
Requirements Engineering with Agent-Oriented Models

Tanel Tenso and Kuldar Taveter
Department of Informatics, Tallinn University of Technology, Raja 15, 12618, Tallinn, Harjumaa, Estonia

Keywords: Requirements Engineering, Agent-Oriented Modeling, Systems Modeling, User Stories, Agile Development.

Abstract: This paper provides a solution how to gather requirements using modified principles of agent-oriented mod-
eling. By simplifying the concepts of agent-oriented modeling for requirements engineering we have found
that this kind of modeling can be used in various software development projects including agile software de-
velopment for agile requirements engineering. To verify our theories, we’ve used our practice in two real-life
projects. This paper contains summary of ideas and practices developed during these projects.

1 INTRODUCTION

There is evidence that main cause for the failure of
software projects is missing stakeholder input and in-
valid requirements (Group, 1995; El Emam and Koru,
2008). We have encountered these problems also in
our work. This has prompted us to come up with
a novel idea to mitigate the problem of collecting
and documenting requirements. In the center of our
approach to requirements engineering (RE) lies us-
ing the goal modeling technique from agent-oriented
modeling (AOM) as a backbone for requirements elic-
itation and representation. Goal modeling alone is not
a new idea because goal-based RE is described by
several authors (Hull et al., 2011; Sillitti and Succi,
2005; Dardenne et al., 1993; van Lamsweerde, 2001;
van Lamsweerde, 2009). The novelty of our ap-
proach is linking goal models to user stories (Cohn,
2004), which are regarded as most widely used re-
quirements documentation artifacts in agile software
development (ASD) (Ramesh et al., 2010; Cao and
Ramesh, 2008). In this paper we present our tech-
nique for improving RE in both agile and non-agile
settings.

We have successfully tried out our approach in
two real-life projects. The nature of these projects
is different: one is concerned with complementing
an existing client-server web application with a new
functionality, while the other addresses RE for a large
crisis simulation system. In this paper we use the ex-
amples from these experiments for illustrating our ap-
proach. We plan to publish findings from these appli-
cations as detailed case studies.

The structure of this paper is as follows. In Sec-

tion 2, we provide short overviews of RE, ASD and
briefly describe AOM. In Section 3, we present our
approach of using AOM in RE, and illustrate it with
examples from application projects. In Section 4,
we discuss anecdotal evidence received from real-life
projects and set future research directions.

2 BACKGROUND

To summarize RE very shortly we can say that it is
process for finding out, analyzing, documenting and
checking requirements for what and how should some
complex system work (lan Sommerville and Sawyer,
1997; Hull et al., 2011; Kotonya and Sommerville,
1998; Sommerville, 2010). RE is quite a wide area
and in the context of this paper we concentrate on the
requirements elicitation activity. We leave validation
and management of requirements out of the scope.

ASD can be viewed as consisting of agile prac-
tices. In ASD the emphasis is on code and collabora-
tion rather than on documentation and up-front elici-
tation (Alliance, 2013; Paetsch et al., 2003). In prin-
ciple RE processes are present in ASD but they are
less distinctive and iterative. Identifying a link be-
tween RE and ASD has been the goal for several re-
searchers (Haugset and Stalhane, 2012; Paetsch et al.,
2003; Cao and Ramesh, 2008).

Due to preferring collaboration over documenta-
tion, there are different approaches for documentation
in agile projects. Some are quite radical by minimiz-
ing documentation to almost non-existing (Cockburn,
2002), while some others acknowledge the need for
some documentation (Ambler, 2002). We take the

254 Tenso T. and Taveter K..
Requirements Engineering with Agent-Oriented Models.
DOI: 10.5220/0004569302540259
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 254-259
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



latter viewpoint. Several researchers (Ambler, 2002;
Beck, 2008; Kazyrevich, 2010) have proposed ideas
to be considered when collecting and documenting re-
quirements in ASD projects. We have used principles
that have been expressed in a more detailed context
by (Ambler, 2002). The author subsumed his research
results under the term ”Agile Modeling” (AM), which
is essentially a practice-based methodology for effec-
tive modeling and documentation of software-based
systems. For example, we have adapted the number
and content of models usually used in AOM to match
the AM principle “just barely enough”.

