
Integrating Validation Techniques for Process-based Models

Andreas Speck1, Sören Witt1, Sven Feja1, Sören Feja1 and Elke Pulvermüller2

1Christian-Albrechts-University of Kiel, Institute of Computer Science, Kiel, Germany
2University of Osnabrueck, Department of Mathematics and Computer Science, Osnabrück, Germany

Keywords: Integration, Validation Techniques, (Business) Process Models, Behavioral Properties, Structural Properties.

Abstract: Model checking has been established as an appropriate technology to validate behavioral properties of (busi-
ness) process based systems. However, further validation technologies (e. g. for structural properties) may be
of interest for process models. We propose a concept to integrate validation technologies in a unique system
with a common user interface.

1 INTRODUCTION

Process models in general and business process mod-
els in particular are issue of validation concepts. Pri-
marily, these concepts are used to ensure that the pro-
cess models satisfy specific quality requirements (e. g.
correctness). Approaches like (van der Aalst, 1999),
(van Dongen et al., 2007) or the Business Applica-
tion Modeler (BAM) (Pulvermüller et al., 2010; Feja
et al., 2011) rely on model checking as verification
technique. Model checkers are used to verify tem-
poral sequences in the processes. Rules to be vali-
dated by model checkers are specifications in tempo-
ral logic, which is an extension of Boolean logic with
additional operators, expressing temporal sequences.

By observing typical validation situations we
learned that a certain number of validation requests
do not consider temporal aspects (e.g. a specific se-
quence of states in a process) but affect the structure
of the process models. This means that temporal op-
erators are not required to express these requirements
and specifications respectively.

The paper presents and discusses solutions to han-
dle the different kinds of verification techniques for
structural and behavioral properties. In our context
structural properties concern the sequencing of the
model elements (including its attached elements and
attributes), "while behavioral properties consider their
executional sequencing" (Deutch and Milo, 2007). In
addition we especially emphasize the consideration
of the functional/intentional meaning of the consid-
ered model elements/content. This means that re-
quirements of specific use cases have to be validated.
In contrast, many approaches often only check prede-
fined requirements (e. g. syntactical rules) and do not

consider user-defined rules.
Generally, it may be possible to verify behavioral

as well as structural properties with model checkers.
As the specification language of model checkers is
based on an extension of Boolean logic, model check-
ers can handle structures which are based on Boolean
logic. However, model checkers are optimized for
checking behavioral (as in dynamic) properties in pro-
cess models. Another alternative is simply to use dif-
ferent validation systems. This lets the user to de-
cide which technique to use. A third possibility would
be an integrated system providing both Boolean logic
validation and model checking.

After the look at the base and related work in sec-
tion 2 we give in section 3 a more elaborated examina-
tion of structural and behavioral properties and a dis-
cussion of the different validation solutions. Section 4
describes the design and architecture of our integrated
validation system, illustrated with an example.

2 RELATED WORK

The validation of structural and behavioral proper-
ties of software and software models is a key prob-
lem in software development. Model checking has
been applied very early ((Emerson and Clarke, 1980)
or (McMillan, 1993)) as presented in the overview in
(Bérard et al., 2001).

Business processes in particular have been in the
focus of model checking based approaches. Some
examples may be (Köhler et al., 2002), (Anderson
et al., 2005) or (Speck, 2006). Further typical ap-
proaches are (van der Aalst, 1999) and (Pulvermüller,

246 Speck A., Witt S., Feja S., Feja S. and Pulvermueller E..
Integrating Validation Techniques for Process-based Models.
DOI: 10.5220/0004569202460253
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 246-253
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2002) which require transforming business process
models to verification models (here, Petri nets and
SMV Kripke structures).

Besides model checking as only validation tech-
nique other approaches like (Köhler et al., 2002) con-
sider alternative checking technologies for business
processes and compare these. Incompatible seman-
tics of the business process models and the verifica-
tion models are identified as one reason for differ-
ent validation approaches (van Dongen et al., 2007).
(Fahland et al., 2009) proposes problem-specific vali-
dation solutions.

