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Abstract: This paper proposes two novel fuzzy fractional PID structures. The tuning of the fuzzy fractional controllers
is based on the prior knowledge of fractional-order control tuning rules. The digital implementation of these
controllers is also investigated. The effectiveness and robustness of the proposed tuning methodology is illus-
trated through its application on a fractional-order plant. The simulations results show that the control system
performance is better than that of conventional fractional PID control.

1 INTRODUCTION

In recent years, the fractional-order PID (FO-PID)
controllers have been a fruitful field of research (Pod-
lubny, 1999a; Podlubny, 1999b). However, no effec-
tive and simple tuning rules still exist for these con-
trollers as those given for the integer PID controllers
(Astrom and Hagglund, 1995). It is well known that
the FO-PID extends the capabilities of the classical
counterpart and, thus, have a wider domain of appli-
cation, such as in suspension systems, robotics, sig-
nal processing, control and diffusion (Oldham and
Spanier, 1974; Podlubny, 1999a; Podlubny, 1999b).
On the other hand, the fuzzy logic controllers (FLC)
have also been successfully applied in the control of
many physical systems, particularly those with un-
certainty, unmodelled, disturbed and/or nonlinear dy-
namics (Lee, 1990; Li and Gatland, 1996; Carvajal
et al., 2000).

In this paper, we combine the features of fuzzy
controllers with those of fractional controllers of PID-
type. The resulting fuzzy fractional PID (FF-PID)
controller is investigated in terms of its digital imple-
mentation and robustness. The combined advantages
of the two controllers results in a better controller with
superior robustness and wider domain of application.
The tuning methodology of these controllers is based
on the prior knowledge of fractional-order control.
First, a fractional-order controller is built and tuned
(or used one already implemented). Then, we replace
it with a linear fuzzy fractional controller displaying
exactly the same step response. After, we make the

controller nonlinear and fine tune it in order to get
better control of the system. The fuzzy fractional con-
troller will give, at least, the same performance of its
linear counterpart.

The paper is organized as follows. Section 2
presents the basic ideas of continuous and discrete
fractional PID controllers. Section 3 outlines a pro-
cedure for the design of FF-PID controllers. In sec-
tion 4, we test the proposed fuzzy fractional con-
trollers and assess their applicability and robustness
on a fractional-order plant. Finally, section 5 draws
the main conclusions and addresses perspectives to
future developments.

2 FRACTIONAL PID
CONTROLLERS

The fractional-order controller of PID-type, usually
named PIλDµ controller, may be given as (Podlubny,
1999b; Barbosa et al., 2010):

C(s) =
U (s)
E (s)

= Kp+
Ki

sλ +Kdsµ (1)

where Kp, Ki and Kd are the proportional, inte-
gral and derivative gains, and usually the fractional
orders (λ, µ) ∈ [0, 1]. Clearly, taking (λ, µ) ≡
{(1,1) , (1,0) , (0,1) , (0,0)} we get the classical
{PID, PI, PD, P}-controllers, respectively. The
PIλDµ-controller is more flexible and gives the possi-
bility of adjusting more carefully the dynamical pro-
prieties of a control system (Podlubny, 1999b).
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The time domain equation of the PIλDµ controller
is:

u(t) = Kpe(t)+KiD
−λe(t)+KdDµe(t) (2)

whereD(∗) (≡ 0Dα
t ) denotes the differential operator

of integration and differentiation (differintegral) to a
fractional-orderα = {−λ, µ} ∈ ℜ.

The two most commonly used definitions for the
differintegral are the Riemann-Liouville definition
and the Grünwald-Letnikov definition. For our pur-
pose we use the Grünwald-Letnikov definition, which
can be written as(α ∈ ℜ):

Dα f (t) = lim
h→0

1
hα

[t/h]
∑
j=0

(−1) j
(

α
j

)

f (t − jh) (3a)

(

α
j

)

=
Γ(α+1)

Γ( j +1)Γ(α− j +1)
(3b)

wheref (t) is the applied function,Γ(·) is the Gamma
function, h is the time increment, and [·] means the
integer part.

