
Improving Quality in Agile Development Processes

Pryscilla Marcilli Dóra1,2, Ana Cristina Oliveira1,3 and J. Antão B. Moura1
1Systems and Computing Department, Federal University of Campina Grande (UFCG), Campina Grande, Brazil

2University Center of João Pessoa (UNIPÊ), João Pessoa, Paraíba, Brazil
3Federal Institute of Paraíba (IFPB), Campina Grande, Paraíba, Brazil

Keywords: Software Quality, Independent Testers, Agile Process Improvement.

Abstract: Software quality control in agile software development is based on two main principles: pair programming
and test-driven development. More recently, “post-agile” techniques seem to favor releasing early over
quality. Pressure for low cost, rapid development and to code for new features leads to the allocation of
resources to software development tasks preferably rather than to quality control. Such practices may put
the responsibilities for development and test on the same team and even facilitate sloppy testing. Albeit in
prototyping this may be acceptable and even make business sense that is not the case of scenarios that
include system software (e.g., a general purpose mobile operating system) or critical applications for
airspace, military, banking or healthcare purposes. In this article, we present our experience in organizing an
agile team which is divided into two cells with different responsibilities: software development per se and
testing exclusively. Preliminary results for the case of a grid computing backup system indicate higher test
efficiency and surprisingly, possible shorter time-to-market of the two-cell organization given
complimentary practices are also adopted. These results may contribute for the on-going discussion on the
role and impact of testing in agile development.

1 INTRODUCTION

As stated in (Guerra and 2002): "the quality of
software is closely linked to the process used to
develop it, and finding a process that fits exactly the
specificities of the development environment is
almost impossible". Hence, it may be better to adapt
and adopt the process that most resembles the
characteristics of the environment (Dinakar, 2009).
Some environmental features increase the
complexity of that task, such as when you have a
small team (Crispin and Gregory, 2009).

Agile methodologies, such as eXtreme
Programming (XP) and Scrum, treat quality as a
responsibility of the entire development, small team.
However, in many situations, teams spend more time
in production (coding) activities rather than
activities related to quality, so the results still show
unsatisfactory levels of quality and software discard
remains high (Chaos Report, 2011).

Mechanisms for quality control reduce the agility
of a development team. In fact, if viewed in
isolation, software testing activities require time,
more physical resources, and properly trained

personnel (Lycett et al., 2003). There is a growing
debate in the industry about the need to stress
delivery speed over testing in “post-agile”
processes–see for instance (Savoia, 2011). For
economy of resources, there is a trend to (continue
to) embed testers in product teams with the
consequence of “the role of test and Quality
Assurance (QA) management becoming unclear”
(Heuser, 2012). Another trend indicates that testing
activities are concentrating more on checking
business alignment (uprooting idea bugs) rather than
on code bug fixes (Lent, 2013)–i.e., post-agile
practices seem to suggest end user testing after
product launch. Trends or practices that favor speed
over testing may lead to defective software being
released more often. Albeit in some scenarios–such
as in idea testing by startups or in prototyping–this
may be acceptable and even make business sense,
that is not the case of scenarios that include system
software (e.g. a general purpose mobile operating
system) or critical applications–for the banking or
healthcare industries, say–which have stringent
quality requirements.

Our own experience in developing system

411Marcilli Dóra P., Cristina Oliveira A. and Antão B. Moura J..
Improving Quality in Agile Development Processes.
DOI: 10.5220/0004559704110416
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 411-416
ISBN: 978-989-8565-68-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

software however, indicates that agile techniques can
be improved with additional or adjusted practices
that improve quality and speed simultaneously. This
is surprising since additional practices would tend to
make the process slower. This paper provides some
details a case in such experience in the hope of
contributing to the discussion about agile speed v.
testing controversy.

The case study we consider here is a backup
utility (OurBackup (Oliveira, 2007)) from the Our
Grid project, an open source free-to-join peer-to-
peer (P2P) grid that aggregates computational
resources (grid machines) to support the execution
of bag-of-tasks (Boot) parallel applications on
demand. The project was developed at the
Distributed Systems Laboratory at the Federal
University of Campina Grande (DSL/UFCG) in
Brazil. Several strategies to mitigate the risks of low
quality were adopted during the project, including
the definition of a software development process
originally named OurProcess (OP), an adaptation of
the XP methodology for the development of
distributed systems. Further (practice) additions to
OP–including the adoption of an independent team
for Quality Assurance–led to an agile, mainly
quality-centered process named OurQualityProcess
(OQP).

