
Embedding and Parsing Combined for Efficient Language Design

Gergely Dévai, Dániel Leskó and Máté Tejfel
Faculty of Informatics, Eötvös Loránd University, Pázmány P. stny. 1/C, Budapest, Hungary

Keywords: Domain Specific Languages, Embedding, Concrete Syntax.

Abstract: One way to develop domain specific languages is to define their concrete syntax and create support for it
using classical compiler technology (maybe with the support of language workbenches). A different way is
to create an embedded language, which is implemented as a special library written in a host language. The
first approach is usually too costly in the first phase of the language design when the language evolves and
changes quickly. Embedded languages are more lightweight and support the language experiments better. On
the other hand, they are not that convenient for the end-users as the standalone languages. This paper presents
the lessons learnt from a DSL development research project in industry-university cooperation, that combined
the advantages of the two approaches: the flexibility of embedding in the design phase and the convenience of
a standalone language in the final product.

1 INTRODUCTION

In special hardware or software domains the general
purpose programming languages may not be expres-
sive or efficient enough. This is why domain specific
languages (DSLs) are getting more and more impor-
tant. However, using classical compiler technology
makes the development of new DSLs hard. The new
language usually changes quickly and the amount of
the language constructs increases rapidly in the early
period of the project. Continuous adaptation of the
parser, the type checker and the back-end of the com-
piler is not an easy job.

Language embedding is a technique that facilitates
this development process. In this case a general pur-
pose language is chosen, which is called the host lan-
guage, and its parser and type checker are reused for
the purposes of the DSL. In fact, an embedded lan-
guage is a special kind of library written in the host
language. The DSL programs in this setup are pro-
grams in the host language that extensively use this
library. The library is implemented in such a way
that its users have the impression that they are using a
DSL, even if they are producing a valid host language
program.

In this paper we use the so called deep embedding
technique. Implementation of a deeply embedded lan-
guage consists of

� data types to represent the AST,

� front-end: a set of functions and helper data types

which provide an interface to build ASTs,

� back-end: interpreter or compiler that inputs the
AST and executes the DSL program or generates
target code.

Not all general purpose programming languages
are equally suitable to be host languages. Flexible and
minimalistic syntax, higher order functions, monads,
expressive type system are useful features in this re-
spect. For this reason Haskell and Scala are widely
used as host languages. On the other hand, these are
not mainstream languages. As our experience from a
previous project (Dévai et al., 2010; Axelsson et al.,
2010) shows, using a host language being unfamiliar
to the majority of the programmers makes it harder
to make the embedded DSL accepted in an industrial
environment. In addition to this, error reporting and
debugging are hard to solve in an embedded language.

For these reasons we have decided to create a stan-
dalone DSL as the final product of our current project.
However, we did not want to go without the flexibility
provided by embedding in the language design phase.
This paper presents the experiment to combine the ad-
vantages of these two approaches.

This paper is based on a university research
project initiated by Ericsson. The goal of the project
is to develop a novel domain specific language that
is specialized in the IP routing domain as well as the
special hardware used by Ericsson for IP routing pur-
poses.

This paper does not introduce the DSL created by

244 Dévai G., Leskó D. and Tejfel M..
Embedding and Parsing Combined for Efficient Language Design.
DOI: 10.5220/0004591802440250
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 244-250
ISBN: 978-989-8565-68-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



this project for two reasons. First, the language, be-
ing the result of an industry-university cooperation,
is not publicly available at the moment. Second, the
results presented in this paper concern the language
development methodology used by the project. This
methodology is general, and the concrete language it
was applied to is irrelevant.

The most important lessons learnt from the exper-
iment are the following. It was more effective to use
an embedded version of the domain specific language
for language experiments than defining concrete syn-
tax first, because embedding provided us with flexi-
bility so that we were able to concentrate on language
design issues instead of technical problems. The way
we used the host language features in early case stud-
ies was a good source of ideas for the standalone lan-
guage design. Furthermore, it was possible to reuse
the majority of the embedded language implementa-
tion in the final product, keeping the overhead of cre-
ating two front-ends low.

The paper is organized as follows. Section 2 intro-
duces the architecture of the compiler. Then in sec-
tion 3 we analyze the implementation activities us-
ing statistics from the version control system used.
Section 4 presents related work, while section 5 con-
cludes.