User story is one of the most popular requirements
artifact in ASD (Cohn, 2004; Ramesh et al., 2010;
Paetsch et al., 2003). There are several approaches
to user stories in agile development, out of which we
have employed in our approach a format proposed by
(Cohn, 2004). A user story includes a written sen-
tence or two and should invoke a series of conversa-
tions about the desired functionality. The format of
composing user stories can be described as follows:

1. A user story is a short, simple description of a fea-
ture described from the perspective of the person
or role who desires the new capability, usually a
user or customer of the system.

2. The template for user stories could correspond to
the following pattern according to (Cohn, 2004):
As a htype of user or rolei, I want/must hsome
goali so that hsome reasoni.

3. A user story must be small enough to be imple-
mented within one iteration. Large user stories
must be divided into smaller user stories.

Final cornerstone of our approach is agent-
oriented modeling (AOM) (Sterling and Taveter,
2009). AOM is a holistic approach for analyzing
and designing socio-technical systems consisting of
humans and technical components. The case stud-
ies (Miller et al., 2011; Miller et al., 2012; Taveter
et al., 2012) and several others have demonstrated
that the agent-oriented paradigm is useful for require-
ments engineering and design, irrelevant of whether
the eventuating system is a multi-agent system in the
classical sense (Wooldridge, 2001). AOM is centered
on the notion of agent1.

We have selected AOM as the central part of our
RE and design approach because the types of models
included by AOM are clear and understandable for
all stakeholders when building any complex socio-
technical system (Miller et al., 2011). AOM canon-
ical models are described in detail by (Sterling and

1Agent is an entity that performs specific activities in
an environment of which it is aware and can respond to
changes in the environment.

Table 1: Notation for modeling goals and roles.

Symbol Meaning

Goal

Quality goal

Role

Relationship between goals
Relationship between goals and

quality goals

Taveter, 2009). Next we will give an overview of two
models that we decided to use from the AOM method-
ology in our approach for RE. These are goal models
and behavioral scenarios.

Goal model can be considered as a container of
three components: goals, quality goals, and roles
(Sterling and Taveter, 2009). A goal is a representa-
tion of a functional requirement of the socio-technical
system. A quality goal, as its name implies, is a
non-functional or quality requirement of the system.
Goals and quality goals can be further decomposed
into smaller related sub-goals and sub-quality goals.
The hierarchical structure is to show that the subcom-
ponent is an aspect of the top-level component. Func-
tional goals represent functional requirements, while
quality goals represent non-functional requirements.
Goal models also determine roles that are capacities
or positions that are needed to achieve the goals. In
the original AOM methodology roles are modeled
in detail by role models in the viewpoint of interac-
tion analysis. The notation for representing goals and
roles is shown in Table 1.

An example of a goal model is represented on
Figure 1. The example is taken from the Release
Management System (RMS) project that is briefly
described in Section 3. The model expresses that
the highest-level goal – purpose – of the system is
“Manage Release Lifecycle”. This goal is elaborated
into two sub-goals. The first of them – Manage Re-
lease Vehicles – is performed by the roles Release
Manager and Release Admin. Achieving of the sec-
ond sub-goal – Manage Product Features – requires
the roles Analyst, Architect, Product Manager, and
Project Manager. We can also see that Figure 1 repre-
sents several quality goals describing non-functional
requirements that characterize how functional goals
should be achieved. For example, the quality goal at-
tached to the functional goal “Manage Product Fea-

Requirements�Engineering�with�Agent-Oriented�Models

255



tures” expresses that Product Features (whatever they
are, this is not important here) should be managed in
such a manner that they have sufficient information
for development.

Figure 1: An excerpt of the main goal model for the RMS.

The setup and usage of goal models is quite sim-
ilar to the principles suggested by (Hull et al., 2011).
Like in some other modeling frameworks like i*(Yu,
1996; Bresciani et al., 2004), in AOM non-functional
requirements can be represented as quality goals vi-
sually separated from functional goals but at the same
time linked to them. A resulting goal model con-
tains sufficient amount of information, but compared
to i*(Yu, 1996; Bresciani et al., 2004) is still simple to
understand for all participants in RE process (Sterling
and Taveter, 2009; Miller et al., 2011). We consider
goal models to be used for high-level problem domain
analysis rather than for system-specific design. We
employ for design user stories from ASD methodol-
ogy.

A behavioral scenario in the AOM methodology
describes how agents achieve the goals set for the
system by performing a sequence of activities (Ster-
ling and Taveter, 2009). In our approach to RE, we
modified the original format of behavioral scenarios.
A behavioral scenario of the resulting kind describes
the sequence of activities required for achieving the
goals, as well as the resources used by and the roles
involved in the scenario.