Examples of further specific validation techniques
are the Petri net based approaches based on bi-
simulation and algebraic solutions (Morimoto, 2008)
which allow to compare two models instead of vali-
date a model against explicit specifications. The se-
mantic expressiveness of the specification languages
may be increased (e.g. with µ-calculus (Bradfield and
Stirling, 2001; Kozen, 1983) or in the multi-valued
logic research as in (Chechik et al., 2003)).

A motivation for our work is (Gruhn and Laue,
2007) which presents the checking of specific pat-
terns in process models by applying a Prolog based
concept. This lead us to the question if it is possi-
ble to integrate the Prolog based approach with model
checking approaches in order to increase the part of
(automatically) verifiable specifications. In the design
of electronic systems there are approaches to combine
static and dynamic testing like (Bormann et al., 2005).
A general proof of the applicability of this combina-
tion in software is presented in (May, 1998). (Xu,
2008) presents an approach of combining of model
checking and theorem proving. A more recent ap-
proach is the integrated checking of UML class di-
agrams and state transition diagrams and their struc-
tural and behavioral properties (Weitl and Nakajima,
2011). A concept of combining different validation
concept is the integration of structural checking with
behavioral testing. This also increases the considered
cases of validation and testing and may improve the
rate of detected errors in systems.

A general requirement for us is the usability of
the validation techniques by applying graphical in-
terfaces. This is the background of the checking en-
vironment as we propose it in our paper. Similarly,
(Förster et al., 2007) points out the importance of a
graphical representation of the requirements and pro-
poses an UML Activities based modeling approach
for constraints for business processes. Other valida-
tion approaches which provide such graphical repre-
sentations are for example BPMN-Q (Awad, 2007)
and BPSL Modeler (Xu et al., 2008). Though of
the aforementioned approaches for graphical require-

ments modeling only BPMN-Q integrates different
verification techniques for structural and behavioral
properties. However, while behavioral properties can
be checked by explicitly defined graphical rules the
rules to check structural properties are only derived
implicitly from the behavioral rules. On the one hand
this can reduce the effort for the modeler but on the
other hand the modeler has to rely on the "proper"
structural rules.

3 DISCUSSION

3.1 Structural vs. Behavioral Properties

By reasoning about the structure of a process model,
we do not necessarily assert properties about the (exe-
cution) behavior of a process model. However, struc-
tural properties might define prerequisites for behav-
ioral properties. For example, syntactical properties
must be valid, to allow a reasonable semantic com-
putation. Beside syntactical requirements, several
requirements from various functional domains may
have to be considered. For example: The existence of
a process element of type X , with an attribute p = q,
implies the existence of an element of type Y con-
nected to an element of type Z by a certain edge type.
Such requirements are not as generic as syntactical re-
quirements. Typical ways to express structural prop-
erties are description logic (Baader et al., 2003) and
other Boolean logic based specification languages.

Behavioral properties in general are visible after
applying an execution semantic for the process model.
The modeled system is observed in a temporal do-
main. Behavioral requirements therefore address tem-
poral relations between entities in a process model,
e.g. the order of execution or reachability. For ex-
ample, a certain action must take place before another
action may be executed. Such requirements are gen-
erally expressed by temporal logics like LTL or CTL.

Nevertheless, behavioral properties might con-
sider structural properties at a certain point in time,
i.e. in a certain state of the process. An example
might be to check for the reachability of an action,
that is connected to a certain data object. The connec-
tion between the action and the data object may char-
acterized by a certain type and direction of an edge.
Of course, this is a kind of structural property, but it
is temporally invariant during the activity phase of the
action, it is related to. Therefore, it makes sense, to
consider such a structural property within an atomic
expression in a behavioral property.

However, the evaluation of behavioral properties
requires the interpretation of the process model with

Integrating�Validation�Techniques�for�Process-based�Models

247

respect to an execution semantic. Generally, this in-
terpretation is guided by the control flow elements of
the process model. We call the result of this interpre-
tation the behavioral model, while we call the process
model, as it is "painted", the structural model. The
behavioral model does not necessarily preserve struc-
tural information any more. For example, control flow
operators might not have an instance in such a behav-
ioral model, only the execution behavior defined by
the control flow is preserved.