OQP’s main characteristics and practices are
briefly reviewed in section 2. Section 3 compares
results of OP’s and OQP’s application to the case
study. Analysis of the results and recommendations
are made in section 4. Results from related work are
compared to ours in section 5. Conclusions, caveats
and further work are presented in section 6

2 OQP: SOFTWARE QUALITY
CONTROL

XP was chosen as a starting point and base for QOP
because our team at DSL/UFCG had familiarity
with its concepts and usage.

The main goal of OQP is to maintain agility. But
to also focus on producing clear requirements and
automatic (Buglione and Hauck, 2012), reproducible
tests, while being still minimally intrusive,
additional practices were added to its XP base (or
Our Process – OP, as we called it internally). OQP’s
additional practices and techniques focus on the
number of defects identified before a new version is
released. The main addition is the insertion of an
external quality assurance (QA) team to focus
exclusively on the quality of final products. (This
does not eliminate the responsibility for quality of

the development team which should cooperate with
the inserted QA team).

Another adaptation of the base XP process
entails validation of requirements, by analyzing and
criticizing each specification sentence. While the
development team writes software requirements and
acceptance tests for the obvious cases, the QA team
checks non-functional aspects, such as
completeness, correctness and unambiguity. This
practice minimizes problems of requirement writing
and interpretation, leading to an executable
documentation in the form of automatic, cohesive
and correct tests that last the software “lifetime”.

Yet another adjustment to OP to yield OQP is to
halve the duration of XP’s typical one-day long
tasks. (This is because “software developers” at
DSL/UFCG are usually students who need to take
care of other daily duties–e.g., attending classes.)

During the implementation of the system
functionalities, the practice of Test-Driven-
Development (TDD) (Beck et al., 2001; Crispin and
House, 2002) is also widely used by the
development team, while the QA team identifies
new test scenarios, sometimes by performing manual
testing prior to automation. The practice of
refactoring is also made to encompass both teams’
codes, developers’ as well as the QA team’s.

Other additional practices include contract-
driven development (Mitchell et al., 2002),
execution of different test batteries (builds), constant
revisions and synchronization between teams. With
this incremented and adjusted set of practices OQP’s
usage is guided by three basic principles as seen
next.

2.1 OQP Principles

i) Gradual QA - After the elaboration of basic
acceptance tests (by the developers), a process called
“explosion of test cases” begins with the purpose of
stressing the code (when available). Each produced
acceptance test leads to one or more tests, which are
developed by the QA team.

Once the defects are fixed (by developers), the
QA team runs the battery of (possibly manual) tests
to validate the correction of defects and to identify
new test cases. Testing stops when a set percentage
of code coverage is reached. According to a survey
of development practioners and managers that
should be higher than 90% (Dóra et al., 2013).

ii) Maintainability of Code Health - Every new
piece of code must go through a battery of
automated tests to be integrated into the repository.
At integration one can check the "health" of the

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

412

code. Different batteries of tests are defined with
different objectives. At first coding, a battery is still
simple with only unit tests and mock tests
(Mackinnon et al., 2000) related to the module under
development. The battery of tests grows according
to the evolution of the software being developed. A
battery of integration tests is performed where the
mock tests are replaced by integration tests, and
every night the full battery of tests is performed
creating a daily status of the "health" of the code.

Furthermore, the integration of a new developed
test should occur as soon as possible so that all team
members have access to the new test and thus
increase the verification of newly developed code.

Note that Development by Contract (DBC) also
contributes to code health by mapping the
responsibilities of classes and objects, making the
implementation more robust. Business rules are
checked by logical assertions that verify whether the
input and output data are correctly processed.

iii) Code Review – is enacted during pair
programming or by a person who is not involved in
the actual coding, preferably by the team leader,
either of development or QA. The adoption of this
principle reduces errors, misinterpretations,
increases code legibility, reduces breaches of
contracts, and improves design. Its combination to
the other two principles causes all developed code to
be examined by at least two people in its life cycle.

2.2 Life Cycle

As in XP, integral development of the software
occurs through a succession of coded and tested
releases. The activities performed for a release are
identified by the lines across Figure 1 and are
detailed in Table 1. Each release is divided into four
phases: Requirements elicitation, Development,
Alpha and Beta Testing. During these phases, the
activities of the development and QA teams are
performed in parallel.

Figure 1: OQP release life cycle.

To validate OQP we applied it to a pilot project and
compared the results to OP’s at DSL/UFCG.

