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Abstract: We present the scientific approach of the EU-FP7 SEAM4US project to the problem of sustainable energy 
management of underground systems, in particular the optimal and scalable control of single metro stations 
and their surroundings that will yield at least a 5% saving in non-traction electricity consumption, 
equivalent to that consumed by more than 175 households. To this end we first formulate the sustainable 
energy management problem as a constrained optimization problem and then present a modified Newton’s 
method as solution. Preliminary simulation results of the model-in-the-loop are delivered and promising. 

1 INTRODUCTION 

Underground transportation systems are big energy 
consumers (e.g. 631 million kWh / year), and have 
significant impacts on energy consumptions at a 
regional scale (Anderson et al., 2009). 
Approximately one third of the metro networks’ 
energy is required for operating the subsystems of 
metro stations and surroundings, such as ventilators, 
lifts, escalators, and lighting (Oscar, 2011).  

Although a relatively small percentage of energy 
can be saved with the optimal management of these 
subsystems, a large energy saving in absolute terms 
can be obtained on a regional scale. The EU-FP7 
project, SEAM4US (Sustainable Energy 
mAnageMent 4(for) Underground Systems) is to 
develop advanced technologies for optimal and 
scalable energy consumption control of metro 
stations that will yield a 5% saving in non-traction 
electricity consumption, equivalent to that consumed 
by more than 175 households. 

The objective of the SEAM4US project is to 
develop an intelligent control system for metro 
stations, which is adaptive on the basis of 
environmental factor forecasts and occupancy flow 
patterns. Most of the works are ongoing; related 
hardware and software deployment in the pilot 
station are supposed to be implemented before 
October 2014. 

A metro station is a very complex system. It 

involves, among others, multi-storey underground 
spaces with multi-faceted thermal behaviours, e.g., 
intricate air exchange dynamics with the outside, 
heat conduction with the surrounding soil and high 
variable internal gains due to travelling passengers 
and trains. Processes that occur in metro stations, 
such as the arrival and departure of trains, passenger 
transit, commercial activities, surface traffic and 
weather take place on different spatio-temporal and 
dynamic scales (Ansuini et al., 2012). Furthermore, 
a typical metro station is a very large environment. 
The modelling of the environmental conditions 
requires analysis at the urban block scale, which 
means a size up to thousands of meters. It is well 
known that at, this dimensional scale, fluid dynamics 
finite element models (FEM) are pushed to their 
limits (Franke et al., 2004). 

Thus the overall modelling task of SEAM4US 
project is very complex; it involves user behaviour 
modelling, environmental factor modelling, and 
optimal controller design. We will present the 
scientific position of the project in particular on the 
controller design. 

The structure of the paper is organized as 
follows. We first introduce related work in Section 
2, followed by a mathematical problem formulation 
for sustainable energy management of a metro 
station in Section 3. Section 4 proposes our model-
in-the-loop framework as solution. Simulation 
results are presented in Section 5, followed by 
discussions and future works in Section 6. 
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2 RELATED WORK IN ENERGY 
CONTROL  

Energy efficiency has been gaining increasing 
research interest in the past two decades. As 
economic crisis continues, people are keen to design 
energy efficient systems and apply them to various 
application areas. 

Energy efficiency is a traversal problem across 
numerous application domains such as sensor 
networks (Cui et al., 2004), building management 
(Lamoudi et al., 2011), (Samuel, et al., 2011), and 
data centre management (Lakshmi, 2012) requiring 
sophisticated approaches. Cui (Cui et al., 2004) 
showed, for instance, that cooperative multi-input-
multi-output (MIMO) transmission and reception 
simultaneously achieve both energy savings and 
delay reduction in radio application of sensor 
networks.  

Buildings account for 40% of worldwide energy 
use (US department of energy, 2008). Many EU 
projects focus on the energy performance of 
buildings, like Adapt4EE (SEC-288150). Model 
predictive control (MPC) methods have been applied 
to minimize the energy consumption in buildings 
(Lamoudi et al., 2011). 

3 SCIENTIFIC PROBLEM 
FORMULATION 

The SEAM4US project is about (1) acquiring 
optimized energy consumption minimizing 
strategies (2) given a certain context determined by 
outside temperature, airflow status, passenger 
density, train schedule, etc., (3) while satisfying 
various constraints, such as comfort-levels and 
operational constraints. 

Consequently, SEAM4US defines the control 
task as a constrained optimization problem, i.e., find 
a distributed, but coordinated, control strategy iw , 

which minimize the total energy consumption across 
the target metro station. 

