A DPLL Procedure for the Propositional Product Logic

DuSan Guller

Department of Applied Informatics, Comenius University, Mlynskéa dolina, 842 48 Bratislava, Slovakia

Keywords:

Abstract:

Product Logic, DPLL Procedure, Many-valued Logics, Automated Deduction.

In the paper, we investigate the deduction problem of a formula from a finite theory in the propositional
Product logic from a perspective of automated deduction. Our approach is based on translation of a formula to
an equivalent satisfiable finite order clausal theory, consisting of order clauses. An order clause is a finite set
of order literals of the form e; e, where ¢j is either a conjunction of propositional atoms or the propositional
constant 0 (false) or 1 (true), and is a connective either P or . P and are interpreted by the equality
and standard strict linear order on [0; 1], respectively. A variant of the DPLL procedure, operating over order
clausal theories, is proposed. The DPLL procedure is proved to be refutation sound and complete for finite

order clausal theories.

1 INTRODUCTION

A considerable effort has been made in development
of SAT solvers for the problem of Boolean satisfi-
ability, especially in the last decade. SAT solvers
may exploit either complete solution methods (called
complete or systematic SAT solvers) or incomplete
or hybrid ones. Complete SAT solvers are mostly
based on the Davis-Putnam-Logemann-Loveland pro-
cedure (DPLL) (Davis and Putnam, 1960; Davis et al.,
1962) improved by various features. One of the lat-
est overviews of development of SAT solvers may
be found in (Biere et al., 2009). Research in many-
valued logics mainly concerns finitely-valued ones.
Thank to finiteness of truth value sets of these logics,
almost straightforward extensions of results achieved
in classical logic are feasible. The DPLL procedure
has been firstly generalised for regular clauses over
a linearly ordered truth value set (Hahnle, 1996). In
(Manya et al., 1998), it is described an implemen-
tation of this regular DPLL procedure with the ex-
tended two-sided Jeroslow-Wang literal selection rule
defined in (Hahnle, 1996). A signed DPLL procedure
over a finite truth value set is introduced in (Beckert
et al., 2000). It is based on a branching rule form-
ing branches for every truth value. So, the branch-
ing factor equals the cardinality of the truth value set.
The branching factor can be decreased by a quotient
of the truth value set wrt. a suitable equivalence.
A slight modification of that equivalence enables a

Partially supported by VEGA Grant 1/0979/12.

Guller D..
A DPLL Procedure for the Propositional Product Logic.
DOI: 10.5220/0004557402130224

generalisation to an infinite truth value set as well
(Guller, 2009). Another signed variant of the DPLL
procedure for a countable clausal theory over an ar-
bitrary truth value set is proposed in (Guller, 2009).
In some sense, the DPLL procedure may be viewed
like "anti-resolution”. Thus, its branching rule, with
finite branching factor, may be considered as if a
signed anti-hyperresolution rule”. The procedure is
refutation complete if the finitary disjunction condi-
tion for the set of signs occurring in the input count-
able clausal theory is satisfied. Infinitely-valued log-
ics have not yet been explored so widely as finitely-
valued ones. It is not known any general approach
as signed logic one in the finitely-valued case. A so-
lution of the SAT and VAL problems strongly varies
on a chosen infinitely-valued logic. The same holds
for translation of a formula to clause form, the ex-
istence of which is not guaranteed in general. Re-
sults in this area have been achieved in several ways,
since infinite truth value sets form distinct algebraic
structures. One approach may be based on reduction
from the infinitely-valued case to the finitely-valued
one, as it has been done e.g. for the VAL problem in
the propositional infinitely-valued tukasiewicz logic
in (Mundici, 1987; Aguzzoli and Ciabattoni, 2000).
Another approach exploits reduction of the SAT prob-
lem to mixed integer programming (MIP) (Hahnle,
1994a; Héhnle, 1997). In (Guller, 2010), we have
devised a variant of the DPLL procedure with clause
form translation for finite theories in the propositional
Godel logic. The results have been generalised to the

213

In Proceedings of the 5th International Joint Conference on Computational Intelligence (FCTA-2013), pages 213-224

ISBN: 978-989-8565-77-8

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

1JCCI 2013 - International Joint Conference on Computational Intelligence

countable case in (Guller, 2012).

