terms of
independence from software and hardware features).
WebML also includes a presentation model that cov-
ers the PSM level. The WebRatio tool-suite auto-
matically generates industrial-strength running appli-
cations (Acerbis et al., 2008) from WebML/IFML
models, exploiting the presentation model at the PSM
level. The IFML standardization document includes
a set of guidelines for the mapping of IFML models
to PSMs, namely software platform models, such as
Java, .Net WPF, and HTML. IFML supports multi-
device UI generation through the definition of rules
at the PIM level for self-adaptation of user interfaces
depending on the device, screen size, or location. It
also allows to incorporate platform-specific aspects
in the transformation towards the PSM level. IFML
therefore satisfies the correspondence scheme shown
in Table 2.

4.2 TERESA

TERESA (Transformation Environment for inteRac-
tivE Systems representAtions) uses a so-called “One
Model, Many Interfaces” approach to support model-
based GUI development for multiple devices from
the same ConcurTaskTree (CTT) model (Mori et al.,
2004). This approach defines a platform as “a class of
systems that share the same characteristics in terms

4http://www.ifml.org/
5http://www.omg.org/spec/IFML/
6http://www.webml.org

of interaction resources (e.g., the graphical desktop,
PDAs, mobile phones, vocal systems). Their range
varies from small devices such as interactive watches
to very large flat displays (Mori et al., 2004)”. The
corresponding transformation method requires the
manual refinement of the platform-independent CTT
model to different platform-dependent System Task
Models (e.g., a desktop, a cellphone or a voice Sys-
tem Task model, still specified in CTT). This already
platform-dependent CTT model is subsequently re-
fined to an AUI, a CUI and finally the FUI for the
corresponding platform.

The System Task Models that are derived from
the platform-independent task model are platform de-
pendent, but are still assigned to the tasks&concepts
level of the CRF. This means that the correspondence
scheme defined in Table1 is not valid for this ap-
proach, but its models are rather assigned to the MDA
models as specified in Table 2. The reason is that
the transformation approach requires the System Task
Models already to take platform specific information
into account. This allows for a more straight forward
transformation approach, but reduces the re-usability
of involved models to the topmost CTT models.

TERESA also shows that models and transforma-
tion method are closely intertwined. In general, it is
not feasible to assign a certain meta-model to a cer-
tain MDA model type or MDA models to a certain
CRF level. TERESA uses CTT instances on CIM,
PIM and PSM level for example and several PIMs that
reside on different CRF levels (see Table 2).

4.3 MARIA

A more recent approach based on CTT models uses
the MARIA language to specify the AUI and CUI
model (Paternò et al., 2009). This approach specifies
platform according to the CRF definition and the cor-
responding transformation method supports the gen-
eration of multi-device UIs based on annotated Web-
services. Platform-specific information does not have
to be provided in the AUI model, but is encapsulated
in the Web-service annotations. This means that the
AUI and the corresponding CTT model are platform-
independent and can be used for multi-device UI gen-
eration. Table 2 shows a one-to-one correspondence
between MDA and CRF levels.

It is noteworthy that MARIA does not annotate the
high-level interaction model (i.e., the CTT model),
but rather the Web-service specification that provides
the functional description of the UI. The reason is that
the such an annotated Web-service specification pro-
vides the basis for multi-modal multi-device UI gen-
eration in the context of MARIA and not the CTT

Platform-independence�in�Model-based�Multi-device�UI�Development

269



Table 2: Classification of UI generation approaches based on the CRF platform definition (i.e., device).

IFML TERESA MARIA MBUE UsiXML UCP
CIM BPMN CTT CTT UseML Task Model Communication Model
PIM IFML (and WebML) CTT MARIA DISL AUI UI Behavior Model
PSM Presentation + SW Model CTT/AUI/CUI MARIA UIML CUI Screen Model
ISM FUI FUI FUI FUI FUI FUI

model. The CTT model for a certain device can be
derived automatically from this specification with the
corresponding tool support (MARIAE 7).

4.4 Model Based Useware Engineering
(MBUE)

The Model Based Useware Engineering (MBUE) ar-
chitecture has been derived and refined on the basis
of the (meta-)architecture of the CRF (Meixner et al.,
2011a). Therefore, the levels of the MBUE corre-
spond to the levels of the CRF as shown in Table 2.

The MBUE relies on the CRF platform defini-
tion and its transformation approach ensures that the
models can be assigned according to the correspon-
dence scheme defined in Table 1. It is noteworthy
that MBUE applies task annotations in its useML task
model that assign tasks to a certain context of use (i.e.,
platform and/or user and/or environment). This way
MBUE supports the automated tailoring of the UIs to
a certain context of use. Such annotations are simi-
lar to the Web-service annotations used in MARIA.
Similar to the platform-independent AUI model in
MARIA, there is only one platform-independent (an-
notated) task (i.e., useML) model in MBUE which
can be used for multi-device UI generation.