2 COMPILER ARCHITECTURE

The architecture of the software is depicted in figure
1. There are two main dataflows as possible compi-
lation processes: embedded compilation (dashed) and
standalone compilation (dotted).

The input of the embedded program compilation
is a Haskell program loaded in the Haskell interpreter.
What makes a Haskell program a DSL program is
that it heavily uses the language front-end that is pro-
vided by the embedded DSL implementation. This
front-end is a collection of helper data types and func-
tions that, on one hand, define how the embedded pro-
gram looks like (its ”syntax”), and, on the other hand,
builds up the internal representation of the program.
The internal representation is in fact the abstract syn-
tax tree (AST) of the program encoded as a Haskell
data structure.

The same AST is built by the other, standalone
compilation path. In this case the DSL program has
it’s own concrete syntax that is parsed. We will re-
fer to the result of the parsing as concrete syntax tree
(CST). This is a direct representation of the program
text and may be far from the internal representation.
For this reason the transformation from the CST to an
AST may not be completely trivial.

Once the AST is reached, the rest of the com-
pilation process (optimizations and code generation)
is identical in both the embedded and the standalone
version. As we will see in section 3, this part of the
compiler is much bigger both in size and complexity
than the small arrow on figure 1 might suggest.

Assembly
code

Internal
representation

Syntax tree

DSL program
embedded
in Haskell

DSL program
in concrete

syntax

E
m
b
e
d
d
e
d

S
t
a
n
d
a
l
o
n
e1

2

ParserEmbedded
language
front-end

2

3

4

4

Figure 1: Compiler architecture.

The numbers on the figure show the basic steps of
the workflow to create a compiler with this architec-
ture. The first step is to define the data types of the in-
ternal representation. This is the most important part
of the language design since these data types define
the basic constructs of the DSL. Our experience has
shown that it is easier to find the right DSL constructs
by thinking of them in terms of the internal represen-
tation then experimenting with syntax proposals.

Once the internal representation (or at least a con-
sistent early version of it) is available, it is possible to
create embedded language front-end and code gener-
ation support in parallel. Implementation of the em-
bedded language front-end is a relatively easy task if
someone knows how to use the host language features
for language embedding purposes. Since the final
goal is to have a standalone language, it is not worth
creating too fine grained embedded language syntax.
The goal of the front-end is to enable easy-enough
case study implementation to test the DSL function-
ality.

Contrarily, the back-end implementation is more
complicated. If the internal representation is changed
during DSL design, the cost of back-end adaptation
may be high. Fortunately it is possible to break this
transformation up into several transformation steps
and start with the ones that are independent of the
DSL’s internal representation. In our case this part of
the development started with the module that pretty
prints assembly programs.

When the case studies implemented in the embed-

Embedding�and�Parsing�Combined�for�Efficient�Language�Design

245



ded language show that the DSL is mature enough,
it is time to plan its concrete syntax. Earlier experi-
ments with different front-end solutions provide valu-
able input to this design phase. When the structure of
the concrete syntax is fixed, the data types represent-
ing the CST can be implemented. The final two steps,
parser implementation and the transformation of the
CST to AST can be done in parallel.

3 DETAILED ANALYSIS

According to the architecture in section 2 we have
split the source code of the compiler as follows:
� Representation: The underlying data structures,

basically the building data types of the AST.
� Back-end: Transforms the AST to target code.

Mostly optimization and code generation.
� Embedded front-end: Functions of the embedded

Haskell front-end which constructs the AST.
� Standalone front-end: Lexer and parser to build

up the CST and the transformation from CST to
AST.
The following figures are based on a dataset ex-

tracted from our version control repository1. The
dataset contains information from 2012 late February
to the end of the year.

Figure 2 compares the code sizes (based on the
eLOC, effective lines of code metric) of the previ-
ously described four components. The overall size of
the project was almost 9000 eLOC 2 when we sum-
marized the results of the first year.

51% 

13% 

7% 

29% Back-end

Embedded front-end

Representation

Standalone front-end

Figure 2: Code size comparison by components.

No big surprise there, the back-end is without a
doubt the most heavyweight component of our lan-
guage. The second place goes to the standalone front-
end, partly due to the size of lexing and parsing

1In this project we have been using Subversion.
2Note that this project was entirely implemented in

Haskell, which allows much more concise code than the
mainstream imperative, object oriented languages.

codes3. The size of the embedded front-end is less
than the half of the standalone’s. The representation
is the smallest component by the means of code size,
which means that we successfully kept it simple.

