
Automatically Generating Tests from Natural Language
Descriptions of Software Behavior

Sunil Kamalakar, Stephen H. Edwards and Tung M. Dao
Department of Computer Science, Virginia Tech, 2202 Kraft Drive (0902), Blacksburg, Virginia, U.S.A.

Keywords: Behavior-Driven Development, Test-Driven Development, Agile Methods, Software Testing, Feature
Description, Natural Language Processing, Probabilistic Analysis, Automated Testing, Automated Code
Generation.

Abstract: Behavior-Driven Development (BDD) is an emerging agile development approach where all stakeholders
(including developers and customers) work together to write user stories in structured natural language to
capture a software application’s functionality in terms of required “behaviors.” Developers can then manu-
ally write “glue” code so that these scenarios can be translated into executable software tests. This glue code
represents individual steps within unit and acceptance test cases, and tools exist that automate the mapping
from scenario descriptions to manually written code steps (typically using regular expressions). This paper
takes the position that, instead of requiring programmers to write manual glue code, it is practical to convert
natural language scenario descriptions into executable software tests fully automatically. To show
feasibility, this paper presents preliminary results from a tool called Kirby that uses natural language
processing techniques to automatically generate executable software tests from structured English scenario
descriptions. Kirby relieves the developer from the laborious work of writing code for the individual steps
described in scenarios, so that both developers and customers can both focus on the scenarios as pure behav-
ior descriptions (understandable to all, not just programmers). Preliminary results from assessing the per-
formance and accuracy of this technique are presented.

1 INTRODUCTION

Behavior-Driven Development (BDD) is a relatively
new agile development technique that builds on the
established practice of test-driven development.
Test-Driven Development (TDD), (Beck, 2002;
Koskela, 2007) is an approach for developing soft-
ware by writing test cases incrementally in conjunc-
tion with the code being developed: “write a little
test, write a little code.” TDD provides a number of
benefits (Nagappan et al., 2008), including earlier
detection of errors, more refined and usable class
designs, and greater confidence when refactoring.
TDD facilitates software design by encouraging one
to express software behaviors in terms of executable
test cases.

Behavior-driven development combines the
general techniques and principles of TDD with ideas
from domain-driven design and object-oriented
analysis. It was originally conceived by Dan North
(2013) as a response to limitations observed with
TDD. In BDD we specify each “behavior” of the

system in a clearly written and easily understandable
scenario description written using natural language.
These natural language scenarios help all
stakeholders—not just programmers—understand,
refine, and specify required behaviors. Through the
clever use of “glue code” provided by programmers
once the scenarios are written, it is possible to
execute these natural language scenarios as
operational software tests.

BDD is focused on defining fine-grained
specifications of the behavior of the target system.
The main goal of BDD is to produce executable
specifications of the target system (Solis and Wang,
2011), while keeping the focus on human-readable
scenario descriptions that can be easily understood
by customers as easily as by developers.

However, one weak point of BDD is the “glue
code”—programmers are still required to produce
program “steps” that correspond to the basic actions
described in the natural language scenarios. A
number of tools have developed to make the process
of writing this glue code easier and more

238 Kamalakar S., H. Edwards S. and M. Dao T..
Automatically Generating Tests from Natural Language Descriptions of Software Behavior.
DOI: 10.5220/0004566002380245
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 238-245
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

streamlined, and to automatically map phrases in the
scenarios into such steps (typically using regular
expressions). However, a manually-written bridge
between the scenarios and the programmatic actions
that correspond to them is still necessary.

This paper takes the following position:

Instead of requiring programmers to write
manual glue code, it is practical to convert
natural language scenario descriptions into
executable software tests fully automatically.

To defend this position, the remainder of this paper
describes work in progress on a tool called Kirby: a
BDD support tool that automatically translates
natural language scenario descriptions into
executable Java software tests. This paper describes
the approach used and presents preliminary results
that demonstrate feasibility.