Product logic (Hajek et al., 1996; Metcalfe et al.,
2004; Savicky et al., 2006) is one of the fundamental
fuzzy logics, based on the product t-norm. It has been
discovered much later than Godel and tukasiewicz
logics, known before the beginning of research on
fuzzy theory. In the paper, we investigate the de-
duction problem of a formula from a finite theory
in the propositional Product logic from a perspective
of automated deduction. Our approach is based on
translation of a formula to an equivalent satisfiable fi-
nite order clausal theory, consisting of order clauses,
Lemma 3.1, Theorem 3.2, Section 3. An order clause
is a finite set of order literals of the forme; ey where
ej is either a conjunction of propositional atoms or
the propositional constant 0 (false) or 1 (true), and

is a connective either P or P and are in-
terpreted by the equality and standard strict order on
[0; 1], respectively. The trichotomy over order literals:
eithere; epore; Pejore; e, naturally invokes
proposing a variant of the DPLL procedure with a tri-
chotomy: branching rule as an algorithm for deciding
the satisfiability of a finite order clausal theory. The
DPLL procedure with its basic rules is proved to be
refutation sound and complete in the finite case, The-
orem 4.2, Section 4. The set of basic rules may be
augmented by some admissible ones, which are suit-
able for practical computing and considerably shorten
DPLL trees. For solving the deduction problem, we
exploit the fact that a formula f is a propositional con-
sequence of a finite theory T in Product logic if and
only if their translation to a finite order clausal the-

ory S$ is unsatisfiable, and the DPLL procedure pro-

duces a closed DPLL tree with the root Sﬁ in this case,
Corollary 4.3, Section 4.

The paper is organised as follows. Section 2 gives
the basic notions, notation, and useful properties con-
cerning the propositional Product logic. Section 3
deals with clause form translation. In Section 4,
we propose a variant of the DPLL procedure with a
trichotomy branching rule and prove its refutational
soundness, completeness. Section 5 brings conclu-
sions.

2 PROPOSITIONAL PRODUCT
LOGIC

Throughout the paper, we shall use the common no-
tions of propositional many-valued logics. The set of
propositional atoms of Product logic will be denoted
as PropAtom. By PropForm we designate the set of
all propositional formulae of Product logic built up

214

from PropAtom using the propositional constants O,
false, 1, true, and the connectives: :, negation, ™,
conjunction, _, disjunction, &, strong conjunction,
¥ implication. In addition, we introduce new bi-
nary connectives P, equality, and , strict order. By
OrdPropForm we designate the set of all so-called or-
der propositional formulae of Product logic built up
from PropAtom using the propositional constants 0,
1, and the connectives: =, ™, , &, 1, P, .lInthe
paper, we shall assume that PropAtom is a countable
set. Letej, 1 i n,be eitheran expression or a set of
expressions or a set of sets of expressions, in general.
PropAtom we denote the set

LetX,Y,Zbesets,Z X;f:X ¥Y beamap-
ping. By kXk we denote the set-theoretic cardinal-
ity of X. X being a finite subset of Y is denoted as
X E Y. We designate f[Z] =ff(2)jz 2 Zg; f[Z] is
the image of Z under f; and fjz = f(z; f(2))jz 2 Zg;
fjz is the restriction of f onto Z. Letg w. A
sequence d. of X is a bijection d:g B X. X is
countable if and only if there exists a sequence of
X. N j R designates the set of natural j real num-

bers and , < the standard, standard strict order on
N j R, respectively. We denote Ry = fcjO0 ¢ 2Rg,
R*=fcj0<c2Rg, [0;1]=fcj0 ¢ 1;c2Rg;

[0;1] is the unit interval. Let c 2 R*. logc denotes the
binary logarittm of c. Let f;g:N ¥ Ry f is of the
order of g, in symbols f 2 O(g), iff there exist ng 2 N
andc 2Ry suchthatforalln no, f(n) ¢ g(n).
Let £ 2 OrdPropFormand T g OrdPropForm. The
size of F, in symbols jfj > 0, is defined as the number
of nodes of its standard tree representation. We define
thesizeof T asjTj= ¢o7]f].