An example behavioral scenario is represented in
Table 2. This behavioral scenario consists of a se-
quence of activities that are required for achieving the
“Manage Release Vehicles” goal modeled in Figure 1.
The scenario also includes its initiating role(s), trig-
gering condition, and failure condition. The latter de-
scribes the state of affairs in case the scenario fails.

For each activity is shown the condition for perform-
ing the activity. The implicit performing condition is
“Sequential”.

3 METHOD

Goal based requirements modeling in RE has been
found to be useful by several authors (Hull et al.,
2011; Sillitti and Succi, 2005). User stories have been
connected to RE in several publications about require-
ments‘ collecting problems in ASD (Sillitti and Succi,
2005; Ramesh et al., 2010; Haugset and Stalhane,
2012). One can conclude based on these sources that
user stories can basically be viewed as goals (Haugset
and Stalhane, 2012; Vanhanen et al., 2009). This was
one important factor contributing to the idea of con-
necting user stores to AOM goal models.

We have tried our combined approach out in two
real-life applications. The first application was devel-
oping a RMS. The purpose of the project was to en-
hance an existing Issue Management System (IMS)
with additional functionality for release management.
The second was a real-life project on developing a cri-
sis simulation system. The purpose of this project
was to provide a universal tool for studying evolve-
ments of different kinds of crises, such as earth-
quakes, floods, industrial accidents, etc., and train-
ing personnel for the crises. Both projects are quite
different starting from the scope and ending with the
number of participants.

Our purpose in both projects was to find if our ap-
proach combining AOM and user stories could im-
prove communication between participants in soft-
ware process. The rationale for choosing AOM was
its simplicity and the fact that goal-based approaches
to requirements engineering have considerably im-
proved communication in various software engineer-
ing projects (Miller et al., 2011). We chose user sto-
ries because they are common for ASD (Cohn, 2004).

In the following, we will outline the software en-
gineering process of our approach. The following de-
scription is illustrated by Figure 2:

1. Create the top-level hierarchical goal model:

1.1. Determine the purpose of the socio-technical
system being designed. Represent the purpose
of the system as the root goal. For example in
Figure 1 the root goal is “Manage Release Life-
cycle”.

1.2. Elaborate the main goal into sub-goals, each
representing an aspect of achieving the main
goal. For example, in Figure 1 the main goal
has been elaborated into the Manage Release

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

256



Table 2: Manage Release Vehicles behavioral scenario.

SCENARIO 2
Goal Manage Release Vehicles
Initiator Release Manager, Release Admin
Trigger New planning session begins
Failure No Release Vehicle will be produced
Cond. Step Activity Roles Resources/

Knowledge Items
Additional comments on design

Optional,
Interleaved

1 Create Release
Category

Release
Admin

Release Category Define category name and order

2 Create Release
Track

Release
Admin

Release Track Define track name and order

3 Create Release
Status

Release
Admin

Release Status Define status name and order

Sequential 4 Create Release
Vehicle

Release
Man-
ager

Release Vehicle,
Release Track,
Release Status,
Release Category

Release Vehicle has some prelimi-
nary metadata defined

5 Edit Release
Vehicle

Release
Admin

Release Vehicle,
Release Track,
Release Status,
Release Category

Release Vehicle metadata is changed
to appropriate values when release
scope and responsible persons have
approved the change

Optional 6 Delete Re-
lease Vehicle
(Scenario 7)

Release
Man-
ager

Release Vehicle,
Issue

Release Vehicle is deleted, a con-
nected objects of the Issue type are
associated with another Release Ve-
hicle or the connection is deleted

Vehicles and Manage Product Features sub-
goals.

1.3. For the main goal and its sub-goals: where ap-
propriate, complement a functional goal with a
quality goal, representing a quality aspect of
achieving the functional goal. For example,
in Figure 1 the functional goal Manage Prod-
uct Features has been modified by the quality
goal Product Features have sufficient informa-
tion for development”.

2. Elaborate the top-level goal model into lower-
level goals:

2.1. Choose each sub-goal of the top-level goal
model as the main goal.

2.2. Apply step 1 of the process to the main goal.

3. Repeat elaboration of the goal model until you
have reached the lowest level of reasonable and
achievable goals:

3.1. Lowest level goal model is usually a goal that
can be accomplished by single role or accom-
plishing goal can be easily described.