The paper is organized as follows: Section 2
briefly reviews the related work including typical
BDD practices. Section 3 describes Kirby and its
architecture and implementation strategy. Section 4
illustrates how the approach works with examples,
and Section 5 summarizes our preliminary
evaluation. The paper concludes with a discussion
of future work in Section 6.

2 RELATED WORK

There are few published studies on BDD, most of
which take a relatively narrow view, treating it as a
specific technique of software development (Solis
and Wang, 2011). Keogh (2010) embraces a broader
view, arguing its significance to the whole lifecycle
of software development, especially on the business
side and the interaction between business and soft-
ware development. Lazar et al. (2010) highlight the
value of BDD in the business domain, claiming that
BDD enables developers and domain experts to
speak the same language, and that BDD encourages
collaboration between all project participants.

Many tools for BDD have been created for use in
different contexts, the best known of which is Cu-
cumber (Cucumber, 2013, Wynne and Hellesøy,
2012). Cucumber is a BDD tool written for the pro-
gramming language Ruby. Developers and custom-
ers write semi-structured natural language scenario
descriptions, and developers write the corresponding
test “steps” in Ruby, using regular expressions to
match natural language phrases used in the scenari-
os. Similar tools exist for other languages (JBehave,
2013, JDave, 2013, NBehave, 2013, PHPSpec,
2013). Traditionally, TDD has been used in writing

unit tests and BDD has evolved to specify
acceptance tests. Nevertheless, software developers
should be able to leverage the capabilities of BDD to
specify unit tests in a intuitive manner as well.

Cucumber uses the Gherkin language (Gherkin,
2013) for writing semi-structured scenario descrip-
tions. It is a “business readable, domain specific
language” (Cucumber, 2013) that lets you describe
software behaviors without detailing how those
behaviors are implemented. Gherkin simultaneously
serves two purposes: documentation and automated
test description. Gherkin structures descriptions this
way:

Scenario: [Name]
Given [Initial context] And [some more context]
When [Event] And [some other event]
Then [Outcome] And [some other outcome]

In Gherkin, each behavior is called a scenario,
and scenarios can further be grouped into stories or
features. For example, here is a short scenario
describing a stock trading behavior in Gherkin:
Scenario: check stock threshold
 Given a stock with symbol GOOGLE and
 a threshold of 15.0
 When the stock is traded at a price
 of 5.0
 Then the alert status is OFF
 When the stock is sold at a price of
 16.0
 Then the alert status is ON

The scenario name is a shorthand description of
what the scenario is supposed to do. Scenarios use a
declarative syntax containing “Given”, “When” and
“Then” clauses. “Given” clauses describe an initial
context for some behavior, “When” clauses describe
the occurrence of one or more events or actions, and
“Then” clauses describe the expected outcome(s).
The sentences (or phrases) after each keyword are
free-form, but each must match a specific step (or
glue method) written by the developer(s).

While existing BDD tools such as Cucumber and
JBehave rely on regular expressions to recognize
key phrases in scenarios in order to map them to
steps, we propose a strategy based on a more
comprehensive natural language processing (NLP)
approach. Other techniques for automatically gener-
ating code based on NLP have been described (Yu
and Fleming, 2010). Budinsky (1996) describes code
generation techniques that generate templates for
user-specified design patterns. Various software
tools for UML, XML processing, etc., are capable of
generating source code based on user input. These
systems require a well-defined input format, and
unless one follows a known grammar with unambig-

Automatically�Generating�Tests�from�Natural�Language�Descriptions�of�Software�Behavior

239

uous, clearly defined instructions, it is difficult to
auto-generate program code from natural language
on the fly.

In another closely related work, Soeken et al.
(2012) propose an assisted flow for BDD, where the
user enters into a dialog with the computer—the
computer suggests code fragments extracted from
the sentences in a scenario, and the user confirms or
corrects each step. This allows for a semi-automatic
transformation from BDD scenarios as acceptance
tests into source code stubs and thus provides a first
step towards automating BDD. Our approach bor-
rows certain ideas of NLP, but aims for complete
automation.