Product logic is interpreted by the standard P-
algebra augmented by binary operators P and for
P and |, respectively.

P=(0;1]; ;" ;) ;P; ;0;1)

where __j ™ denotes the supremum j infimum operator
on [0;1];

C
b= lifa b; q= lifa=0;
arb= D else; " Oelse;
lifa=b; lifa<b;
Pb= =
abb 0 else; a b 0 else:

We recall that P is a complete linearly ordered lattice
algebra; __ j ~ is commutative, associative, idempo-
tent, monotone; 0 j 1 is its neutral element; is com-

L\We assume a decreasing connective precedence: :, &,
~ P,

mutative, associative, monotone; 1 is its neutral ele-
ment; the residuum operator) of satisfies the con-
dition of residuation:

foralla;b;c2P;ab ca b)c ()
Product (Godel) negation ~— satisfies the condition:
foralla2 P;a=a) 0; (2)

the following properties, which will be exploited later,
hold:?

forall a;b;c 2 P;
a_b~c=(a_b)™a_c);
(distributivity of __ over) (3)
anN(b_c)=a"b_a~c;
(distributivity of ~* over _) (4)

a(b_c)=ab_ac
(distributivity of over_) (5)

a)((b_c)y=adb_a)c; (6)
a)b”ec=(@Ib)"a@yc); ()
(a_b)dc=(@dc)™(bIo); ®)
a”byc=adc_b)c; 9)
ay@®mYyc)=ab)c; (120)
(@>b)db)Ib=a)yh: (11)

A propositional theory is a set of propositional
formulae of Product logic. An order propositional
theory is a set of order propositional formulae of
Product logic. A valuation V is a mapping V :

PropAtom ¥ [0;1]. A partial valuation V with
the domain dom(V) PropAtom, is a mapping V :
dom(V) ¥ [0;1]. Let V be a (partial) valua-

tion; f; 2 OrdPropForm, T OrdPropForm. Let
atoms(f);atoms(T) dom(V) in case of V being a
partial valuation. The truth value of fin V, in sym-
bols kfkV , is defined by the standard way; the propo-
sitional constants O, 1 are interpreted by 0, 1, respec-
tively, and the connectives by the respective operators
on P. V s a (partial) propositional model of f, in
symbols V j= f, iff kfk¥Y = 1.V is a (partial) propo-
sitional model of T, in symbols V T, iff, for all
2T,V = f. fisatautology iff, for every valuation
V.,V [f. fisequivalent to ¥, in symbols ¥,
iff, for every valuation V , kfkY = kf'kV .

2\We assume a decreasing operator precedence: —, ,

>.P, _.

A DPLL Procedure for the Propositional Product Logic

3 TRANSLATION TO ORDER
CLAUSAL FORM

We now describe some translation of a formula to a
finite order clausal theory. To have the output theory
of polynomial size, our translation exploits interpola-
tion using new atoms. The output theory will be of
linearithmic size at the cost of being only equivalent
satisfiable to the input formula. A similar approach
exploiting the renaming subformulae technique can
be found in (Plaisted and Greenbaum, 1986; de la
Tour, 1992; Hahnle, 1994b; Nonnengart et al., 1998;
Sheridan, 2004; Guller, 2010). At first, we intro-
duce notions of a to the power of n and of conjunc-
tion of propositional atoms. Let a 2 PropAtom and
n > 0. a to the power of n is the pair (a;n), written
asa". The power a! is denoted as a; if it does not
cause the ambiguity with the denotation of the sin-
gle propositional atom a in given context. We de-
fine the size of a" as ja"j = n=>0. A conjunction
Cn of propositional atoms is a non-empty finite set
of powers such that for all am;b" 2 Cn, a & h. A
conjunction fag®;:::;amg of propositional atoms is
written in the form ag®& &af". A conjunction
Tpg of propositional atoms is called a unit conjunc-
tion of propositional atoms and denoted as p; if it
does not cause the ambiguity with the denotation of
the single power p in given context. The set of all
conjunctions of propositional atoms is designated as
PropConj. Let V be a (partial) valuation; p be a
power, Cn 2 PropConj, Cny;Cn, 2 PropConj [fog.
Let atoms(Cn) dom(V) in case of V being a par-
tial valuation. The truth value of Cn =a;° & &am
inV is defined by
kagk".