( )i
it

e w dt  (1)

Subject to comfort level constraints: 

Temp_L Temp (x, t) Temp_H   

_L  (x, t) _HAirflow Airflow Airflow   

Temp_L Temp (x, t) Temp_H   

(2)

Hum_L H  (x, t) H _Hum um   

Co2_L Co2(x, t) Co2_H   

Lum_L L (x, t) L _Hum um   

and operational constraints: 

Ctwtw ii  ||)()1(||   (3)

Where     is the frequency of fan or any other 
subsystem i,       is the energy consumption rate of 
fan , lighting or any other subsystems given input 
frequency or lighting luminance level, and where 

Lxx _ and Hxx _  refer to the lower bound and 

upper bound of the referred context variable, 

respectively. For instance, LTemp _ refers to 

minimal requirement of temperature.  
Note that passenger density (user modelling) will 

influence the Temp, Airflow, humidity, CO2, etc. 
Furthermore, all context variables (temperature, 
humidity, level of pollutants, airflow rate) are 
functions of passenger density (spatial-temporal) 
distribution, train effects, and other context variables 
such as outside wind, outside temperature, etc. 
Therefore, the modelling task is trying to establish 
and quantify the relationships between the fan 
frequency, lighting luminance level and the 
environmental and thermal factors and the passenger 
behavioural patterns as part of the contexts such as 
temperature, humidity, CO2 concentration, etc.  

For constrained optimization the interior point 
method (Alizadeh, 1991) is usually used to unify the 
inequality constraints into the objective function. 
There are two types of interior functions that we can 
use, barrier interior function (Gill et al., 1986) and 
primal-dual interior function (Alizadeh et al., 1998). 
When the constraints are box-like constraints, 
meaning that we want to bound the constraints 
within a range, barrier interior functions are 
typically used. When the constraints are single sided 
constraints or change as time goes on, the primal-
dual interior method is often used.  

After unifying the constraints into the objective 
function, we reach an unconstrained optimization 
problem.  

If the objective function is twice differentiable, 
then Newton’s method is a good candidate to learn 
the optimal point. When the objective function is 
differentiable, but not twice differentiable, we can 
use gradient-based methods (Boyd and 
Vandenberghe , 2004), such as steepest gradient 
method. When the objective function is not 
differentiable, we can use the sub-gradient method 
(Boyd and Vandenberghe, 2004) for optimization.  

)( iwe
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In the following section, we will elaborate our 
modified Newton’s method to solve the sustainable 
energy management problem.  

4 MODEL-IN-THE-LOOP 
SOLUTION 

The modified Newton’s learning method is used to 
reach the optimized solution (minimized fan energy 
consumption) of the problem. The modified method 
is divided into three steps, namely, (1) unifying 
objectives with the constraints, (2) determining the 
Newton step for next-time-step fan frequency, (3) 
backtrack line search to determine the actual update 
step. 

4.1 Unifying Objectives 
with Constraints 

Since all of the constraints are box constraints, 
which means that we are interested in keeping the  
target  variable x  within  a  range .  We  use 
logarithmic-barrier function to transform the 
constraints into objectives. Logarithmic-barrier 
function (Den Hertog et al., 1990) is defined as 
follows: 

1 0log( ) log( )
( )

x x x x
x

    
  

   0 1x x x

else

 
 (4)

The unified objective function for the preliminary 
problem becomes 

1
( 1) ( ( ( , 1))

( ( , 1)))

obj e t Temp x t

Airflow x t


    

 
 (5)

Where   is a meta-parameter that gauges the 
preference weight between the main objective 
(energy minimization) and the associated objectives 
(keeping context variables within a target range), as 
  increases to  , the transformed problem 
becomes the same as the constrained problem. 

4.2 Newton’s Method 

After unifying the constraints into the minimization 
objectives, we successfully transformed the 
constrained optimization problem into an 
unconstrained optimization problem. We use 
Newton’s method (Boyd and Vandenberghe , 2004) 
to learn the direction and step size. Before 
introducing Newton’s method, we would like to 

display the general objective of unconstrained 

optimization. In order to optimize a function )(xf , 

we are in fact searching for a *x  which makes the 

first order derivative 0)( *
' xf . In case that there 

are multiple *x  that makes 0)( *
' xf , we select 

the minimal )( *xf as the solution.  

Newton's method attempts to construct a 
sequence    from an initial guess   that converges 
towards *x such that 0)( *

' xf . This *x is called a 

stationary point of (.)f . The second order Taylor 

expansion )(xf of function (.)f  around      (where 

nxxx   ) is: 

' " 21
( ) ( ) ( ) ( )

2n n n nf x x f x f x x f x x       (6)

attains its extremism when its derivative with respect 
to x is equal to zero, i.e. when x solves the linear 
equation: 

0)()( "'  xxfxf nn  (7)

(Considering the right-hand side of the above 
equation as a quadratic in x , with constant 
coefficients.) 

Thus, provided that )(xf is a twice-

differentiable function well approximated by its 
second order Taylor expansion and the initial guess 

0x is chosen close enough to *x , the sequence )( nx
defined by:  

'

"

( )

( )
n

n
n

f x
x x x

f x
      

'

1 "

( )

( )
n

n n
n

f x
x x

f x              0,1,...n   
(8)

will converge towards a root of    , i.e. *x for which 

0)( *
' xf . 