3 A NEW APPROACH

BDD is a highly iterative and incremental process
where one switches back and forth between working
on scenarios and developing application code that
meets the scenario’s requirements. We propose a
new tool called Kirby that completely automates the
generation of the individual steps in executable tests
directly from the natural language scenario descrip-
tions. Kirby is named after “Kirby cucumbers”, a
variety of cucumbers that are both short and bumpy
in appearance. Kirby shortens the process of execut-
ing BDD scenarios by eliminating the manual task
of writing test steps. However, while Kirby shows
that this approach is feasible, the road to a produc-
tion-quality solution still contains a few bumps.

The workflow we envision for BDD with Kirby
is illustrated in Figure 1. Developers alternate be-
tween creating or revising scenarios and writing (or
creating stubs for) implementations of features.
Since the implementation code is written with the
scenario in mind, the language that is used in the
code we believe naturally will reflect the language
of the scenario (with subtle variations). At any time,
the scenarios can be executed directly on the imple-
mentation code by using Kirby, which will generate
the needed step definitions for us automatically from
the language used in the scenarios themselves.

3.1 The Design of Kirby

Gherkin as a language is very expressive and intui-
tive for describing scenarios—any natural language
phrasing can be used in each clause of a scenario.
The general strategy used by Kirby is to translate
each scenario into a single test. The “Given”
clause(s) specify the object creation actions or other
setup actions needed at the beginning of the test.

Figure 1: BDD Workflow with Kirby.

The “When” clause(s) represent method calls on
objects involved in the test, while “Then” clauses
represent assertions that check expected outcomes.
Clauses can be interleaved as needed. Understand-
ing this basic interpretation of clauses may help
stakeholders write effective scenarios that can be
translated successfully.

The high level architecture for Kirby is shown in
Figure 2. Since the goal is to relieve the developer
from writing step definitions manually, we need to
develop a mechanism to map the natural language
scenarios onto the code implementation/skeleton that
is being written alongside the scenarios.

Figure 2: Kirby’s high-level architecture.

Kirby uses both the scenario descriptions and the
co-developed software (complete code or stubs) as
input when generating executable tests. It uses a

Probabilistic
Matcher

Code
Generator

Class Info
Extractor

NLP Aug-
mentation

Engine

Scenarios
in Natural
Language

Test Code

App

Code/
Stubs

<<uses>>

<<uses>> <<uses>>

Kirby

<<uses>>

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

240

NLP Augmentation Engine to process and augment
the information in each clause of the scenario to
understand its structure and semantics. At the same
time, Kirby also uses a reflection-based Class In-
formation Extractor to obtain details about the clas-
ses and methods that have been written in the im-
plementation. The Probabilistic Matcher uses a
variety of algorithms to determine the best matches
between noun phrases and verb phrases in the be-
havioral description, and objects and methods avail-
able in the application. Once suitable matches have
been found, the Code Generator synthesizes this
information to produce JUnit-style tests.

3.2 NLP Augmentation Engine

The natural language processing performed in Kirby
occurs in its NLP Augmentation Engine, which pre-
processes a scenario to extract structural information
about the organization of its clauses. The Stanford
NLP library (Stanford NLP Group, 2013) is used to
create a Phrase Structure Tree (PST) for each clause,
allowing the noun phrases and verb phrases to be
extracted. We also use its capability to augment
information about the types of dependencies that
exist between the words of each clause.

Preprocessing includes removal of stop-words
that do not add any value to the meaning of the sen-
tence, while making sure that the PST representation
for the clause still remains intact. The augmentation
also ensures that we keep the lemmatized version of
each word encountered in the clause to reduce ambi-
guity by consolidating different inflected forms of
the word into a single form for matching.