4.5 USer Interface eXtended Markup
Language (UsiXML)

The USer Interface eXtended Markup Language8

(UsiXML) specifies different meta-models that sup-
port MDA compliant multi-platform UI development
(Vanderdonckt, 2005). UsiXML support the specifi-
cation of UIs in a way that remains independent of a
certain interaction technique (e.g., mouse, touch, key-
board or voice recognition) and a certain computing
platform (e.g.,. mobile phone, Tablet PC, kiosk, lap-
top or wall screen). UsiXML also supports the inclu-
sion of references to a certain platform in its mod-
els similar to the annotations used by MARIA and
MBUE. The development of UsiXML started with the
definition of the CRF and it was designed to support

7http://giove.isti.cnr.it/tools/Mariae/
8http://www.usixml.org

the one-to-one correspondence scheme shown in Ta-
ble 1.

UsiXML is currently available in Version 2.0
and its meta-models are applied in various other ap-
proaches too (e.g., (Garcı́a Frey et al., 2012)). Please
note that the classification shown in Table 2 is not nec-
essarily valid for those approaches. The way how the
instances of the UsiXML meta-models are applied in
a specific UI development approach depends on if and
how multi-device UI generation is achieved by the ap-
proach’s transformation method and may still violate
the one-to-one correspondence.

4.6 Unified Communication Platform
(UCP)

The Unified Communication Platform9 (UCP) sup-
ports the automated generation of GUIs that are opti-
mized for different devices (e.g., smartphone or tablet
PC) (Raneburger et al., 2011). This approach relies on
Discourse-based Communication Models (Falb et al.,
2006) to model the high-level interaction between a
user and the system platform-independently. A plat-
form is defined through software (e.g., supported GUI
toolkits) and hardware characteristics (e.g., screen
size) of a certain device. Communication Models
are CIMs and can be transformed automatically to a
UI Behavior model that resides on AUI level (Popp
et al., 2009) and is still platform-independent, and to
a Screen Model that is tailored to a certain device and
thus already platform-dependent. The Screen Model
is finally transformed to HTML code that represents
the FUI/ISM. Table 2 shows that a one-to-one corre-
spondence can be established for UCP.

5 DISCUSSION

The classification of the MBUID approaches pre-
sented above reveals that no simple one-to-one cor-
respondence as in Table 1 can be established in gen-
eral, but that the used meta-models and how their in-
stances are applied depend on the platform definition
and are characteristic for a certain transformation ap-
proach. For example, a transformation approach that

9http://ucp.ict.tuwien.ac.at

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

270



Figure 1: Correspondence between MDA and CRF.

does not explicitly consider hardware characteristics
in the platform model requires their implicit consid-
eration in the high-level interaction model. However,
the same high-level interaction meta-model can be
used by another approach to model interaction inde-
pendently of hardware constraints if they are consid-
ered in the corresponding platform definition.

Figure 1 illustrates the implications of these two
different platform definition on the correspondence
between the MDA models and the CRF levels. The
upper part of Figure 1 shows how multi-device UI
generation is supported in MDA. The lower part
shows the corresponding CRF levels.

A one-to-one correspondence can be established if
the platform model considers software and hardware
characteristics and if the high-level interaction mod-
els (e.g., task or communication models) specify all
information that can be exchanged in parallel as con-
currently available. This is indicated by the dotted
line labeled “Platform as Hardware & Software” in
Figure 1. All approaches whose classification shows
a one-to-one correspondence support multi-device UI
generation, which can thus be used as a criteria to de-
tect such approaches.

No one-to-one correspondence can be established
if the platform definition considers only software
characteristics explicitly. Hardware characteristics
like available screen space may already have to be
considered in high-level interaction models that reside
on Tasks & Concepts level in this case. Such mod-
els are already device specific just like the AUI and
CUI models that are derived from them and therefore
correspond to PSMs. This is indicated by the dot-

ted line labeled “Platform as Software” and the unla-
beled dotted line in Figure 1, that relate the Tasks &
Concepts, the AUI and the CUI level to the PSMs. A
platform model that considers software characteristics
only does not support multi-device UI generation but
it is still suitable to support multi-modal UI genera-
tion. The CRF levels can be used to classify different
PSMs in this case.

We conjecture that a clear definition of the no-
tion platform is also important in other application
domains of model-based software development than
MBUID to support multi-device development. The
encapsulation of platform characteristics in the cor-
responding platform model together with the use of
annotations as used in MBUID to avoid dependencies
between a high-level model and a certain platform, is
a generally applicable way to separate platform spe-
cific information from the model itself. Alternatively
the platform-tailoring can be automated according to
given optimization objectives, as shown for GUI opti-
mization in (Raneburger et al., 2011). This saves the
time and effort required for creating annotations man-
ually, but may not produce the exact result expected
by the designer.