Structural and behavioral properties can express
different things and can be considered as complemen-
tary. For example, the behavioral CTL requirement
AF(p), requires p to become true eventually on ev-
ery temporal path, but it does not require p to occur
on every control flow path after an AND-split in the
process model. Actually, there is no reason why the
structural aspect of finding this property eventually on
every control flow path, should be checked implicitly.

Another example is a CTL requirement like
AG(action0!:EF(action1)). It requires that from a
state in which action0 occurs no state can be reached
in which action1 is active. This rule does not require
the existence of a control flow path between these two
actions. Hence, the occurrence of action1 in a com-
pletely independent (in terms of a control flow con-
nection) part of the process, might cause this rule to
evaluate to false. It depends on the actual functional
background, if this behavior is adequate. An addi-
tional structural requirement, that checks for the ex-
istence of a control flow path between these actions,
would avoid the false positive result. However, for
both variants reasonable use cases exist.

In this contribution, we propose the integration of
structural and behavioral properties and their corre-
sponding checking techniques respectively. On the
one hand in order to provide a consistent UI for the
specification. On the other hand we expect, that it al-
lows more efficient verification procedures.

3.2 Integration Approaches

We consider three alternatives for supporting the val-
idation of the aforementioned properties of process
models (structural relations/hierarchies and dynamic
behavior). Key issues that have to be considered are:

� Ability to specify a wide range of requirements.

� Effort for implementing these solutions as well as
extensibility, e.g. for new kinds of specification or
new checking techniques.

� Degree of integration from the users perspective.

� Compatibility of the validation results.

3.2.1 Singular Validation Technique

Here a single checking technique is used to check the
process models against the requirements. For a exam-
ple first order logic actually allows reasoning about
behavioral properties as well (Bérard et al., 2001). Or
a model checker may be used to check structural prop-
erties, e.g. by checking an expression like AG(p),
where p is a Boolean statement, which must be true
in every state of the process (AG operator).

A singular validation technique needs to be quite
generic in order to allow the checking of a wide range
of requirements. The more generic the technique is,
the less abstraction is offered. This may raise the
complexity of mapping process model and require-
ment specifications, resulting in high implementation
effort. The mapping procedure is even responsible for
providing an acceptable efficiency. Results of a singu-
lar validation technique cannot be incompatible. Nev-
ertheless, a complex mapping towards the checking
tool, may induce a complex mapping of results into
an appropriate visualization in the process model.

Changing the validation technique, may have a
strong impact on the mapping for all kinds of spec-
ifications, making it less extensible.

Such a generic technique and a powerful mapping
may allow various levels of abstraction for require-
ment specification, presented to the user. The proce-
dure of integration is (ideally) not visible to the user.

3.2.2 Multiple Dedicated Checking Systems

This is for sure the simplest solution. It is up to the
user to chose the verification technique, to formulate
the specification in the correct syntax and semantics
and to interpret the results. In a certain case this is the
most open solution, since the modeling system acts
as an editor, providing to model data via interfaces to
checking systems. In contrast to the first approach,
this simple solution leaves the effort to integrate the
models, specifications, checking technique and result
presentation to the user, it actually provides no tool-
based support regarding the integration.

3.2.3 Unified Validation System

In case of a more elaborated validation system like
BAM it may be of interest to have an integrated vali-
dation. This means that two or more validation tech-
nologies are integrated into one (modeling and) vali-
dation system. Such a system allows the user to spec-
ify structural as well as behavioral properties in a sim-
ilar manner. Then the validation system chooses auto-
matically the corresponding transformation algorithm
and checking tool, executes the checking and returns

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

248

the result. In the simplest case, the selection of the
right validation technique is based on the operators
which are used in the specified rule. But there is a va-
riety of criteria that could be considered in the selec-
tion process (e. g. strictness or performance issues).