3.3 Code Information Extractor

The Code Information Extractor is responsible for
extracting information from the implementation
code. Kirby uses a streamlined Java reflection API
(Edwards et al., 2012) to keep track of all the classes
in a particular project, plus the classes that are ac-
cessible and utilized by those classes. These classes
represent our search space for the objects that need
to be created based on the natural language infor-
mation available in the scenario clauses. Since we
use Java, which follows a strict object oriented struc-
ture, we keep track of the public methods and also
public members that are part of each class. If the
Java bytecode for the application includes debug
information (which is typical during development),
the Code Information Extractor also keeps track of
the names of each method’s parameters.

3.4 Probabilistic Matcher

The Probabilistic Matcher is an interesting aspect of
the architecture, since it is responsible for computing
probability values of match between the clause in
the behavior and the code implementation. Using
natural language in scenarios provides a great deal
of flexibility in the way we specify software behav-
ior. But matching this natural language with pro-
gram features is quite challenging. There is no one-
stop solution or algorithm that works perfectly in
this situation. An edit-distance algorithm like Le-
venshtein (Soukoreff and MacKenzie, 2001) may
work favorably in a situation where the user speci-
fies the partial or exact wording used in the code, but
it will fail miserably when a synonym is used in
natural language. For multi-word or sentence match-
ing a vector space model like cosine similarity gives
better values (Tata and Patel, 2007).

Kirby takes a hybrid approach that combines
multiple algorithms that include confidence
measures, weighing them against each other to
choose the most likely match. Kirby’s cosine simi-
larity measure has been extended to include Word-
Net (Fellbaum, 1998) so that word synonyms can be
handled. For computing the semantic similarity
between words based on how they are used in writ-
ten language, Kirby uses a tool called DISCO (Kolb,
2008) that provides a second order similarity meas-
ure between two words or sentences based on actual
usage in large datasets like Wikipedia. The chal-
lenges faced in these computations vary depending
upon what specific kind of matching is needed in a
particular clause: class matching, parameter match-
ing, constructor matching, or method matching.

The Probabilistic Matcher uses weighted averag-
ing to adapt its matching model based on the indi-
vidual values obtained from the competing algo-
rithms. If one algorithm, such as DISCO or edit-
distance, does not provide any results in a given
situation, the matcher modifies the weights of the
probabilities (confidence levels) produced by the
other algorithms. The weights used were obtained
through experimentation as discussed in Section 5.

3.5 Code Generator

Once phrases in the scenario have been matched
with classes, methods, and values, the Code Genera-
tor interacts with the other components to produce
executable tests. Information from the Probabilistic
Matcher is combined with code features retrieved by
the Code Information Extractor to generate the test
code in Java using JUnit as our base unit-testing

Automatically�Generating�Tests�from�Natural�Language�Descriptions�of�Software�Behavior

241

framework. Each of the clauses expressed in a sce-
nario is treated differently. “Given” clauses map to
one or more constructor calls. “When” clauses refer
to a method call (or sequence of calls). “Then”
clauses refer to one or more assertions from a code
generation perspective.

The code is generated using a sophisticated on-
the-fly approach based on the CodeModel library
(CodeModel, 2013). We also handle ambiguity and
error handling at this layer. If the probability values
are very close to each other, or if no match is found,
or if the confidence measure is too low, the Code
Generator will generate a fail() method call in
the test specifying the reason for the ambiguity.

4 EXAMPLES IN ACTION

To see how this strategy works in practice, consider
the example scenario shown in Section 2, which
comes from the JBehave web site (JBehave, 2013):
Scenario: check stock threshold
 Given a stock with symbol GOOGLE and
 a threshold of 15.0
 When the stock is traded at a price
 of 5.0
 Then the alert status is OFF
 When the stock is sold at a price of
 16.0
 Then the alert status is ON

The NLP Augmentation Engine parses the claus-
es as shown in Figure 3.

To see how the proposed approach operates in
practice, we will examine the actual results produced
by the Kirby prototype on this scenario. In this
example, the parse of the “Given” clause identifies
three nouns, “stock”, “symbol”, and “threshold”.

Figure 3: Parse results for the “stock” scenario.