kCnkY = kagk ankV kagkY :
ok g Kaoky ek, Kanky
Mo Mn

We define the size of Cn as jCnj = ,ocnjpj > 0.
By p&Cn we denote fpg [Cn where p 2 Cn. Cn;
is a subconjunction of Cny, in symbols Cn; v Cny,
iff, for all a™ 2 Cny, there exists a" 2 Cn, and m

n. We define Cn; uCnp = famn(Mmmjam 2 Cny;a" 2
Cnyg 2 PropConj [fdg. Cn; and Cn, are disjoint iff
Cnp uCny; = 0. We finally introduce order clauses in
Product logic. 1 is an order literal of Product logic
iff | =e; e, where either e; 2 PropAtom [f0; 1g,
e, 2 f0;1g, or e; 2 f0;1g, e, 2 PropAtom [f0; 1g,
or ej 2 PropConj, egue; =0, 2 fP; g. The set
of all order literals of Product logic is designated as
OrdLit. Let | =e; e, 2 OrdLit. We define the size
of | as jlj = 1+jerj+jezj > 0. An order clause of
Product logic is a finite set of order literals of Prod-
uct logic; since = is commutative, we identify the
order literals e; P e, and e; P e1. An order clause

215

1JCCI 2013 - International Joint Conference on Computational Intelligence

_Ip. The
order clause 0 is called the empty order clause and
denoted as . An order clause flg is called a unit
order clause and denoted as I; if it does not cause
the ambiguity with the denotation of the single or-
der literal I in given context. We designate the set
of all order clauses of Product logic as OrdCl. Let

the size of C as jCj = |o¢cjlj. By | _C we denote
flg [C where | 2 C. Analogously, by lp I, _C
we denote Flog [[flng [C where, forall i;i’ n,
i&i’,ligCandl;&lp. By C_C'we denote C [Cl.
C is a subclause of C?, in symbols C v C’, iffC C'.
An order clausal theory is a set of order clauses. A
unit order clausal theory is a set of unit order clauses.

Let f;f 2 PropOrdForm, T; T’ PropOrdForm,
S;8" OrdCl; V be a (partial) valuation. Let
atoms(l);atoms(C);atoms(S) dom(V) in case of V
being a partial valuation. Note that V j= I if and only
if either | =e; P ey, key PeokY =1, kerkY =keok";
orl=e; e ke; kY =1, keskV < kepkV.
V is a (partial) propositional model of C, in sym-
bols V j=C, iff there exists | 2C suchthatV =1 .
V is a (partial) propositional model of S, in symbols
V S, iff, forallc2S,VEC. FjT!jc'jSisa
propositional consequence of Fj T jCj S, in symbols
FjTjCjSiEp FjTjCj S, iff, for every propositional
model V of FjTjCjS,V EFjT!ClS. FjTjCj
S is satisfiable iff there exists a propositional model of
fjTjCjS. Notethatboth and 2 S are unsatisfi-
able. j T jCjSisequisatisfiable to £ j T j C" j S" iff
fjTjCjSissatisfiable ifand only if £ j T jC?j S is
satisfiable. LetS g OrdCl. We define the size of S as
jSi= c2s]Cj. Let| 2 OrdLit. 1 is a simplified order
literal of Product logic iffif | =e; ey, €j 2 PropConj,
then either e1 = a, eo =b, ore; = a, o = b&ec, or
e; = a&h, e; =c. The set of all simplified order lit-
erals of Product logic is designated as SimOrdLit. We
denote SimOrdCl = fCjC 2 OrdCI;C SimOrdLitg.
Let 1 =N _N; Iis an infinite countable set of in-
dices. Let A=f4;ji 2 1g PropAtom; A is an in-
finite countable set of new propositional atoms. Let
A A. We denote Ep = feje 2 E;atoms(e) \ A
Ag, E = PropForm j E = PropConj j E = OrdLit j
E =O0rdCl jE =SimOrdLit j E = SimOrdCl. From a
computational point of view, the worst case time and
space complexity will be estimated using the logarith-
mic cost measurement. Let A be an algorithm. #0a
denotes the number of all elementary operations exe-
cuted by A. The translation to order clausal form is
based on the following lemma.