Technically, the integration of the different valida-
tion techniques can be realized with a layered struc-
ture of the validation system: modeling and specifica-
tion layer, transformation layer and validation layer.
We just have to introduce a further validation technol-
ogy in the validation layer and we need to adapt the
transformation in order to connect the further valida-
tion technology.

An advantage of this solution is that different val-
idation technologies are provided in one tool for the
specification of processes and rules. If the user does
have knowledge about validation techniques he may
choose the desired technique explicitly or the valida-
tion system may automatically chose the appropriate
validation technology.

This third solution has the problem of extra effort
to integrate the validation technologies. This requires
also the realization of specific transformation con-
cepts. For example, a transformation into the struc-
tural and behavioral model as well as the requirements
transformation into the appropriate representation for
the checking tool. Furthermore, it may be possible to
combine different specification languages in one rule
modeling language. This combination requires a spe-
cial consideration in the transformation and the exe-
cution of the checking tool respectively. Besides the
mentioned higher effort for this solution the extended
transformation allows the definition of a common in-
terface for the validation concerning the usage of the
system and concerning the validation result. In gen-
eral, an integrated validation concept looks promis-
ing. Being able to choose the appropriate checking
technology would make the validation more efficient
than the first solution but it bears the option to provide
different validation technologies to the user.

Solution 2 is quite easy to realize from the mod-
eling tool perspective, but does not provide any tool-
based support for the integrated validation, leave the
effort to use different validation techniques to the
user. It requires the understanding of different mod-
eling and specification languages. For solution 1 the
effort and capabilities depend on how generic the val-
idation technique is. Although it might increase con-
sistency in the specification, we consider the mapping
effort, which actually realizes integration, as too high.
Also changing or extending the validation technique
induces high effort.

The third solution can be seen as an integrated
validation system which may be enhanced to further

checking technologies and may provide a unique user
interface. The drawback of solution 3 is the higher
effort to realize the integration of the validation tech-
nologies (including the translation and transformation
mechanisms).

4 DESIGN OF AN INTEGRATED
VALIDATION

The realization of the concept we propose is based
on the validation system BAM (Business Application
Modeler). BAM has a layered design with the three
layers: business process and specification (rule) mod-
eling layer on top. An intermediate transformation
layer and the verification tool layer at bottom.

4.1 Rule Modelling

BAM provides a graphical interface for modeling
rules (specifications) very close to the graphical no-
tation of the process models, called graphical valida-
tion rules. Basically, the meta model of these rules
consist of the graphically represented set of opera-
tors of a certain specification language (e.g. Boolean
Logic or Computation Tree Logic) and a subset of
the meta model of the process modeling notation of
models to be checked. Rules are specified by con-
necting patterns of process elements and operators of
the specification language. The rule modeler does not
have to know anything about the representation of the
process model in the checking tool.

An example for such a graphical validation rule
notation is the Graphical Computation Tree Logic (G-
CTL), first introduced in (Feja and Fötsch, 2008). G-
CTL provides a graphical representation of all oper-
ators of the textual specification language CTL, i.e.
Future, Globally, neXt or Until which are combined
with path quantifiers Exist and Always. The atomic
expressions of G-CTL rules are specified by patterns
of process elements. These patterns are atomic in
terms of time, i.e. they can exist in a step in the dis-
crete model of time in CTL. They are not atomic in
terms of the process modeling notation. G-CTL has
different appearances for different process modeling
notations. E.G. for the Event-driven Process Chains
(EPC), we call G-CTL correspondingly EPC-G-CTL.

Hence, the modeling component of BAM can eas-
ily be extended by further specification languages
(e.g. Boolean Logic, CTL* or LTL) for different pro-
cess modeling notations.

Figure 1 depicts an example for an EPC-G-CTL
specification. Besides the temporal operators with
path quantifiers, Boolean operators are contained as

Integrating�Validation�Techniques�for�Process-based�Models

249

pd

i=1

**

external

*

pd

i=1

*

Figure 1: EPC-G-CTL rule: Personal data must not be ac-
cessed externally.

well. Dashed boxes can be understood as brackets.
Solid boxes contain the patterns of process elements.