Figure 3 shows the exact same dataset as figure 2
but it helps comparing the two front-ends with the
reused common components (back-end, representa-
tion).

58% 
13% 

29% 
Common

Embedded only

Standalone only

Figure 3: Code size comparison for embedded / standalone.

The pie chart shows that by developing an embed-
ded language first, we could postpone the develop-
ment of almost 30% of the complete project, while
the so-called extra code (not released, kept internally)
was only 13%.

Figure 4 presents how intense was the develop-
ment pace of the four components. The dataset is
based on the log of the version control system. Origi-
nally it contained approximately 1000 commits which
were related to at least one of the four major com-
ponents. Then we split the commits by files, which
resulted almost 3000 data-points, that we categorized
by the four components. This way each data-point
means one change set committed to one file.

It may seem strange that we spent the first month
of development with the back-end, without having
any representation in place. This is because we first
created a representation and pretty printer for the tar-
geted assembly language.

The work with the representation started at late
March and this was the most frequently changed com-
ponent over the next two-three months. It was hard to
find a proper, easy-to-use and sustainable represen-
tation, but after the first version was ready in early
April, it was possible to start the development of the
embedded front-end and the back-end.

The back-end and code generation parts were
mostly developed during the summer, while the em-
bedded front-end was slightly reworked in August and

3We have been using the Parsec parser combinator li-
brary (Leijen and Meijer, 2001) of Haskell. Using context
free grammars instead would have resulted in similar code
size.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

246



0.00

0.25

0.50

0.75

1.00

2012/03 2012/04 2012/05 2012/06 2012/07 2012/08 2012/09 2012/10 2012/11 2012/12 2013/01
Time

D
en

si
ty

Components

Back−end

Embedded front−end

Representation

Standalone front−end

Figure 4: Development timeline.

September, because the first version was hard to use.
By October we almost finalized the core language

constructs, so it was time to start to design the stan-
dalone front-end and concrete, textual syntax. This
component was the most actively developed one till
the end of the year. At the end of October we had
a slight architecture modification which explains the
small spike in the timeline. Approaching the year
end we were preparing the project for its first release:
Every component was actively checked, documented
and cleaned.

4 RELATED WORK

Thomas Cleenewerck states that ”developing DSLs is
hard and costly, therefore their development is only
feasible for mature enough domains” (Cleenewerck,
2003). Our experience shows that if proper language
architecture and design methodology is in place, the
development of a new (not mature) DSL is feasible
in 12 months. The key factors for the success are to
start low cost language feature experiments as soon as
possible, then fix the core language constructs based
on the results and finally expand the implementation
to a full-fledged language and compiler.

Frag is a DSL development toolkit (Zdun, 2010),
which is itself a DSL embedded into Java. The main
goal of this toolkit is to support deferring architectural
decisions (like embedded vs. external, semantics, re-
lation to host language) in DSL software design. This
lets the language designers to make real architectural
decisions instead of ones motivated by technological
constraints or presumptions. In our case there were
no reason to postpone architectural decisions: It was
decided early in the project to have an external DSL
with a standalone compiler (see section 1). What we
needed instead was to postpone their realization and

keep the language implementation small and simple
in the first few months to achieve fast and painless
experiment/development cycles.

Another approach to decrease the cost of DSL de-
sign is published by Bierhoff, Liongosari and Swami-
nathan (Bierhoff et al., 2006). They advocate in-
cremental DSL development, meaning that an initial
DSL is constructed first based on a few case studies,
which is later incrementally extended with features
motivated by further case studies. This might be fruit-
ful for relatively established domains. In our case the
language design iterations were heavier then simple
extensions. We believe that creating a full fledged first
version of the language and then considerably rewrit-
ing it in the next iterations would have wasted more
development effort than the methodology we applied.

At the beginning of our project a set of separate
embedded language experiments were started, each
of them dedicated to independent language features.
These components were loosely coupled at that time,
therefore gluing them to form the first working ver-
sion was a relatively simple task to do. This kind
of architecture is very similar to keyword based pro-
gramming (Cleenewerck, 2003), where the complete
DSL is formed by loosely coupled and independent
language components. Later on our components be-
came more and more tightly coupled due to the need
of proper error handling and reporting, type and con-
straint checking.