Lemma 3.1. Let 2 PropFormy, T ¢ PropFormg;
F 1 such that there exists ng and F \ f(i; j)ji
nog =0; n¢g np.

216

(i) There exist either Jg = 0 or Jg = F(ng; j)j
ny 0, J¢ F(;j)ji neg, Je\F=0,andS¢ F
SimOrdCIfgjjjzjfg such that
(@) kdek 2 jfj;

(b) either Jg =0,S¢g=F gorJg=Sg=0o0r
Jf & (D, aSf6 0;

(c) there exists a partial valuation V,
dom(V) = atoms(f), and V E f if
and only if there exists a partial valuation
VY, dom(V?% = atoms(f) [f&;jj 2 Jeg,
and V' j= Sy, satisfying V =V Yaoms(r);

(d) jSgj 2 O(jfj); the number of all elementary
operations of the translation of f to Sg, is in
O(jfj); the time and space complexity of the
translation of T to S¢, is in O(jfj logjfj);

(e) ifSg&E0and Sg & T g, then J¢ & 0; for all
C 2S¢, 06 atoms(C)\A 4;]j 2 Jeg.

(ii) There exist Jy ¢ f(i;j)ji npg, Jr \F =0,
andSt SimOrdCIfajjjijg such that
(@) kdrk 2 jTj;

(b) either Jy =0,Sy =f gorJr =Sy =0or
Jr & 0, a ST6& 0;

(c) there exists a partial valuation V,
dom(V) = atoms(T), and V T if
and only if there exists a partial valuation
V! dom(V") = atoms(T) [f4.ji 2 Jrg,
and V' = Sy, satisfying V =V jaoms(r);

(d) jStj 2 O(Tj); the number of all elementary
operations of the translation of T to Sy, isin
O(jTj); the time and space complexity of the
translation of T to Sy, isin O(jTj log(1+
i)

(e) ifSt &0and Sy & f g, then Jr 6 0; for all
C25St,06atoms(C)\NA f§;jj 2 Jrg.

Proof. Technical using interpolation.

Let q 2 PropFormy. There exists q' 2 (12)

PropFormg such that

@ d a

() jo'j 2 jaj; o' can be built up via a pos-
torder traversal of q with #0 2 O(jqj),
the time and space complexity in O(jqj
logjaj);

(c) o does not contain :;

(d) either " =0, or 0 is a subformula of o’ if
and only if 0 is a subformula of a subfor-
mula of g’ of the formJ ¥ 0, J & 0;

(e) either g =1 or 1 is not a subformula of ¢.
The proof is by induction on the structure of q.