The example in figure 1 is a rule for handling
data privacy, further examples are described in (Witt
et al., 2012). Prosaically the rule can be read as fol-
lows: Once personal data are created by a function,
they must not be read by a function with the attribute
external. Reading the rule in terms of the operators
means: In any state of the process (always globally)
holds: If (implication) a function occurs, creating per-
sonal data (indicated by the attribute pd) then from
this state on there must not (not operator) exist any
course of action which eventually (Exists in Future)
leads to a state, where a function with the attribute ex-
ternal reads the data, created before. The request for
the identity of these data is specified by the identity
constraint i = 1 in the data cluster.

Although this is a valid (EPC-G-)CTL rule it may
be sufficient for most processes to express this rule
without the overhead of evaluating temporal opera-
tors. This is because the order of these patterns of
process elements, does not matter regarding the pro-
hibition of using personal data externally. (The re-
quirement that data should be created before they are
used could be expressed more generally by a further
behavioral rule.)

We propose the solution to use another valida-
tion technique that allows to validate against struc-
tural properties, expressed in Boolean logic. Such a
graphical validation rule is depicted in figure 2. The
logic is similar to the logic of the G-CTL rule in fig-
ure 1, but temporal operators have been omitted. The
syntax is basically the same. In this rule the existence
of a function, creating personal data, implies the non-
existence of an "external function", using these data.

4.2 Checking Techniques Integration

Above, we already introduced the layers of our in-
tegration architecture, which is outlined in figure 3.

*

pd

i=1

*

external

*

pd

i=1

*

Figure 2: Graphical structural rule: collected personal data
implies that it is not accessed externally.

The modeling layer basically provides three features:
Modeling of processes, modeling of graphical vali-
dation rules and generic mechanisms to visualize the
checking results inside the process models. The trans-
formation layer is triggered by passing process mod-
els and rules to it. We will describe this layer more
detailed in the following section. The validation layer
is responsible for executing the checking techniques
and returns the checking results to the transformation
layer, which finally uses the visualization capabilities
of the modeling layer to visualize results.

The transformation layer is the core component of
the proposed integration architecture and will be de-
scribed in the following. We are going to illustrate
this with an example process, shown in figure 4 and
the example rules in figure 1 and 2. The example pro-
cess shows a cut-out of a payment process.

4.2.1 Choosing the Evaluation Path

The basic rule processing starts with analyzing in-
coming rules. Here the transformation layer decides
on basis of the operators in the rule, which check-
ing technique to use. Roughly we distinguish be-
tween structural and behavioral evaluation path. For
the behavioral path the model checker Cadence SMV
(McMillan and Cadence Berkeley Labs,) is currently
adapted. For structural evaluation, SWI Prolog is
adapted. Both paths also allow a direct evaluation for
"simple" cases.

The basic decision between both evaluation paths
is quite simple: The behavioral path will be taken, if
the rule contains temporal operators as in figure 1. In
case of purely Boolean operators (figure 2), the struc-
tural evaluation path is chosen.

4.2.2 Behavioral Evaluation Path

Still in the step of basic rule processing, the graphical
rules are preprocessed by identifying the places in the
process model, which are matched by the patterns of
process elements in the rule. We call such places sub-
states, which are atomic parts of the process model in

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

250

tool based
evaluation

(e.g. Prolog)

model checking

direct evaluation

basic rule
processing

behavioral property

structural
transformation

(e.g. Prolog)

result processing

structural property

semantic model
transformation

Transformation Layer Validation Layer
Modeling &
Specification Layer

process modeling

rule modeling

result visualization

Figure 3: Outline of the checking technique integration in BAM.

customer
data
entered

credit
card
payment

cash on
delivery

record
outstanding
cash on delivery

credit
card data
entered

external

charge credit
card

payment
failed

payment
succeeded

book
received
amount

payment
processed

order
canceled

pd

pd

pd

customer
data

pd

customer
selects payment
method

customer enters
credit card data

customer
data

credit card
data

credit card
data

customer
enters data

pd

customer
data

Figure 4: EPC business process model sample.

terms of time consumption. E. g. for EPC a function
and all objects attached by non-control flow edges
(clusters, systems etc.) form a sub-state. Sub-states
are connected via the control flow and can be concur-
rently active, therefore, the patterns in G-CTL may
not contain control flow elements.