Back to our optimization problem, the definition of f 
is the objective function that we are trying to 
minimize:  

1
( ( 1)) ( 1) ( ( ( , 1))

( ( , 1)))

f w t e t Temp x t

Airflow x t


     

 
 (9)

4.3 Backtrack Line Search 

Although Newton learning guarantees that we can 
find a *x  that makes 0)( *

' xf , the Newton step 

'f

nx

nx 0x
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might be really large in reality. However, in real 
world application, the fan frequency has a limited 
range; it cannot go to infinity. Therefore, we use 
backtrack line search (Boyd and Vandenberghe, 
2004) algorithm to find the optimal step for learning.  

Suppose that we have an initial guess of 
displacement obtained from Newton’s method x . 
We evaluate )( xxf   to see if it satisfies all the 

operational constraints and if it did minimize the 
energy consumption, if so, we let x  as it is. If not, 
we update x  according the following rule 

xx  : , where  is a pre-specified learning 
rate. We evaluate the new )( xxf  . We stop 

updating x until we have a feasible and improved 
)( xxf   or x is smaller than a certain threshold . 

5 SIMULATION RESULTS 

The final goal of the SEAM4US project is to 
develop an advanced control system and run it on an 
actual metro station. However, in the design phase, 
we should better only simulate the behaviour of 
metro stations and test the algorithm on the virtual 
station.  

We have developed a simulator for the metro 
station in dymola, and the modified Newton’s 
method is tested in the simulated virtual station 
environment. In the dymola model, we currently 
only simulate one controllable entity, the fan. Other 
facilities such as lighting and escalators will be 
added in the later stage. Environmental models and 
user models are used to predict the future context 
variable changes such as future temperature, airflow 
rate, and occupancy density level. However, we do 
not concentrate on how those models are developed 
in this position paper. We focus on the effectiveness 
of the controller. 

Fig. 4.1 shows the Model-In-The-Loop 
framework, and how we do energy minimization 
while considering comfort level and operational 
constraints.  
We first start with a fan frequency 0w , and through 

unifying objectives and constraints, we are able to 
represent the constrained optimization problem as an 
unconstrained optimization problem. From 
Newton’s method, we are able calculate out a 
displacement ( x ), going into the backtrack line 
search box, we are able to search out the ‘best’ fan 
frequency. The best fan frequency will go into the 
virtual station; the executed results together with 
new predictions from Bayesian Networks, and user 

models will trigger another round of Newton 
learning and backtracking line search. Thus, the 
modified Newton’s method, when including the 
virtual station in the loop, is an online learning 
scheme, which is able to adapt its policies in real 
time. 

 

 

Figure 4.1: Model-In-The-Loop Scheme. 

In the simulation, we specify   in Eq. (1) as 10 
(theoretically, we should specify   as large as 
possible, however, that would make the qualified fan 
frequency range very short, and it would therefore 
be hard for the fan control agent to reach an optimal 
fan frequency). The learning rate   is set to be 0.9, 

threshold   is set to be 0.2 (  corresponds to the 

granularity of the fan frequency control,  =0.2 

means that we can increase/decrease the fan 
frequency by a minimum of 0.2). The upper and 
lower bound of the target temperature range is 25 
and 35 respectively, and the upper and lower bound 
of the target airflow rate is 40 and 80 respectively. 
The starting fan frequency is 35, and the fan 
frequency feasible range is from 0 to 50. We used 
the model-in-the-loop framework for simulation, and 
we simulated the behaviour of the controller in a 
single day from 5am to 11pm.  

Fig. 5.1 shows the fan frequency update over the 
day. From Fig. 5.1 we can see that when adopting 
our modified Newton learning strategy, we can 
always have a lower fan frequency output than the 
normal fan policy. Fig. 5.2, Fig. 5.3 and Fig. 5.4 
show the expected energy consumption, expected 
airflow rate and expected temperature at different 
hours of the day. In the figure, we can see that, after 
several steps of Newton Learning, we can decrease 
the energy consumption of the subsystems, while 
maintaining the environment factors such as 
temperature, airflow rate within the pre-specified 
range. 
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Figure 5.1: Fan frequency at different hours. 

     
Figure 5.2: Expected energy consumption rate at different 
hours. 

 

Figure 5.3: Airflow rate at different hours. 

 

Figure 5.4: Platform temperature at different hours. 

6 CONCLUSIONS 
AND FUTURE WORKS 

In this position paper, we have presented a 
mathematic problem formulation and tentatively 
solved the scientific problem through modified 
Newton’s method. Preliminary and promising results 
within the model-in-the-loop framework are 
presented but need further experimental verification. 

Therefore, we are currently deploying sensor 
networks in the pilot station to gather metro system, 
passenger density and environmental data. After the 
data collection, we will first validate and improve 
the virtual station control model in dymola.  

An alternative approach to the control problem 
based on fuzzy control is currently investigated for 
subsystem control. Furthermore, we are up to 
develop distributed but coordinated control solutions 
at multiple scales to tackle robustness and 
computational issues. By the end of 2014, we will 
have implemented algorithm and deployed the 
SEAM4US system to the pilot station in Barcelona. 
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