Let g 2 PropForm, 0;1g; (12c—e) hold for (13)

g; G I such that there exists n; and G\

TG0)ji mg=0;ng ny; i=(ngji) 2

f(i;j)ji no, & 2 A, 1 8 G. There exist

J=1Fng;Dili+1 j ng FGj)ji

ng, i ny, IN(G[fig) =0, and S° F

SImOrdCles, s, jj20g: S =+, such that for

both s,

(@) kIk jaj 1;

(b) there exists a partial valuation V,
dom(V) = atoms(q) [fa;g, and
V F & ¥ q 2 PropFormg, ¢ if and
only if there exists a partial valuation V!,
dom(V") = atoms(q) [&g [4;jj 2 Jg,
and V' | s*, osatisfying V=
\ Oj atoms(q) [fa;g ;

(c) there exists a partial valuation V,
dom(V) = atoms(q) [faig, and
V Fq ¥ & 2 PropFormgg if and
only if there exists a partial valuation V!,
dom(V?%) = atoms(q) [fa:g [4;jj 2 Jg,

and- V¥ S, satisfying 'V =
\ Oj atoms(q) [F4;g»
(d) jS%j 20 jgj, S® can be built up from q via

a preorder traversal of g with #0 2 O(jqj);

(e) forallC 255, 06 atoms(C)\A fag[
The proof is by induction on the structure of q using
the interpolation rules in Table 1.

(i) By (12) for T, there exists ¥ 2 PropFormg such
that (12a—e) hold for . We then distinguish three
cases for .

Case 1: =0 . WeputJg=0 F(i;j)ji nog,
JeN\F=0,andSg=F g ¢ SimOrdCly.

Case2: =1 Weputdg=0 F(i;j)ji nog,
JF\F=0,andSg=0 F SimOrdCly.

Case 3: 16 0;1. We have nf ng. We put
i = (n;;0) 2 £(i;j)ji nog. Then & 2 A. We
get by (13) for , F, ng, nf, 1, &; that there ex-
istJ="F(ng;)il J nog F@EDIT nog, I\
(F [fig) = 0, S* SimOdelfgig[fgjjjzjg, and
(13a-e) hold for F, &, J, S*. We put ny, = ny,
Je=Tig[J F(;j)ji nog, Jg\F =0, and S¢ =
fﬁi P 1g [S+ F SimOrdCIfgjjszfg.

(i) straightforwardly follows from (i). O

We conclude this section by the following theorem.
Theorem 3.2. Let ¥ 2 PropFormg, T ¢ PropFormyg;
F I such that there exists np and F \ f(i; j)ji
nog = 0. There exist Jf £ (i; j)ji nog, I \F =

f .
0,andS; F SlmOrdCIf%jjzﬁg such that

A DPLL Procedure for the Propositional Product Logic

(i) T E=p Fifandonly if S$ is unsatisfiable;

(i) kifk 2 O(Tj+jfi); jSTj 2 OGTj+jfj); the
number of all elementary operations of the
translation of T and f to Sﬁ, isin O(jTj +jfj);
the time and space complexity of the translation
of T and fto Sﬁ, isin O((jTj+jfj) log(jTj+
).

Proof. (i) We put Jn, = f(no; j)jg
andG=F [Jy, | WegetbylLemma 3.1(ii)forT,
G, ng + 1 that there exist)y ¢ F(i;j)ji no+1g,
JI\G=0,51 F SimOrdCles; 523, ¢, and 3.1(ii a—e)
hold for T, Jr, St. By (12) for F, there exists ' 2
PropFormg such that (12a—e) hold for . We then
distinguish three cases for .

Casel: F=0.Weputdf =J; F f(i;j)ji nog,
H\F=0andSt =S F SMOrdCl ;.. s,

Case2: P=1Weputdr =0 F f(i;j)ji nog,
INF=0,andSF=Ff g F SimOrdClg.

Case 3: ' & 0;1. We put i = (no;0) 2 (i; j)ji
nog. Then & 2 A. We get by (13) for F, F,
No, No, 1, & that there exist J = f(ng; j)j1 |
ngg F(@i;))ji - nog, IN(FLTFig) =0, S F
SimOrdCles, g e, 20, @nd (13a—€) hold for f, &,

J,S . Weputd =3 [fig[d ¢ f(;j)ji

F(;))ji nog

nog, W\F =0, and ST =S [fa, 19[S F
SlmOrdCIféjUZJ;g.