Table 1: OQP Activities and phases.

Teams
Requirement

elicitation
Development Alpha Beta

Develop
-ment

Write
requirement

Code
Implementation

Correction
of defects

Correctio
n of

defects
Define design

Implementation
of unit and

integration test
Acceptance

tests
Correction of

defects

QA

V&V
requirements

Implementation
of new cases of

automated
acceptance tests

Manual and
exploratory

testing

Validatio
n of

defect
correction

Accepta

nce tests

3 CASE STUDY

The proposed Our Quality Process (OQP) was
applied to the OurBackup (OB) Home software
(Oliveira 2007), a backup system based on social
networks. Initially, a set of six macro-features were
defined and implemented under the OP process.
These features enable the user to install the software,
log onto the system, build his/her social network (by
addition and / or acceptance of friends), and lastly,
to perform and restore backups. Upon conclusion of
the first version (V1), eight new features were added
now under OQP, producing a “quality” version 2.

For the comparative study, three releases
developed with OP (OurBackup Release)–OBRi,
i=1,2 and 3; and three releases developed with OQP
(OurBackup Quality Release) OBQRi, i=1,2 and 3
were considered.

Although every effort was directed to the
production of automatic tests, some manual testing
was needed. However, if a critical defect was
discovered during manual testing, the manual
procedure would be interrupted and a new test
would be developed to detect the defect or to
validate the correctness of the corresponding code.

3.1 Data Collection and Analysis

Initially collected measures were (Table 2): a) % of
test classes; b) % testing methods; c) Number of
cases of manual testing; and, d) automatic testing
coverage. These measures were collected with the
aid of the following tools: Jira (bug tracking);
FindBugs code static analysis); JUnit (for test
development); easyMock (for mock object testing);
Bamboo (for continuing code integration); and, SVN
(version control).

The number of tests in a project is not the most

Improving�Quality�in�Agile�Development�Processes

413

appropriate metric to attest to its quality, but it may
suggest amount of effort towards quality control. In
column a in Table 2, we note a gradual increase in
the percentage of test classes as OQP is adopted –
reaching an increase of 50% over OP’s percentage
(22% over 14,8%).

The increase in the amount of classes of tests by
itself is not an indication that there has been an
increase in the effort to produce automatic tests. So,
we collected other data that indicate such an
increase: column b shows the proportion of testing
methods relative to the total of developed methods.

Column c shows an increase in manual testing as
one switches from OP to OQP to produce OBQR1
and OPQR2. But a consistent decrease from OBQR1

to OBQR3 and a lower amount of manual testing
with OBQR3 relative to OBR3 This seems to indicate
that OQP’s sharper focus on testing tends to reduce
manual testing which is tedious and error prone.

The relative larger number of manual tests for
OQP can be attributed to this process’ permanent
availability of testers coupled with the functional
code-breaking idiosyncrasies of OB’s target
distributed environment: different operating systems
(OS) or different features across instances of a same
OS (such as different versions, Network Address
Translation, firewalls, antivirus software, and so
forth). Environments such as OB’s tend to reduce
the realistically possible amount of automatic testing
(as a percentage of the entire code) to the range of
20-40% (Harrison, 2013).

Table 2: Initial data comparison.

Version
a)Classes
of tests

(%)

b)Testing
Methods

(%)

c) # of
Manual Tests

d)Automatic
tests’ code

coverage (%)
OB R1 15,8 8,0 0 0

OB R2 14,4 11,0 74 21

OB R3 14,8 10,8 160 18

OBQ R1 13,5 13,4 275 34

OBQ R2 21,0 16,3 229 62

OBQ R3 22,2 17,7 143 91

Code coverage was measured in terms of lines,
methods and classes covered by tests and it was
collected using the Clover tool (Clover, 2012).
Column d brings these data and it shows a consistent
increase in code coverage as OQP is continually
employed to reach 91% with OBQR3 (meeting the
quality baseline of over 90% as indicated by 60% of
the respondents in the international survey in (Dóra
et al., 2013)). In contrast OP shows a somewhat
haphazard behavior.

One may also note that, differently from OP,
OQP meets baseline values for other metrics in this
international survey: percentage of erroneous
deadline and programmer-month effort estimations
(within 5 to 15% as indicated by 48% of
respondents) and percentage of defects discovered
after release delivery (1 to 5%).

Regarding the lifetime of defects, or how fast
the team is in resolving defects, a significant
improvement with OQP was observed (please refer
to Table 3).