From a control and signal processing perspective,
approach (3) seems to be the most useful and intu-
itive, particularly for a discrete-time implementation
(Barbosa et al., 2006; Machado, 1997). In fact, using
(3), a discrete fractional PIλDµ control equation can
be obtained from (2) as (h ≈ T, T is the sampling
period):

u(k) = Kpe(k)+KiD
−λe(k)+KdDµe(k) (4)

with

Dαe(k)≈
1

Tα

k

∑
j=0

(−1) j
(

α
j

)

e(k− j) (5)

The difference control equation (4) is then given
by:

u(k) = Kpe(k)+
Ki

T−λ

k

∑
j=0

(−1) j
(

−λ
j

)

e(k− j)

+
Kd

Tµ

k

∑
j=0

(−1) j
(

µ
j

)

e(k− j) (6)

Eq. (6) shows that the current value of control sig-
nalu(k) depends on all previous values of errore(k),
making the computation too heavy as time increases
and so unsuitable for a practical implementation of
these algorithms. This fact illustrates the global char-
acter (i.e., unlimited memory) of the fractional-order
operators. For practical implementation of fractional
integral and derivative (5) we often apply the short

memory principle (Podlubny, 1999a), resulting in ex-
pression:

u(k) = Kpe(k)+
Ki

T−λ

k

∑
j=v

c(−λ)
j e(k− j)

+
Kd

Tµ

k

∑
j=v

c(µ)j e(k− j) (7)

wherev= 0 for k< L
/

T or v= k−L
/

T for k> L
/

T;

L is the memory length andc(α)j = (−1) j
(

α
j

)

are

the binomial coefficients which may be calculated re-
cursively as:

c(α)0 = 1; c(α)j =

(

1−
1+α

j

)

c(α)j−1, j = 1, 2, · · ·

(8)
Note that (7) is given in the form of a FIR filter.

Other discrete-time approximations in the form of IIR
filters are also possible (Vinagre et al., 2003; Barbosa
et al., 2006; Chen et al., 2004).

3 DESIGN OF FUZZY
FRACTIONAL PID
CONTROLLERS

Despite of variety of possible fuzzy controller struc-
tures, the controller is usually arranged in cascade
with the system being controlled. This type of ar-
rangement is shown in Fig. 1 and will be used in this
study.

The main idea here is to explore the fact that the
FLC, under certain conditions, is equivalent to a PID
controller (Mizumoto, 1995; Li and Gatland, 1996;
Jantzen, 2007). In a certain sense, the fuzzy PID con-
trollers are a special case of the more general FF-PID
controllers, in which are involved two extra tuning
parameters: the fractional orders (λ, µ) of controller
equation (4).

The basic form of a fuzzy controller is illustrated
in Fig. 2 (Passino and Yurkovich, 1998). In gen-
eral, the mapping between the inputs and the outputs

−

+
G(s)

Fuzzy 
Fractional 
Controller

r(t) y(t)u(t)e(t)

l(t)

+

+

Figure 1: Fuzzy fractional PID controlled system.
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Figure 2: Structure of a fuzzy controller.

of a fuzzy system is nonlinear (Galichet and Foulloy,
1995; Jantzen, 2007). However, it is possible to con-
struct a rule base with a linear input-output mapping
(Mizumoto, 1995; Jantzen, 2007). For that, the fol-
lowing conditions must be fulfilled:

• Use triangular input sets that cross at the member-
ship value 0.5;

• The rule base must be complete AND combina-
tion (cartesian product) of all input families;

• Use the algebraic product (*) for the AND con-
nective;

• Use output singletons, positioned at the sum of the
peak positions of the input sets;

• Use sum-accumulation and centre of gravity for
singletons (COGS) defuzzification.

It seems reasonable to start with the design of
a conventional integer/fractional PID controller and
from there to proceed to a fuzzy control design. In
this way, the linear fuzzy controller may be used in a
design procedure based on integer/fractional PID con-
trol, as follows (Jantzen, 2007; Barbosa et al., 2010;
Barbosa, 2010):

1. Build and tune an integer/fractional PID con-
troller;

2. Replace it with an equivalent linear fuzzy con-
troller;

3. Make the fuzzy controller nonlinear;

4. Fine-tune it.

With the above procedure, the design of fuzzy
fractional PID controllers will be greatly simplified,
particularly if the controller was already implemented
and it is desirable to enhance its performance. More-
over, this new type of controllers extends the poten-
tialities of both fuzzy and fractional controllers and
performs, at least, as well as its linear fractional coun-
terpart (Jantzen, 2007; Barbosa et al., 2010; Barbosa,
2010).