3.2. Revise goal models at any point whenever more
accurate information becomes known.

4. Elaborate lowest level of sub-goals with behav-
ioral scenarios, the format of behavioral scenarios
is defined by Table 2:

4.1. Add temporal and conditional perspectives to
achieving the goals in behavioral scenarios.

4.2. List goals as activities in behavioral scenarios,
adding additional information about what to do

4.3. Specify roles, resources, and knowledge, and
any additional information relevant for achiev-
ing the goals.

4.4. Behavioral scenario is finished when the
achievement of all goals in the goal model is
described

5. Link User Stories to Behavioral Scenarios:

5.1. A user story covers only one aspect of the goal
or behavioral scenario. For example elaborat-
ing Step 4 “Create Release Vehicle” in Table 2
can be elaborated with User Stories as follows:
� As a (human playing the role of) Release Ad-

min, I must be able to add a new Release Ve-
hicle;

� As a Release Admin, I must be able to change
Release Vehicles;

� As a Release Manager, I must be able to see a
list of Release Vehicles;

� As a Release Manager, I should not be able to
edit a list of Release Vehicles;

� As a Release Manager or Release Admin, I
should be able to sort a list of Release Vehicles
into the ascending or descending order.

Requirements�Engineering�with�Agent-Oriented�Models

257



Figure 2: Concept of using models.

5.2. Mapping of terms from goals and behavioral
scenarios to user stories is following:
� Roles – a user story is always written from the

perspective of a particular role.
� Activity – activity defines how the corre-

sponding goal is achieved. Performing an ac-
tivity can be described by a number of imple-
mentable user stories.

� Resource/ Knowledge Item – a resource of
any kind required by actors playing Roles to
achieve the goals set for the system. They may
be knowledge items that actors playing Roles
create or physical or virtual resources that are
provided beforehand.

� Additional comments on design – any kind of
project-related information that is useful when
describing and implementing user stories.

� Step – provides a temporal view to be consid-
ered in user stories.

� Condition – can be reflected in a user story as
a Condition of Satisfaction or a separate user
story (stories) that will cover the functionality
of the condition.

6. Remember following remarks when creating
models:

6.1. Completing all goal models at once is not re-

quired. For example, one branch of the goal
model can be elaborated down to the lowest
sensible level, while the rest of the branches are
not. Other branches can be revisited and further
elaborated later on.

6.2. Completing all behavioral scenarios at once is
not required. Different independent branches
of the overall goal model can be analyzed in
parallel and at different paces.

6.3. Goal models can change according to the find-
ings during the implementation of user stories.

6.4. Goal models and behavioral scenarios present
an overall view of the system to be designed,
describing what is required to be accomplished.
User stories present specific design-related de-
tails for the system and link goals to concrete
features of the system to be implemented.

6.5. An unlimited number of user stories can be cre-
ated for each lowest behavioral scenario.

4 CONCLUSIONS AND FUTURE
WORK

This was a nutshell description of our approach to RE
by means of AOM and user stories. We claim that
identifying, tracing and documenting is more simpler
and lightweight with our method than full fledged RE
practices. We have verified the simplicity of our ap-
proach by applying it in two real-life ASD projects.
We acknowledge that we have not yet used any for-
mal method or metric for measuring the efficiency of
our approach. This is one of the major tasks for our
future research work. We intend to investigate the rel-
evant literature, e.g. (El Emam and Madhavji, 1995),
and find an appropriate method for measuring the ef-
ficiency of our approach. However, so far we have
a lot of overwhelmingly positive anecdotal evidence
about successful application of our method. Partic-
ipants in projects conducted by us have adopted the
method and have successfully used it for eliciting and
representing requirements, as well as for turning re-
quirements into user stories for design and implemen-
tation.

The future work to be performed by us will in-
clude presenting our findings from the projects as de-
tailed case studies. This should validate our findings
with hard evidence. We have also been working on a
prototypical RE and design environment that would
accommodate our method. The prototype will be
based on a wiki and will include an issue and project
tracking system to add some flexibility and visibility
to the RE and design processes.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

258



REFERENCES

Alliance, A. (2013). Manifesto for agile software de-
velopment. http://www.agilealliance.org/the-alliance/
the-agile-manifesto/. [Online, accessed May 2013].

Ambler, S. W. (2002). Agile Modeling. John Wiley & Sons.
Beck, K. (2008). Tools for agility - a white

paper. http://www.microsoft.com/en-us/download/
details.aspx?id=4401. [Online, accessed May 2013].