(ii) straightforwardly follows. The theorem is
proved. O

4 DPLL PROCEDURE

We devise a variant of the DPLL procedure
over finite order clausal theories. Let a;:::;f 2
; 1,22
fP; g, I;11;12;13 2 OrdLit, C 2 OrdCIl, T OrdCl.
| is a contradiction iff either| =0P 1orl =0 Oor
I=1 OQorl=1 1lorl=a Oorl=1 aor
I=Cn Cn. |is atautology iff either | =0P 0 or
I=1Plorl=0 lorl=CnPCn.OPa_0 a
is a O-dichotomy. a 1 _aP 1 is a 1-dichotomy.
Cn; Cny_CniPCny_Cny Cngisatrichotomy.
Some auxiliary operations are defined in Table 2. We
define a transitivity operation in Table 3. For exam-

(a&b c&e)l (c&dPa&f)=
(a&b&d c&d&e)l (c&dPa&f)=
a&b&d a&e&f=

b&d e&f:

217

1JCCI 2013 - International Joint Conference on Computational Intelligence

Table 1: Interpolation rules for ~, _, &, Y.

Case: Laws
q=01"02
a; ! n
Positive interpolation A RS2 o M @4
& &, _&Pa;a& &, &Pa,d; Yaud, T o
jConsequentj =12+ja;, ¥ quj+jd;, ¥ q2j 20+j&;; ¥ quj+jdi, ¥ Qo
n v 3
Negative interpolation A B 7% o (9 (19
5;,1 5,',75;,1 P5ﬁ75j2 5,’175]32 Pé;,;ql 1 ﬁﬁl;QZ Li 5,’,2
jConsequentj =12+jo; ¥ &,j+jo, ¥ &,j 20+jo1 ¥ &, j+jo2 ¥ &,
q=0q1_02
a1
Positive interpolation # = (q1?q2)~ - - o (6) (16)
& &;,_&Pa;_& &, &Pa,d; Yaqud&, Yo
jConsequentj = 12+j&;, ¥ quj+jfz, ¥ Goj 20+jd;; ¥ quj+jfs, ¥ Qo
¥3;
Negative interpolation A (@ _02) o ® an
dy &_& Pad, &_&,Pdq 8,914,
jConsequentj = 12+jo1 ¥ &;,j+jo2 ¥ &,j 20+jo1 ¥ &, j+jo ¥ &,
q=0:1&0
&G ' &
Positive interpolation # &G o (18)
a; 5;,1 &ﬁ,‘,z_éﬁ Pé"‘l &ﬁﬁz 5;11 L [} 51’12 = 02
jConsequentj =8+jd;, ¥ quj+j&i, ¥ Q2] 20+j&; ¥ quj+jdi, ¥ qaj
Negative interpolation A 7 o (19)
é"‘l &éﬁz 5,,_5;11&3“2 Pa; [o}] L] é"l (o]} L] 5;12
jConsequentj=8+jq: ¥ & j+jgo ¥ &,] 20+jg: ¥ & j+jd2 ¥ &,j
q=q. 10
a; v LI0)
Positive interpolation A @20 o (10) (20)
4 PO0_&, PO ¥ a;
jConsequentj =6+jq; ¥ &,j 20+jgr ¥ &;j
. 10) ¥4
Negative interpolation A G o (21)
&, _&=14&, 'q
jConsequentj =6+j&;, ¥ a1 20+j&:, ¥ i
q=0: ¥ 02;9:60
. P | L]
Positive interpolation # SLNCH - 92) — o (10) (22)
5§ &5,‘,1 5,‘,2_5;,&5}31 Paﬁz;q1 L] ail;aiz L] 02
jConsequentj =8-+joy ¥ &, j+jd;, ¥ goj 20+jou ¥ &, j+jdi, ¥ 0o
L] LaFH
Negative interpolation R @ *) — ~ —0 ()
8y, &, _& P&, &, &,&&_&,P& &48&:&, &, _&=1&a, Yquq ¥4,

jConsequentj =20+jd;; ¥ qij+jo2 ¥ &,j 20+jd;; ¥ qij+jo ¥ &)

218

A DPLL Procedure for the Propositional Product Logic

Table 2: Auxiliary operations.