The rule in figure 1 contains two patterns. For
each pattern a (possibly empty) set of matching

sub-states can be identified. Regarding the exam-
ple process, the first pattern of the rule matches
the sub-state around the function customer enters
data (let this be sub-state sa) and customer enters
credit card data (sub-state sb), both connected to
a data cluster with the attribute pd via outgoing data
flow. For the second pattern only the function charge
credit card and the corresponding cluster matches
(sub-state sc).

Due to the identity constraints (i = 1) for the data
cluster, not every assignment of matching sub-states
to the patterns is consistent. Therefore, consistent as-
signments of substates to the patterns are determined
and will be evaluated in a dedicated instance of the
rule. Regarding the example rule, the clusters need
to be named identically, which is only the case for sb
and sc. This is the first instance of the rule to be eval-
uated. For assigning sa to the first (upper) pattern,
the second pattern is constantly set to false, since no
matching sub-state exists. This is the second instance
of the rule to be evaluated.

Next, for each rule instance will be checked, if
it can be evaluated directly. Currently, direct eval-
uation is performed for trivial cases like the second
instance, where the result can be determined without
actually observing the process behavior. Because the
second pattern is set to false, the EF operator evalu-
ates to false. This is inverted to true by the negation
and therefore the implication is always true, which al-
ways satisfies the AG operator. This direct evaluation
is performed by simply using a parse tree of the rule.

The evaluation of the first instance is not as triv-
ial. Here, model checking will be used. Therefore the
semantic model transformation will be performed. In
this step the process model is transformed into a rep-
resentation, readable as input for the Cadence SMV.
This representation describes the dynamic behavior
of the process, i. e. all possible sequences of sub-state
activity. Hence, an execution semantic needs to be ap-
plied in this step. The rule instances to be checked by

Integrating�Validation�Techniques�for�Process-based�Models

251

the model checker are transformed straight forward,
where the patterns are replaced by tests for the activ-
ity of the assigned sub-states.

Running the model checker leads to a counter ex-
ample for each rule instance, violated by the pro-
cess model. A counter examples provides a sequence
of the involved sub-states, causing a rule violation,
which can be utilized to visualize the error. Here, the
second rule is violated by the example process, since
a state exists where sb is active and from where a state
can be reached in which sc is active.

4.2.3 Structural Evaluation Path

The structural evaluation path currently also chooses
between a direct evaluation and the utilization of a
checking tool like Prolog. For now the criteria applied
for this decision is the "complexity" of the patterns. In
contrast to model checking, the pattern matching and
evaluation of identity constraints can be implemented
quite elegant in Prolog. Moreover, the notion of sub-
states as in the behavioral evaluation has not the same
relevance for structural observations. Here, the pat-
terns may also contain control flow elements.

For simple patterns also a direct evaluation is pos-
sible, similar to the direct evaluation in the behavioral
path. Here again, the rule instances are created in
the same way, for the rule in figure 2, which has the
same pattern and therefore the same consistent assign-
ments. If an assignment for a pattern is found, it is set
to true, otherwise to false. Hence, in case of the first
instance, both patterns are set to true and the rule eval-
uates to false. For the second instance the first (upper)
pattern is true, the second false and the rule is true.

For more sophisticated rules, a structural transfor-
mation into Prolog is implemented, which will not be
described in detail. However, the graph structure of
the process model is transformed into the knowledge-
base of Prolog, including node and edge types. Rules
are transformed into Prolog requests. Although this
procedure is similar to the model checker based eval-
uation, it is not as expensive, since no execution se-
mantic needs to be applied.