Languages like Java, Ruby, MetaOCml, Tem-
plate Haskell, C++, Scala are used or are tried to
be used as implementation languages for develop-
ing new DSLs (Sloane, 2009; Freeman and Pryce,
2006; Cunningham, 2008; Czarnecki et al., 2003).
These projects either used the embedded-only or the
standalone-only approach and they all reported prob-
lems and shortcomings. We claim that many of these
can be eliminated by combining the two approaches.

The Metaborg approach (Bravenboer and Visser,

Embedding�and�Parsing�Combined�for�Efficient�Language�Design

247



2004; Bravenboer et al., 2005) (and many similar
projects) extend the host language with DSL frag-
ments using their own syntax. The applications are
then developed using the mixed language and the
DSL fragments are usually compiled to the host lan-
guage. In our case the host language is only used for
metaprogramming on top of the DSL, the embedding
does not introduce concrete syntax and, finally, the
host language environment is never used to execute
the DSL programs.

David Wile has summarized several lessons learnt
about DSL development (Wile, 2004). His messages
are mostly about how to understand the domain and
express that knowledge in a DSL. Our current paper
adds complementary messages related to the language
implementation methodology.

Based on Spinellis’s design patterns for
DSLs (Spinellis, 2001), we can categorize our
project. The internally used embedded front-end is
a realization of a piggyback design pattern, where
the new DSL uses the capabilities of an existing lan-
guage. While the final version of our language, which
employs a standalone front-end, is a source-to-source
transformation.

5 DISCUSSION AND
CONCLUSIONS

5.1 Lessons Learnt

This section summarizes the lessons learnt from the
detailed analysis presented in section 3.

Message 1: Do the language experiments using
an embedded DSL then define concrete syntax and
reuse the internal representation and back-end! Our
project started in January 2012 and in December the
same year we released the first version of the language
and compiler for the industrial partner. Even if this
first version was not a mature one, it was functional:
the hash table lookups of the multicast protocol was
successfully implemented in the language as a direct
transliteration from legacy code. Since state of the art
study and domain analysis took the first quarter of the
year, we had only 9 months for design and implemen-
tation. We believe that using a less flexible solution in
the language design phase would not have allowed us
to achieve the mentioned results.

Message 2: Design the language constructs by
creating their internal representation and think about
the syntax later! The temptation to think about the
new language in terms of concrete syntax is high. On
the other hand, our experience is that it is easier to

design the concepts in abstract notation. In our case
this abstract notation was the algebraic data types of
Haskell: The language concepts were represented by
the data types of the abstract syntax tree. When the
concepts and their semantics were clear there was still
large room for syntax related discussions4, however,
then it was possible to concentrate on the true task of
syntax (to have an easy to use and expressive nota-
tion) without mixing semantics related issues in the
discussion. This is analogous to model driven devel-
opment: It is easier to build the software architecture
as a model and think about the details of efficient im-
plementation later.

Message 3: Use the flexibility of embedding to be
able to concentrate on language design issues instead
of technical problems! Analysis of the compiler com-
ponents in section 3 shows that the embedded front-
end of the language is lightweight compared to the
front-end for the standalone language. This means
that embedding is better suited for the ever-changing
nature of the language in the design phase. It supports
the evolution of the language features by fast develop-
ment cycles and quick feedback on the ideas.

Message 4: No need for a full-fledged embedded
language! Creating a good quality embedded lan-
guage is far from trivial. Using different services
of the host language (like monads and do notation,
operator precedence definition, overloading via type
classes in case of Haskell) to customize the appear-
ance of embedded language programs can easily be
more complex then writing a context free grammar.
Furthermore, advocates of embedded languages em-
phasize that part of the semantic analysis of the em-
bedded language can be solved by the host language
compiler. An example in case of Haskell is that the
internal representation of the DSL can be typed so
that mistyped DSL programs are automatically ruled
out by the Haskell compiler. These are complex tech-
niques, while this paper has stated so far that embed-
ding is lightweight and flexible — is this a contra-
diction? The goal of the embedded language in our
project was to facilitate the language design process:
It was never published for the end-users. There was
no need for a mature, nicely polished embedded lan-
guage front-end. The only requirement was to have
an easy-to-use front-end for experimentation — and
this is easy to achieve. Similarly, there was no need to
make the Haskell compiler type check the DSL pro-
grams: the standalone language implementation can-

4”Wadler’s Law: The emotional intensity of debate on a
language feature increases as one moves down the follow-
ing scale: Semantics, Syntax, Lexical syntax, Comments.”
(Philiph Wadler in the Haskell mailing list, February 1992,
see (Wadler, 1992).)