The Code Information Extractor found the class
Stock as part of the application under develop-
ment. This class does include a constructor that
happens to have parameters named “symbol” (a
String) and “threshold” (a double). As a result, the
Code Generator translates this “Given” clause into:

Stock stock =
 new Stock("GOOGLE", 15.0);

Similarly, the first “When” clause includes two
nouns and a verb phrase. By looking at the labelling
of the parse, it is possible to determine that “stock”
is the subject of the verb—in this case, the receiver
of a method call that represents an action. The verb
phrase determines the action, while the second noun
is an object that represents a parameter value. Be-
cause the Code Information Extractor reports a
tradeAt() method with one parameter named
“price”, the Probabilistic Matcher produces a high-
confidence match.

The “Then” clause is handled similarly, where
the noun “status” is matched to an existing method
named getStatus() that returns a string, and its
presence in a “Then” clause triggers the use of an
assertion to compare this method’s return value with
an expected result. The complete test produced is:

@Test
public void testCheckStockThreshold()
{
 Stock stock =
 new Stock("GOOGLE", 15.0);
 stock.tradeAt(5.0);
 assertEquals(
 "OFF", stock.getStatus());
 stock.tradeAt(16.0);
 assertEquals(
 "ON", stock.getStatus());
}

Now consider another BDD scenario, this time
for a program implementation of Conway’s “Game
of Life” (also inspired by scenarios posted on the
JBehave web site):

Scenario: multiple toggle outcome
 Given a game called gameOfLife, with
 width of 5 and height of 6
 When I toggle the cell at column = 2
 and row = 4
 And I switch the cell at "4", "2"
 And I alternate the cell at row 4 and
 column 2
 Then the string representation of the
 game should look like
 "_ _ _ _ X
 _ _ _ _ _
 _ _ _ X _"

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

242

The same parsing strategy results in the following
JUnit test:

@Test
public void testMultipleToggleOutcome()
{
 Game gameOfLife = new Game(5, 6);
 gameOfLife.toggleCellAt(2, 4);
 gameOfLife.toggleCellAt(4, 2);
 gameOfLife.toggleCellAt(2, 4);
 assertEquals(
 "_ _ _ _ X\n_ _ _ _ _\n_ _ _ X _",
 gameOfLife.
 getStringRepresentation());
}

The example above shows how Kirby provides
flexibility in the way that different word choices,
such as “toggle”, “alternate”, or “switch”, can all be
mapped to the method toggleCellAt() by using
for flexible similarity measures. This example also
shows different free-form choices for expressing
parameter values.

Finally, here is a third scenario for a class that is
used to make web requests and examine the result-
ing responses:
Scenario: request contains string
 Given a URL with value
 "http://google.com", called google
 And a web requester with url equal to
 google
 When we set the timeout to be 100
 And we send a request
 Then the response contains "google"

The corresponding JUnit test generated by Kirby is:

@Test
public void testRequestContainsString()
{
 URL google =
 new URL("http://google.com");
 WebRequester webRequester =
 new WebRequester(google);
 webRequester.setTimeout(100);
 webRequester.sendRequest();
 assertTrue(webRequester.
 getResponse().contains("google"));
}

Note that in all of the generated test methods
above, the code corresponding to the “Given” claus-
es have been embedded directly in the test methods.
If a person were writing tests by hand, he or she
would most likely take advantage of a setUp() (or
@Before) method so that the starting conditions for
the test could be reused across multiple tests. In this
case, however, the “source code” of the tests is the
natural language scenarios from which the Java test
code is automatically generated. Since scenarios

may or may not contain overlapping “Given” claus-
es, and programmer updates and modifications to
tests are expected to be made in the scenario descrip-
tions themselves, the Code Generator does not gen-
erate separate setUp()-style methods.

5 EVALUATION

Although BDD is an emerging technique with a
growing user community, it is difficult to find large
numbers of publicly available scenarios written for
tools like Cucumber and JBehave. At the same time,
however, it is important to evaluate new techniques
against real-world situations. To this end, we com-
piled a small collection of 12 BDD scenario descrip-
tions written in Gherkin—primarily from tutorials
published for use by developers learning to use other
BDD tools. We then ran this collection through
Kirby to assess its accuracy and performance, with
the belief that these examples are representative of at
least some portion of real-world practice.