4.2.4 Result Processing and Visualization

Once results are returned, available information like
error traces or matched patterns are used to visualize
the error in the process model. Figure 5 depicts the vi-
sualization for the violation of the rule in figure 2, de-
termined by the structural evaluation path. Currently,
critical elements of the process model are highlighted.

credit
card
payment

credit
card data
entered

external

charge credit
card

order
canceled

pd

pd

customer enters
credit card data

credit card
data

credit card
data

Figure 5: Error visualization in process model sample.

5 CONCLUSIONS

This paper presents concepts to integrate different val-
idation techniques in one easy to use system, based
on the Business Application Modeler. The valida-
tion techniques are integrated in or by the transfor-
mation layer between the modeling and specification
layer and the validation layer. In our work we fo-
cus on the validation of business process models. The
approach hides the complexity of transformation and
choice of checking techniques from the users and pro-
vides a unified user interface. This enables checking
of sophisticated requirements on a functional level for
users, that are not necessarily familiar with the formal
syntax and semantics of different elaborated checking
techniques.

Current work in progress is the conjunction of
structural and behavioral requirement specifications.
Such a combined language could deliver an unique
specification mechanism and would be more expres-
sive at the same time. To achieve this, the notation for
graphical validation rules needs to be extended and
the integration mechanisms must be able to manage
the evaluation of such rules efficiently. Moreover we
intend to extend the selection mechanism of the ap-
propriate validation technique.

A further problem, which may be addressed by the
validation of business processes, may be constraint
satisfaction. Constraints may be useful when trade-
offs between different business process solutions have
to be made. Bi-simulations would also be of interest.
With bi-simulations different models may be com-
pared. For instance this may help to validate the se-
mantically identity of processes on different levels of
abstraction.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

252

REFERENCES

Anderson, B. B., Hansen, J. V., Lowry, P. B., and Summers,
S. L. (2005). Model checking for design and assurance
of e-Business processes. Decision Support Systems,
39(3):333–344.

Awad, A. M. H. A. (2007). BPMN-Q: A Language to Query
Business Processes. In Reichert, M., Strecker, S., and
Turowski, K., editors, Proceedings of the 2nd Int’l
Workshop Enterprise Modelling and Information Sys-
tems Architectures Concepts and Applications, pages
115–128, Bonn. Gesellschaft für Informatik.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Patel-Schneider, P. F., editors (2003). The descrip-
tion logic handbook: theory, implementation, and ap-
plications. Cambridge University Press, New York,
NY, USA.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A.,
Petrucci, L., and Schnoebelen, P. (2001). Systems and
Software Verification – Model-Checking Techniques
and Tools. Springer, Berlin, Germany.

Bormann, J., Fedeli, A., Frank, R., and Winkelmann, K.
(2005). Combined Static and Dynamic Verification,
Version 2, Public Version March 31st, 2005, (Deliver-
able 3.1/1), Research Report. Technical report, project
PROSYD, European IST.

Bradfield, J. and Stirling, C. (2001). Modal logics and mu-
calculi: an introduction. In Handbook of Process Al-
gebra, pages 293–33. Elsevier Science Publishers.

Chechik, M., Devereux, B., Easterbrook, S., and Gurfinkel,
A. (2003). Multi-Valued Symbolic Model-Checking.
ACM Transactions on Software Engineering Method-
ology, 12(4):371–408.

Deutch, D. and Milo, T. (2007). Querying Structural
and Behavioral Properties of Business Processes. In
Proceedings of the 11th international conference on
Database programming languages, pages 169–185,
Berlin / Heidelberg. Springer Verlag.

Emerson, E. A. and Clarke, E. M. (1980). Characteriz-
ing Correctness Properties of Parallel Programs Us-
ing Fixpoints. In ICALP 1980, Automata, Languages
and Programming, 7th Colloquium, pages 169–181.
Springer LNCS 85.

Fahland, D., Favre, C., Jobstmann, B., Köhler, J., Lohmann,
N., Völzer, H., and Wolf, K. (2009). Instantaneous
Soundness Checking of Industrial Business Process
Models. In Proceedings of the 7th International
Conference on Business Process Management (BPM
2009), pages 278–293. Springer, LNSC 5701.