3.1 Fuzzy Fractional PD Controller

The time-domain equation of a fractional PDµ-
controller is given by (Ki = 0 in (2)):

u(t) = Kpe(t)+KdDµe(t) (9)

The corresponding discrete-time fractional PDµ-
controller is:

u(k) = Kpe(k)+KdDµe(k) (10)

Fig. 3 illustrates the block diagram of the fuzzy
fractional PDµ (FF-PDµ) controller. As can be seen,
the controller acts on the error,E = Kee(k), and on
the fractional change of error,FE = K f eDµe(k). The
control signal isU = Kuu. The controller has three
tuning gains,Ke andK f e, corresponding to the inputs
andKu to the output.

The control signalU is generally a nonlinear func-
tion of E andFE:

U = f (E,FE)Ku = f (Kee, K f eD
µe)Ku (11)

With a proper choice of design, a linear approxi-
mation can be obtained as:

f (Kee(k) , K f eD
µe(k))≈Kee(k)+K f eD

µe(k) (12)

and

U (k) = (Kee(k)+K f eD
µe(k))Ku

= KeKue(k)+K f eKuDµe(k) (13)

Comparing (13) with (10), it yields the relation for
the gains of the two controllers:

KeKu = Kp

K f eKu = Kd (14)

The linear FF-PDµ-controller provides all the
advantages of the conventional fractional PDµ-
controller.

For an equivalent linear FF-PDµ-controller, the
conclusion universe should be the sum of the premise
universes and the input-output mapping should be lin-
ear. Table 1 lists a linear rule base for the FF-PDµ

controller composed of four rules. There are only
two fuzzy labels (Negative and Positive) used for the
fuzzy input variables and three fuzzy labels (Negative,
Zero and Positive) for the fuzzy output variable. This
rule base should satisfy conditions mentioned above
in order to provide a linear mapping.

FF-PDµ

Rule base

E

FE

Uu

e

uK

feK

eK

µD

Figure 3: Fuzzy fractional PDµ-controller.

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

278



Table 1: Rule base for the FF-PDµ controller.

Rule 1 IfE is N andFE is N thenu is N
Rule 2 IfE is N andFE is P thenu is Z
Rule 3 IfE is P andFE is N thenu is Z
Rule 4 IfE is P andFE is P thenu is P

Scaling the input gains may be necessary to pre-
serve the linearity of the fuzzy controller. However,
that should be made without affecting the tuning (Bar-
bosa et al., 2010; Barbosa, 2010). This scaling has
some advantages, as it will avoid saturation and will
provide a simpler design, since the universes ranges
of inputs and outputs are normalized to a prescribed
interval, say percentage of full scale [−100, 100].

3.2 Fuzzy Fractional PID Controller

The inclusion of an integral action is necessary when-
ever the closed-loop system exhibits a steady-state er-
ror. The fuzzy fractional PDµ+Iλ (FF-PDµ+Iλ) con-
troller combine the fractional-order integral action
with a fuzzy PDµ-controller, as illustrated in Fig. 4.

FF-PDµ

Rule base

E

FE

Uu

e

uK

feK

eK

µD

fieK
FIE

+

+

λ−D

Figure 4: Fuzzy fractional PDµ+ Iλ controller.

The control signalU is generally a nonlinear func-
tion of error E, fractional change of errorFE, and
fractional integral of errorFIE:

U = ( f (E,FE)+FIE)Ku

=
(

f (Kee(k)+K f eD
µe(k))+K f ieD−λe(k)

)

Ku

(15)
Adopting the linear approximation (12) yields the

control action:

U (k)≈
(

Kee(k)+ K f eDµe(k)+K f ieD−λe(k)
)

Ku

= KuKee(k)+ KuK f eDµe(k)+KuK f ieD−λe(k) (16)

Comparing (16) with the discrete fractional PIλDµ-
controller (4), it yields the relation for the gains of
the two controllers:

KeKu = Kp

K f ieKu = Ki

K f eKu = Kd (17)

The linear FF-PDµ+Iλ controller provides all the
advantages of the conventional fractional PIλDµ-
controller.

4 ILLUSTRATIVE EXAMPLE

Many real dynamical processes are modeled by
fractional-order transfer functions (Podlubny, 1999a;
Oldham and Spanier, 1974). Here we consider
the fractional-order plant model given in (Podlubny,
1999b):

G(s) =
1

0.8s2.2+0.5s0.9+1
(18)

An integer-order PD controller and a fractional-
order PDµ-controller were designed in (Podlubny,
1999b):

CPD(s) = 20.5+2.7343s (19)

CPDµ (s) = 20.5+3.7343s1.15 (20)

Fig. 5 shows the unit-step response of the closed-
loop fractional-order system with the conventional
PD-controller and with the PDµ-controller. The com-
parison shows that for satisfactory feedback con-
trol of the fractional-order system is better to use a
fractional-order controller. Note, however, that the
control system presents a steady-state error, since no
integral action is employed.