Again, Table 3 illustrates a gradual improvement
in quality as OQP usage continues (by contrast, OP
degrades on the average, while OQP’s min, max,
average and median times to fix defects improve).

Table 3: Lifetime of defects.

Software
Version

Minimum
(days)

Maximum
(days)

Average
(days)

Median(days)

OB R1 - - - -

OB R2 3 801 65 19

OB R3 1 328 168 221

OBQ R1 1 102 24 60

OBQ R2 0 29 9 13

OBQ R3 0 7 6 5

4 EVALUATION AND LESSONS

We believe OQP’s superiority over OP in the pilot
project of OurBackup is due to:

Independence of testers in the QA team: there
is a QA boss who is not the development leader.
Testers are well regarded by the leader when they
find critical defects and vulnerabilities in the
software. Testers do not feel guilty when they reveal
defects that they have not inserted themselves in the
code.

Promoting testing competencies: testers should
be trained to improve their skills in detecting failures
and writing tests.

Sharper focus on quality: a tester is more
productive than a developer that only tests his code
in the remaining time of development. Moreover, an
external tester, in general, is less likely to ignore
errors caused by programming vices.

Also and contrary to agile processes that
typically allow little emphasis on testing tasks
initially (Reichert, 2012), OQP recommends
concentration on tests right from the onset of the
project. This may not need to increase budgets by
much. Test outsourcing may reduce the need for
costly, in-house testing environments, thus easing

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

414

the internal competition for resources between
developers and testers. In turn, this should make it
easier and cheaper to have a two-cell organization as
advocated here.

5 RELATED WORK

The debate on agile speed v. testing seems to have
been kindled by the inability of agile practices of
unit and acceptance tests to always meet the need for
quality of delivered products (Hislop et al., 2002).
This paper indicates that testing and speed need not
be traded off if practices that lead to development
and independent testing activities are added to agile
processes. The results presented here may have shed
light on this debate. and may help practitioners’
make informed decisions regarding quality
management of software development projects.

One may contend at this point that the benefits of
continuous, independent software testing activities
having been established long ago, are undisputable
and for that, need not be revisited. The on-going
debate in the marketplace indicates otherwise:
practices of yesteryears are criticized for being in
want of reform to meet new challenges. Also and
despite recent progress, most companies still present
very low levels of testing maturity (Experimentus,
2011). As stated in this last reference: “It is perhaps
a damning indictment of the industry that after all
these years we can consistently design and plan
testing, but have no thought or regard for effectively
measuring the success and efficiency of this activity
(which, combined with the costs of rework, forms a
significant proportion of project costs)”. This paper
offered some insight into measurements of test
results.

State-of-the-practice requirements needed to
measure (expected) software quality were elicited in
an international survey of expert software
development managers (Dóra et al., 2013). This
survey yielded a software quality metrics baseline
for the accuracy of project estimates, the detection of
defects before product release, and the test coverage.
This baseline was used for comparing results of the
test-driven, adapted agile OQP process proposed
here against those of its foundation XP process.

The authors of the work in (Artho et al., 2006)
have proposed and studied a framework to scale up
unit tests, and, as a result, they achieved test
coverage of over 99 % with 36 % of the code
dedicated to testing. In the case study worked out
here, OQP achieved a test coverage of 91 %, with a
total test code of 18 %. Although results of both

works exceed the test coverage baseline of (Dóra et
al., 2013), OQP ended up having half of the test
code percentage of total coding effort. One cannot
vouch for OQP’s superiority (or the framework in
(Artho et al., 2006) for that matter), however, given
environmental differences underlying both works. A
more detailed scrutiny and comparison of both
works could reveal interesting, complementary
aspects that could be explored to support decisions
concerning code coverage against test code amount
trade-offs, which was not intentionally made here.

6 CONCLUSIONS
AND OUTLOOK

This paper proposed complementing the basic
aspects of Agile development processes with a few
but significant techniques and practices that, taken
together, have been shown effective in improving
quality and defect-fixing-delays for the case of a
backup utility in a large scale, open source free-to-
join, peer-to-peer (P2P) grid computing
environment.

The case studied compared results for two
different versions of the backup utility. Although
this may hinder the significance of conclusions and
recommendations, it offered some evidence that
investing in independent testing may indeed pay off
not only in software quality but in development time
as well.