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

248



not reuse such a solution. Instead of this, type check-
ing was implemented as a usual semantic analyzer
function working on the internal representation. As a
result of all this, the embedded forntend in our project
in fact remained a light-weight component that was
easy to adapt during the evolution of the language.

Message 5: Carefully examine the case studies im-
plemented in the embedded language to identify the
host language features that are useful for the DSL!
These should be reimplemented in the standalone lan-
guage. An important feature of embedding is that the
host language can be used to generate and to general-
ize DSL programs. This is due to the meta language
nature of the host language on top of the embedded
one. Our case studies implemented in the embedded
language contain template DSL program fragments
(Haskell functions returning DSL programs) and the
instances of these templates (the functions called with
a given set of parameters). The parameter kinds (ex-
pressions, left values, types) used in the case studies
gave us ideas how to design the template features of
the standalone DSL. Another example is the scoping
rules of variables. Sometimes the scoping rules pro-
vided by Haskell were suitable for the DSL but not
always. Both cases provided us with valuable infor-
mation for the design of the standalone DSL’s scoping
rules.

Message 6: Plan enough time for the concrete
syntax support, which may be harder to implement
than expected! This is the direct consequence of the
previous item. The language features borrowed from
the host language (eg. meta programming, scoping
rules) have to be redesigned and reimplemented in
the standalone language front-end. Technically this
means that the concrete syntax tree is more feature
rich than the internal representation. For this rea-
son the correct implementation of the transformation
from the CST to the AST takes time. Another issue
is source location handling. Error messages have to
point to the problems by exact locations in the source
file. The infrastructure for this is not present in the
embedded language.

5.2 Plans and Reality

Our original project plan had the following check
points:

� By the end of March: State of the art study and
language feature ideas.

� By the end of June: Ideas are evaluated by sepa-
rate embedded language experiments in Haskell.

� By the end of August: The language with concrete
syntax is defined.

� By the end of November: Prototype compiler is
ready.

� December was planned as buffer period.

While executing it, there were three important di-
verges from this plan that we recommend for consid-
eration.

First, the individual experiments to evaluate dif-
ferent language feature ideas were quickly converg-
ing to a joint embedded language. Project members
working on different tasks started to add the feature
they were experimenting with modularly to the exist-
ing code base instead of creating separate case stud-
ies.

Second, the definition of the language was delayed
by three months. This happened partly because it
was decided to finish the spontaneously emerged em-
bedded language including the back-end, and partly
because a major revision and extension to the lan-
guage became necessary to make it usable in practice.
As a result, the language concepts were more or less
fixed (and implemented in the embedded language)
by September. Then started the design of the concrete
syntax which was fixed in October. At first glance this
seems to be an unmanageable delay. However, as we
have pointed out in this paper, it was then possible to
reuse a considerable part of the embedded language
implementation for the standalone compiler.

Third, we were hoping that, after defining the con-
crete syntax, it will be enough to write the parser
which will trivially fit into the existing compiler as an
alternative to the embedded language front-end. The
parser implementation was, in fact, straightforward.
On the other hand, it became clear that it cannot di-
rectly produce the internal representation of the em-
bedded language. Recall what section 5.1 tells about
the template features and scoping rules to understand
why did the transformation from the parsing result to
the internal representation take more time than ex-
pected. Therefore the buffer time in the plan was
completely consumed to make the whole infrastruc-
ture work.

In brief, we used much more time than planned to
design the language, but the compiler architecture of
section 2 yet made it possible to finish the project on
time.

5.3 Future

At the moment it is unclear what will happen to this
compiler architecture in the future when more lan-
guage features will be added.

Conclusions of this paper suggest that we continue
with the successful strategy and experiment with new

Embedding�and�Parsing�Combined�for�Efficient�Language�Design

249



language features by modifying, extending the em-
bedded language and, once the extensions are proved
to be useful and are stable enough, add them to the
standalone language.

On the other hand, this comes at a cost: The con-
sistency of the embedded and standalone language
front-ends have to be maintained. Whenever slight
changes are done in the internal representation, the
embedded language front-end has to be adapted. We
still do not know if this cost overwhelms the advan-
tage that the embedded language offers for the lan-
guage design.