Let us now design an equivalent linear FF-PDµ

controller. By configuring the fuzzy inference system
(FIS) and selecting three scaling factors, we obtain a
FF-PDµ-controller that reproduces the exact control
performance as the fractional PDµ-controller. We first
fix Ke = 100, since the error universe is chosen to be
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Figure 5: Unit-step responses of the fractional-order control
system with the PD and PDµ-controllers.
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percentage of full scale[−100, 100], and the maxi-
mum error to a unit step is 1. The values ofK f e and
Ku are obtained using expressions (14). Fig. 6 shows
the input families and the linear control surface ob-
tained by using the rule base of Table 1 while satis-
fying conditions outlined in section 3. Note that this
result represents the step 2 – replace the conventional
controller with an equivalent linear fuzzy controller –
of the design procedure. In order to enhance the per-
formance of the control system we proceed to step 3
and 4 of the design – make the fuzzy controller non-
linear and fine-tune it.

Thus, after verifying that the linear FF-PDµ-
controller is properly designed, we may adjust the FIS
settings such as its style, membership functions and
rule base to obtain a desired nonlinear control sur-
face. In our example, we choose Gaussian member-
ship functions for the inputs, as illustrated in Fig. 7
with the corresponding nonlinear control surface.

In Fig. 8, the comparison of the unit-step response
of the closed-loop system with plant model (18) con-
trolled by the linear PD and FF-PDµ-controllers, and
with the nonlinear FF-PDµ-controller is given. The
simulation parameters are: absolute memory compu-
tation of approximation (5), fractional-orderµ=1.15,
scale factorM = 0.4 andT = 0.05 s. As can be seen,
making the controller nonlinear improved the control
system performance, namely the overshoot, rise time,
settling time, and steady-state error, when compared
with the linear fuzzy controller. The fuzzy fractional
controller provides greater flexibility than the frac-
tional controller and can be used to better adjust the
dynamical properties of a control system.

Now, let us consider the FF-PDµ+Iλ-controller. In
order to test the robustness of the fuzzy controller, we
introduce a load disturbance of amplitudel = 2 after
7 seconds in system of Fig. 1. We use the same (Kp,
Kd) parameters of the linear FF-PDµ-controller and
tuned the (Ki , λ) for a satisfactory control response.
The final tuned parameters are (Ki , λ) = (10,−0.8).
With Ke = 100, and using (17) we obtainK f e, Ku, and
K f ie of the fuzzy controller.
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Figure 7: Nonlinear control surface with the corresponding
input families.
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Figure 8: Unit-step responses of the fractional control sys-
tem with the linear PD and FF-PDµ-controllers, and with
the nonlinear FF-PDµ-controller.

In this experiment, the simulation parameters are:
absolute memory computation of approximation (5),
scale factorM = 0.1 andT = 0.05 s. Fig. 9 shows the
step and load responses of closed-loop system with
FF-PDµ+Iλcontroller, (µ, λ)=(1.15,−0.8), for the lin-
ear and nonlinear control surfaces. We observe the
better response of the fuzzy controller to the reference
and disturbance inputs with the nonlinear rule base
compared to their linear counterpart. Once more, we
demonstrate the robustness and effectiveness of this
type of controller.

5 CONCLUSIONS

This paper introduced two novel fuzzy fractional PID
structures: the FF-PDµ and FF-PDµ+Iλ controllers. It
was demonstrated that these controllers are equiva-
lent to the conventional fractional PD and PID con-
trollers by using a linear input-output mapping of the
rule base of the fuzzy fractional controller. Moreover,
by making the controller nonlinear, the performance
of the control system proves to be, in most systems,
better than its linear counterpart. A methodology for
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Figure 9: Unit-step and load responses of the fractional con-
trol system with the linear and nonlinear FF-PDµ+Iλ con-
trollers.

tuning the nonlinear fuzzy fractional PID controllers
is also presented. This methodology is simple and
effective and can be used to replace an existent frac-
tional/integer PID controller in order to get better per-
formance of the control system. In this perspective,
future research on this topic includes the application
of the proposed fuzzy fractional PID controllers and
tuning methodology in other types of linear and non-
linear plants of integer and/or fractional-order. We
expect that the incorporation of fuzzy reasoning into
fractional-order controllers will increase the applica-
bility of these controllers.
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