Further work is needed to extricate and isolate
cause-effect relationships (between added practices
and the observed improvements), to establish the
degree of significance of each cause to results, and
to generalize conclusions. The early evidence
presented here supports OQP’s separation of testing
from development. This separation may run against
current industry trends but it may as well better
support agile practioners, particularly those with
responsibility for critical application development
where a higher degree of compliance between
requirements and implemented features is expected.

ACKNOWLEDGEMENTS

The authors thank anonymous reviewers whose
comments clarified and enriched the contents of this
paper.

Improving�Quality�in�Agile�Development�Processes

415

REFERENCES

Artho, C., Biere, A., Honiden, S., Schuppan, V., Eugster,
P., Baur, M., Zweimüller, B., Farkas, P. Advanced
Unit Testing -- How to Scale Up a Unit Test
Framework. AST 2006, Shanghai, China, May 2006.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick,
B., Martin, R. C., Mellor, S., Schwaber, K.,
Sutherland, J., and Thomas, D., (2001). “Manifesto for
agile software development”. http://
www.agilemanifesto.org. Accessed in: Dec 17th, 2008.

Buglione, L., Hauck, J. C., Gresse Von Wangenheim, C.,
Mccaffery, F., (2012). “Hybriding CMMI and
Requirement Engineering Maturity & Capability
Models”. ICSOFT – 7th International Conference on
Software Paradigm Trends, Italy.

Chaos Report (2011). http://blog.standishgroup.com
Accessed in: Jun 18th, 2012.

Crispin, L., Gregory. J., (2009). “Agile Testing: Practical
Guide for testers and Agile Teams”. Addison-Wesley
Signature Series.

Crispin, L., House, T., (2002). “Testing Extreme
Programming”. XP Series.

Clover (2012). http://www.atlassian.com
Dinakar, K., (2009). "Agile Development: Overcoming a

Short-Term Focus in Implementing Best Practices". In
Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA), Orlando, FL,
pp. 579-588

Dora, P., Oliveira, A. C., and Moura, J. A.B., (2013). “A
Baseline for Quality Management in Software
Projects”. In Proceedings of Informática 2013 – 15th
International Convention and Fair, March 18th to
22nd, Havana, Cuba, ISBN 978-959-7213-02-4.

Experimentus, (2011). “Test Maturity Model Integrated
(TMMi) – Survey Results, How Mature are
Companies’ Software Quality Management Processes
in Today’s Market?” Update 2011, White paper,
www.experimentus.com, 20 pp.

Guerra, A., Santana, M. (2002). “Quality of Software
Process or Quality of Software Product?”. In:
International Conference on Software Quality, Canada.

Harrison, J. A., (2013). Cited in “A debate on the merits of
mobile software test automation”, James A. Denman,
Published 23 May 2013, http://searchsoftware
quality.techtarget.com/news

Heuser, M., (2012). “Exploring the shifting roles in test
and QA management”. In http://searchsoftwarequality.
techtarget.com. Accessed in: Oct 12th.

Hislop, W., Lutz, J., Naveda F., McCracken, M., Mead, R.,
Williams, L. A. (2002). “Integrating Agile Practices
into Software Engineering Courses”. In 15th CSEET.

Lent, J., (2013). “Software Testing Trends 2012: Business
Alignment, Not Bug Fixes”. http://searchsoftware
quality.techtarget.com. Accessed in: Jan 28th, 2013.

Lycett, M., Macredie, D., Patel, C., Paul, J., (2003).
“Migrating Agile Methods to Standardized
Development Practice”. In: IEEE Computer Society,

pp. 79-85.
Mackinnon, T., Freeman, S., Craig, P., (2000). “Endo-

Testing: Unit Testing with Mock Objects”. XP
eXamined by Addison-Wesley.Meyer, B., (1997).
“Object-Oriented Software Construction”. Second
Edition, Prentice Hall.

Mitchell, R., McKim, J., Meyer, B., (2001). “Design By
Contract, by example”. Addison-Wesley Publishing
Company.

Oliveira, M., (2007). “OurBackup: Uma Solução P2P de
Backup Baseada em Redes Sociais”. Dissertação de
Mestrado, COPIN - UFCG, Campina Grande, PB,
Brasil (In Portuguese).

Reichert, A., (2012). “How to Focus an Agile Scrum Team
on Quality and Testing”. http://searchsoftwarequality.
techtarget.com, first published in August 2012.

Savoia, Al., (2011). “Test is Dead”. 6th Annual Google
Test Automation Conference (GTAC). Uploaded on
Oct 27, 2011.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

416