Furthermore, since the standalone syntax is more
convenient than the embedded language front-end, it
might not be appealing to experiment with new lan-
guage concepts in the embedded language. It also
takes more effort to keep in mind two different vari-
ants of the same language.

Even if it turns out that it is not worth maintain-
ing the embedded language front-end and it gets re-
moved from the compiler one day, its important pos-
itive role in the design of the first language version is
indisputable.

6 SUMMARY AND
ACKNOWLEDGEMENTS

This paper evaluates a language development method-
ology that starts the design and implementation with
an embedded language, then defines concrete syntax
and implements support for it. The main advantage of
the method is the flexibility provided by the embed-
ded language combined by the advantages of a stan-
dalone language. We have demonstrated that most of
the embedded language implementation can be reused
for the standalone compiler.

We would like to thank the support of Ericsson
Hungary and the grant EITKIC 12-1-2012-0001 that
is supported by the Hungarian Government, managed
by the National Development Agency, and financed
by the Research and Technology Innovation Fund.

REFERENCES

Axelsson, E., Claessen, K., Dévai, G., Horváth, Z., Keijzer,
K., Persson, A., Sheeran, M., Svenningsson, J., Vajda,
A., and et al. (2010). Feldspar: A domain specific
language for digital signal processing algorithms. In
IN: Proc. 8th ACM/IEEE International Conference on
Formal Methods and Models for Codesign. IEEE.

Bierhoff, K., Liongosari, E. S., and Swaminathan, K. S.
(2006). Incremental development of a domain-specific

language that supports multiple application styles. In
OOPSLA 6th Workshop on Domain Specific Model-
ing, pages 67–78.

Bravenboer, M., Groot, R. D., and Visser, E. (2005).
Metaborg in action: Examples of domain-specific lan-
guage embedding and assimilation using stratego/xt.
In In Participants Proceedings of the Summer School
on Generative and Transformational Techniques in
Software Engineering (GTTSE05. Springer Verlag.

Bravenboer, M. and Visser, E. (2004). Concrete syn-
tax for objects: domain-specific language embedding
and assimilation without restrictions. SIGPLAN Not.,
39(10):365–383.

Cleenewerck, T. (2003). Component-based dsl develop-
ment. In In Proceedings of GPCE03 Conference, Lec-
ture Notes in Computer Science 2830, pages 245–264.
Springer-Verlag.

Cunningham, H. C. (2008). A little language for surveys:
constructing an internal dsl in ruby. In Proceedings
of the 46th Annual Southeast Regional Conference on
XX, ACM-SE 46, pages 282–287, New York, NY,
USA. ACM.

Czarnecki, K., O’Donnell, J. T., Striegnitz, J., and Taha, W.
(2003). Dsl implementation in metaocaml, template
haskell, and c++. In Domain-Specific Program Gen-
eration, pages 51–72.

Dévai, G., Tejfel, M., Gera, Z., Páli, G., Nagy, G., Horváth,
Z., Axelsson, E., Sheeran, M., Vajda, A., Lyckegård,
B., and Persson, A. (2010). Efficient code gener-
ation from the high-level domain-specific language
Feldspar for DSPs. In ODES-8: 8th Workshop on Op-
timizations for DSP and Embedded Systems.

Freeman, S. and Pryce, N. (2006). Evolving an Embedded
Domain-Specific Language in Java. In Companion
to the 21st ACM SIGPLAN Conference. OOPSLA’06,
pages 855–865, Portland, Oregon, USA.

Leijen, D. and Meijer, E. (2001). Parsec: Direct style
monadic parser combinators for the real world. Elec-
tronic Notes in Theoretical Computer Science, 41(1).

Sloane, A. M. (2009). Experiences with Domain-Specific
Language Embedding in Scala.

Spinellis, D. (2001). Notable design patterns for domain-
specific languages. J. Syst. Softw., 56(1):91–99.

Wadler, P. (1992). Wadler’s ”Law” on lan-
guage design. Haskell mailing list,
http://code.haskell.org/˜dons/haskell-1990-
2000/msg00737.html.

Wile, D. (2004). Lessons learned from real dsl experiments.
Sci. Comput. Program., 51(3):265–290.

Zdun, U. (2010). A dsl toolkit for deferring architectural
decisions in dsl-based software design. Information
and Software Technology, Vol.52(No. 7):733–748.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

250