6 CONCLUSIONS

Platform-independence for a model requires that this
information has to to be encapsulated in the corre-
sponding platform model and must not be considered
in the CIM and PIM model. Thus, the first implication

Platform-independence�in�Model-based�Multi-device�UI�Development

271



in the context of model-based multi-device UI devel-
opment is that a platform must specify software and
hardware characteristics, so that such characteristics
do not have to be considered in the high-level interac-
tion models. The information required to transform
such PIMs to PSMs is typically either provided in
form of model annotations or platform-specific trans-
formations. One further implication is that high-level
interaction models need to specify all information that
can be exchanged in parallel as concurrently avail-
able. This allows for splitting the information accord-
ing to certain platform characteristics while the PSM
is derived and thus for tailoring a GUI for a certain
screen space.

We showed that the CRF platform definition re-
fines the MDA platform definition. So, both defi-
nitions support multi-device UI development, but no
general one-to-one correspondence between the meta-
models involved in a certain MBUID approach clas-
sified as MDA models, and the CRF levels can be
established. The reason is that the use of a certain
meta-model instance strongly depends on the trans-
formation approach. For example, task models are
platform-independent if they use annotations to spec-
ify which task is available on a certain device, or
platform-dependent if they consider hardware charac-
teristics like screen-size when specifying which infor-
mation is concurrently available. However, a one-to-
one correspondence indicates that a certain approach
supports multi-device UI generation.

REFERENCES
Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri,

S., and Fraternali, P. (2008). Web applications de-
sign and development with webml and webratio 5.0.
In Paige, R. and Meyer, B., editors, Objects, Com-
ponents, Models and Patterns, volume 11 of Lecture
Notes in Business Information Processing, pages 392–
411. Springer Berlin Heidelberg.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-
lon, L., and Vanderdonckt, J. (2003). A unifying ref-
erence framework for multi-target user interfaces. In-
teracting with Computers, 15(3):289–308.

Ceri, S., Brambilla, M., and Fraternali, P. (2009). The his-
tory of webml lessons learned from 10 years of model-
driven development of web applications. In Borgida,
A., Chaudhri, V., Giorgini, P., and Yu, E., editors,
Conceptual Modeling: Foundations and Applications,
volume 5600 of Lecture Notes in Computer Science,
pages 273–292. Springer Berlin Heidelberg.

Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R., and
Arnautovic, E. (2006). A discourse model for inter-
action design based on theories of human communi-

cation. In Extended Abstracts on Human Factors in
Computing Systems (CHI ’06), pages 754–759. ACM
Press: New York, NY.

Garcı́a Frey, A., Céret, E., Dupuy-Chessa, S., Calvary, G.,
and Gabillon, Y. (2012). Usicomp: an extensible
model-driven composer. In Proceedings of the 4th
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS ’12, pages 263–268, New
York, NY, USA. ACM.

Meixner, G., Breiner, K., and Seissler, M. (2011a). Model-
Driven Useware Engineering, chapter 1, pages 1–26.
Studies in Computational Intelligence, SCI. Springer,
Heidelberg.

Meixner, G., Paternò, F., and Vanderdonckt, J. (2011b).
Past, present, and future of model-based user interface
development. i-com, 10(3):2–10.

Miller, E. J. and Mukerjij, J. (2003). MDA guide version
1.0.1. Technical report, Object Management Group
(OMG).

Mori, G., Paternò, F., and Santoro, C. (2004). Design and
development of multidevice user interfaces through
multiple logical descriptions. IEEE Transactions on
Software Engineering, 30(8):507–520.

Paternò, F., Santoro, C., and Spano, L. D. (2009). Maria: A
universal, declarative, multiple abstraction-level lan-
guage for service-oriented applications in ubiquitous
environments. ACM Trans. Comput.-Hum. Interact.,
16:19:1–19:30.

Popp, R., Falb, J., Arnautovic, E., Kaindl, H., Kavaldjian,
S., Ertl, D., Horacek, H., and Bogdan, C. (2009). Au-
tomatic generation of the behavior of a user interface
from a high-level discourse model. In Proceedings of
the 42nd Annual Hawaii International Conference on
System Sciences (HICSS-42), Piscataway, NJ, USA.
IEEE Computer Society Press.

Raneburger, D., Popp, R., Kavaldjian, S., Kaindl, H., and
Falb, J. (2011). Optimized GUI generation for small
screens. In Hussmann, H., Meixner, G., and Zuehlke,
D., editors, Model-Driven Development of Advanced
User Interfaces, volume 340 of Studies in Computa-
tional Intelligence, pages 107–122. Springer Berlin /
Heidelberg.

Truyen, F. (2006). The Fast Guide to Model Driven Archi-
tecture - The basics of Model Driven Architecture.

Van den Bergh, J., Meixner, G., and Sauer, S. (2010).
MDDAUI 2010 workshop report. In Proceedings
of the 5th International Workshop on Model Driven
Development of Advanced User Interfaces (MDDAUI
2010).

Vanderdonckt, J. (2005). A MDA-compliant environment
for developing user interfaces of information systems.
In CAiSE, pages 16–31.

Vanderdonckt, J. M. (2008). Model-driven engineering
of user interfaces: Promises, successes, and fail-
ures. In Proceedings of 5th Annual Romanian Conf.
on Human-Computer Interaction, pages 1–10. Matrix
ROM.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

272