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J.,
and Perini, A. (2004). Tropos: An agent-oriented
software development methodology. Journal of Au-
tonomous Agents and Multi-Agent Systems.

Cao, L. and Ramesh, B. (2008). Agile requirements engi-
neering practices: An empirical study. IEEE Softw.,
25(1):60–67.

Cockburn, A. (2002). Agile Software Development.
Addison-Wesley.

Cohn, M. (2004). User Stories Applied: For Agile Software
Development. The Addison-Wesley Signature Series.
Addison-Wesley.

Dardenne, A., van Lamsweerde, A., and Fickas, S. (1993).
Goal-directed requirements acquisition. In Science of
Computer Programming, pages 3–50.

El Emam, K. and Koru, A. (2008). A replicated survey of it
software project failures. Software, IEEE, 25(5):84–
90.

El Emam, K. and Madhavji, N. (1995). Measuring the
success of requirements engineering processes. In
Requirements Engineering, 1995., Proceedings of the
Second IEEE International Symposium on, pages 204
– 211.

Group, S. (1995). Chaos report. https://cs.nmt.edu/
�cs328/reading/Standish.pdf. [Online, accessed May
2013].

Haugset, B. and Stalhane, T. (2012). Automated acceptance
testing as an agile requirements engineering practice.
In Proceedings of the 2012 45th Hawaii International
Conference on System Sciences, HICSS ’12, pages
5289–5298, Washington, DC, USA. IEEE Computer
Society.

Hull, E., Jackson, K., and Dick, J. (2011). Requirements
Engineering. Springer.

Kazyrevich, A. (2010). Distributed agile develop-
ment. http://codevanced.net/page/Talks-Distributed-
Agile-Development.aspx. [Online, accessed May
2013].

Kotonya, G. and Sommerville, I. (1998). Requirements en-
gineering: processes and techniques. Worldwide se-
ries in computer science. John Wiley & Sons.

lan Sommerville and Sawyer, P. (1997). Requirements En-
gineering - A Good Practice Guide. John Wiley &
Sons.

Miller, T., Pedell, M., Sterling, L. S., and Lu, B. (2011).
Engaging stakeholders with agent-oriented require-
ments modelling. Agent-Oriented Software Engineer-
ing, 6788(XI).

Miller, T., Pedell, S., Sterling, L., Vetere, F., and Howard,
S. (2012). Understanding socially oriented roles and

goals through motivational modelling. J. Syst. Softw.,
85(9):2160–2170.

Paetsch, F., Eberlein, A., and Maurer, F. (2003). Require-
ments engineering and agile software development. In
Proceedings of the Twelfth International Workshop on
Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, WETICE ’03, pages 308–, Washing-
ton, DC, USA. IEEE Computer Society.

Ramesh, B., Cao, L., and Baskerville, R. (2010). Ag-
ile requirements engineering practices and challenges:
an empirical study. Information Systems Journal,
20(5):449–480.

Sillitti, A. and Succi, G. (2005). Requirements engineering
for agile methods. In Engineering and Managing Soft-
ware Requirements, pages 309–326. Springer Berlin
Heidelberg.

Sommerville, I. (2010). Software Engineering. Addison-
Wesley, Harlow, England, 9. edition.

Sterling, L. and Taveter, K. (2009). The Art of Agent-
Oriented Modeling. MIT Press.

Taveter, K., Du, H., and Huhns, M. N. (2012). Engineering
societal information systems by agent-oriented mod-
eling. J. Ambient Intell. Smart Environ., 4(3):227–
252.

van Lamsweerde, A. (2001). Goal-oriented requirements
engineering: a guided tour. In Requirements Engi-
neering, 2001. Proceedings. Fifth IEEE International
Symposium on, pages 249 –262.

van Lamsweerde, A. (2009). Requirements Engineering -
From System Goals to UML Models to Software Spec-
ifications. Wiley.

Vanhanen, J., Mantyla, M., and Itkonen, J. (2009).
Lightweight elicitation and analysis of software prod-
uct quality goals: A multiple industrial case study.
In Third International Workshop on Software Product
Management (IWSPM), pages 42 –52.

Wooldridge, M. (2001). Introduction to Multiagent Systems.
John Wiley & Sons, Inc., New York, NY, USA.

Yu, E. S.-K. (1996). Modelling strategic relationships for
process reengineering. PhD thesis, Toronto, Ont.,
Canada, Canada. UMI Order No. GAXNN-02887
(Canadian dissertation).

Requirements�Engineering�with�Agent-Oriented�Models

259