Table 1 shows the accuracy of each of the four
individual matching algorithms employed in Kirby
to match parsed nouns to classes or objects. In addi-
tion, the “weighted average” shows the accuracy of
the final result produced by the Probabilistic Match-
er when it chooses results from the four competing
algorithms based on confidence weights. Table 2
shows the same information for matching verbs and
verb phrases to methods (note that “Given” clauses
typically use constructors rather than method calls,
and so are not included in Table 2).

Table 1: Matching algorithm accuracy for nouns and noun
phrases (classes and objects).

Algorithm
Clause Type

Given When Then
Edit distance 40% 55% 50%
Cosine 69% 78% 80%
Cosine (WordNet) 56% 56% 49%
DISCO 84% 96% 88%
Weighted average 100% 100% 100%

Table 2: Matching algorithm accuracy for verbs and verb
phrases (methods).

Algorithm
Clause Type

Given When Then
Edit distance - 23% 30%
Cosine - 58% 61%
Cosine (WordNet) - 32% 28%
DISCO - 76% 80%
Weighted average - 100% 100%

Automatically�Generating�Tests�from�Natural�Language�Descriptions�of�Software�Behavior

243

From these tables, it is clear that using a single algo-
rithm will not produce acceptable accuracy. How-
ever, by running all algorithms and considering the
confidence scores associated with each, it is possible
to pick results from the algorithm that produces the
most likely match in any given clause, increasing
overall accuracy significantly. At the same time,
however, this simply shows the feasibility of im-
proving accuracy by combining algorithms using
confidence measures. The tiny set of scenarios used
cannot be taken as truly representative of real-world
practices.

In addition to accuracy, speed is also a concern.
Kirby’s development quickly showed that some
algorithms depend critically on a dictionary of
known words, and the smaller the dictionary, the
less capable the algorithm—but larger dictionaries
significantly increase processing time. DISCO in
particular, as well as the WordNet extension to the
cosine measure, is susceptible. As a result, we col-
lected timing data on the processing of individual
clauses and whole scenarios, both using the most
comprehensive dictionaries available, and also using
a smaller dictionary intended to reduce processing
time. Unfortunately, the smaller dictionary also
reduced accuracy—resulting in a 25% loss in accu-
racy for word and phrase matching. Table 3 summa-
rizes the run time performance.

Table 3: Average running time for phrase analysis/match-
ing.

Clause type
Comprehensive

Dictionary
Smaller

Dictionary
Given 4.57 s (s.d. 3.98) 3.47 s (s.d. 3.61)
When 0.59 s (s.d. 0.27) 0.45 s (s.d. 0.28)
Then 0.84 s (s.d. 0.45) 0.73 s (s.d. 0.46)
Complete
scenario

8.34 s (s.d. 3.78) 6.47 s (s.d. 3.73)

From Table 3, it is clear that NLP is time-
consuming in relation to simpler approaches like
regular expression matching. It is interesting to note
that the bulk of the time is associated with class and
constructor matching in given clauses, while meth-
od-based matching in later clauses is much faster. It
is also interesting that using a smaller dictionary
sacrificed a noticeable amount of accuracy, but did
not drastically improve speed.

6 CONCLUSIONS

This paper takes the position that fully automated
translation of natural language behavioural descrip-

tions directly into executable test code is practical.
By describing the design of a prototype tool for
achieving this goal, and presenting results from
applying the prototype to a small collection of real-
world examples, this paper also shows the feasibility
of one technique for accomplishing this task.

At the same time, however, this prototype repre-
sents work in progress and has not undergone a
significant evaluation in the context of authentic
BDD usage by real developers. As future work, it is
necessary to collect a much larger library of existing
BDD scenario descriptions—preferably from open-
source projects, since the corresponding applications
would also be needed—to serve as a baseline for
truly evaluating effectiveness. Further, additional
improvements in performance (and potentially accu-
racy) are also needed.