Feja, S. and Fötsch, D. (2008). Model Checking with
Graphical Validation Rules. In Proceedings of the
15th IEEE International Conference on the Engineer-
ing of Computer-Based Systems (ECBS 2008), pages
117–125. IEEE.

Feja, S., Witt, S., and Speck, A. (2011). BAM: A Re-
quirements Validation and Verification Framework for
Business Process Models. In 11th International Con-
ference On Quality Software, pages 186–191, Los
Alamitos, CA, USA. IEEE Computer Society.

Förster, A., Engels, G., Schattkowsky, T., and
Van Der Straeten, R. (2007). Verification of
Business Process Quality Constraints Based on Visual
Process Patterns. In Proceedings of the First Joint

IEEE/IFIP Symposium on Theoretical Aspects of
Software Engineering (TASE ’07), pages 197–208.

Gruhn, V. and Laue, R. (2007). Checking Properties of
Business Process Models with Logic Programming.
In 5th International Workshop on Modeling, Simu-
lation, Verification and Validation of Enterprise In-
formation Systems (MSVVEIS’07), pages 84–93. IN-
STICC PRESS.

Köhler, J., Tirenni, G., and Kumaran, S. (2002). From Busi-
ness Process Model to Consistent Implementation: A
Case for Formal Verification Methods. In 6th Interna-
tional Enterprise Distributed Object Computing Con-
ference (EDOC 2002), pages 96–106.

Kozen, D. (1983). Results on the propositional mu-calculus.
Theoretical Computer Science, 3(27):333–354.

May, W. (1998). Integrated Static and Dynamic Modeling
of Processes. PhD thesis, Universität Freiburg, Ger-
many.

McMillan, K. and Cadence Berkeley Labs. The cadence
smv model checker.

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer
Academic Publishers.

Morimoto, S. (2008). A Survey of Formal Verification for
Business Process Modeling. In 8th International Con-
ference on Computational Science, pages 514–522.
Springer.

Pulvermüller, E. (2002). Composition and Correctness. In
SC 2002: Workshop on Software Composition, vol-
ume 65 of Electronic Notes in Theoretical Computer
Science (ENTCS). Elsevier Science Publishers.

Pulvermüller, E., Feja, S., and Speck, A. (2010).
Developer-friendly verification of process-based sys-
tems. Knowledge-based Systems, 23(7):667–676.

Speck, A. (2006). Modelling and Verifying of e-Commerce
Systems. In Proceedings of International Work-
shop on Regulations Modelling and their Validation
and Verification (REMO2V’06) in conjunction with
CAiSE’06, pages 857–863.

van der Aalst, W. M. P. (1999). Formalization and Verifica-
tion of Event-driven Process Chains. Information and
Software Technology, 41(10):639–650.

van Dongen, B. F., Jansen-Vullers, M. H., Verbeek, H.
M. W., and van der Aalst, W. M. P. (2007). Verifi-
cation of the SAP reference models using EPC reduc-
tion, state-space analysis, and invariants. Computers
in Industry, 58(6):578–601.

Weitl, F. and Nakajima, S. (2011). Integrated model check-
ing of static structure and dynamic behavior using
temporal description logics. Electronic Communica-
tions of the ECEASST, 46:1–16.

Witt, S., Feja, S., Speck, A., and Prietz, C. (2012). Inte-
grated privacy modeling and validation for business
process models. In Proceedings of the 2012 Joint
EDBT/ICDT Workshops, EDBT-ICDT ’12, pages
196–205, New York, NY, USA. ACM.

Xu, K., Liu, Y., and Wu, C. (2008). BPSL Modeler – Vi-
sual Notation Language for Intuitive Business Prop-
erty Reasoning. Electronic Notes in Theoretical Com-
puter Science, 211:211–220.

Xu, Z. (2008). Combination of Model Checking and The-
orem Proving to Develop and Verify Embedded Soft-
ware. Information Technology Journal, 7(4):623–630.

Integrating�Validation�Techniques�for�Process-based�Models

253