REFERENCES

Beck, K. 2002. Test Driven Development: By Example.
Addison-Wesley Longman Publishing Co., Inc., Bos-
ton, MA, USA.

Budinsky, F. J., Finnie, M. A., Vlissides, J. M., and Yu, P.
S. 1996. Automatic code generation from design pat-
terns. IBM Systems Journal, 35(2):151–171, May
1996.

CodeModel. 2013. http://codemodel.java.net [Accessed
May 15, 2013].

Cucumber. 2013. http://cukes.info/ [Accessed May 15,
2013].

Edwards, S. H., Shams, Z., Cogswell, M., and Senkbeil, R.
C. 2012. Running students’ software tests against each
others’ code: New life for an old “gimmick”. In Pro-
ceedings of the 43rd ACM technical symposium on
Computer Science Education, SIGCSE ’12, pp. 221–
226, ACM, New York, NY, USA.

Fellbaum, C. (ed.). 1998. WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, MA, USA.

Gherkin. 2013. https://github.com/cucumber/cucumber/
wiki/Gherkin [Accessed May 15, 2013].

JBehave. 2013. http://jbehave.org/, Accessed May 15, 2013.
JDave. 2013. http://jdave.org/ [Accessed May 15, 2013].
Keogh, E. 2010. BDD: A lean toolkit. In Proceedings of

Lean Software Systems Conference, 2010.
Kolb, P. 2008. DISCO: A multilingual database of distri-

butionally similar words. In Proceedings of KON-
VENS-2008, Berlin.

Koskela, L. 2007. Test Driven: Practical TDD and Ac-
ceptance TDD for Java Developers. Manning Publica-
tions Co., Greenwich, CT, USA.

Lazr, I., Motogna, S., and Pírv, B. 2010. Behaviour-
driven development of foundational UML compo-
nents. Electronic Notes in Theoretical Computer Sci-
ence, 264(1): 91–105, Aug. 2010.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

244

Nagappan, N., Maximilien, E. M., Bhat, T., and Williams,
L. 2008. Realizing quality improvement through test
driven development: Results and experiences of four
industrial teams. Empirical Software Engineering,
13(3): 289-302, June 2008.

NBehave. 2013. http://nbehave.org/ [Accessed May 15,
2013].

North, D. 2013. Introduction to BDD. http://dannorth.net/
introducing-bdd/ [Accessed May 15, 2013].

PHPSpec. 2013. http://www.phpspec.net/ [Accessed May
15, 2013].

Soeken, M., Wille R., and Drechsler, R. 2012. Assisted
behavior driven development using natural language
processing. In Proceedings of the 50th International
Conference on Objects, Models, Components, Patterns
(TOOLS'12), Springer-Verlag, Berlin, Heidelberg, pp.
269-287.

Solis, C. and Wang, X. 2011. A study of the characteris-
tics of behavior driven development. In 37th EU-
ROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), pp. 383–387.

Soukoreff, R. W., and MacKenzie, I. S. 2001. Measuring
errors in text entry tasks: An application of the Le-
venshtein string distance statistic. In CHI’01 Extended
Abstracts on Human Factors in Computing Systems.
ACM, New York, NY, USA, pp. 319-320.

Stanford NLP Group. 2013. http://nlp.stanford.edu/ [Ac-
cessed May 15, 2013].

Tata, S., and Patel, J.M. 2007. Estimating the selectivity of
tf-idf based cosine similarity predicates. ACM SIG-
MOD Record, 36(2): 7-12, June 2007.

Yu, J.J.-B., and Fleming, A.M. 2010. Automatic code
generation via natural language processing, U.S. Pa-
tent 7765097, July 27, 2010.

Wynne, M., and Hellesøy, A. 2012. The Cucumber Book:
Behaviour-Driven Development for Testers and De-
velopers. Pragmatic Programmers, LLC.

Automatically�Generating�Tests�from�Natural�Language�Descriptions�of�Software�Behavior

245