Cn; Cnpy=fa™"jam 2 Cny;a" 2 Cn,g [fa™ja™ 2 Cny;a @ atoms(Cny)g [
fa"ja" 2 Cny;a 8 atoms(Cny)g 2 PropConj [fog;

Cny+Cny=fa™ "ja™ 2Cny;a" 2Cny;m>ng [fa™ja™ 2 Cny;a & atoms(Cny)g 2 PropConj [fog

if Cno v Cny;

CniBCny=fa" M"ja™2Cny;a" 2Cny;n>mg [fa"ja" 2 Cny;a & atoms(Cny)g 2 PropConj [fog

Cny;Cny 2 PropConj [fog.

Table 3: Transitivity operation.

8

%ll

(Cny 1Cn2) 1 (Cng 2Cny) =

if Cn; =Cng =0;

if Cn; =0;Cng & 0;

ifCn; &0;Cng=0; =P;
ifCn7&0;Cng =0; = ;

“Cny CngifCny 6 0;Cng & 0;

Cng = (Cnl
Cng = (((Cnz

(Cnz B Cna));

(Cn2 B Cn3))+Cn3z) Cny);

Cn; = (Cn5 +(Cn5 u Cne));
Cng = (Cng +(Cns uCng));

P if 1= 2:P;

(Cnl 1Cﬂ2) 1 (Cn3 2 Cn4) 2 OrdCl

An auxiliary simplification function is defined in Ta-
ble 4. Basic rules are defined as follows:

(Contradiction simplification rule) (24)

T
T fl_Cg[fCg

I _C2T;isacontradiction.

(One literal 0-simplification rule) (25)

T
T fl_CgLsimpl(aPO0;1_C)

aPO0;1_C2T,;a2atoms(l).

(One literal 1-simplification rule) (26)
T
T fl_CgLsimpl(aP1;1_C)
aP1;1_C2T;a2atoms(l).
(0-dichotomy branching rule) (27)
T
TLflig TLflg

I3 I, is a O-dichotomy; atoms(l; __l;) atoms(T).
(1-dichotomy branching rule) (28)
T
TLflig TLflg

I3 I, isa 1-dichotomy; atoms(ly __l;) atoms(T).

219

1JCCI 2013 - International Joint Conference on Computational Intelligence

Table 4: Auxiliary simplification function.

simpl(aP 0;a e_C)=f0 e_CgifaP0&a e_C;
simpl(aP0;e a_C)=fe 0_CgifaP0&e a_C;

simpl(@P 0;Cny PCn,_C)=f b P 0_CgifaZ2atoms(Cn;);

b2atoms(Cny)
Cn, C)=f10 b_Cjb2atoms(Cny)g ifa 2 atoms(Cny);
Cn,_C) =1fCgif a2 atoms(Cny);

simpl(a P 0;Cny
simpl(a P 0;Cn;
simpl@aPl,a e C)=fl e CgifaPl&a e_C;

simpl(aPl,e a_C)=fe 1 CgifaPl&e a_C;

simpl(@P 1;Cny PCn, _C)=1f(Cn; fa"g)PCn,_ Cgiffag atoms(Cn;);a" 2Cny;
simpl(@P 1;Cn; PCny, _C)=fbP1_Cjb2atoms(Cn,)g if fag =atoms(Cny);

Cn, C)=f(Cn; fa"g) Cn, Cgif fag
Cny _C) = fCg if fag = atoms(Cny);
Cn,_C)=1*Cn; (Cnp fa"g)_Cgif fag

Cnp_C)=f ~— b 1_Cgiffag=atoms(Cny);
b2atoms(Cny)

simpl(aP 1;Cn; atoms(Cny);a" 2 Cny;
simpl(a P 1;Cny
simpl(a P 1;Cn; atoms(Cn,);a" 2 Cny;

simpl(a P 1;Cny

simpl(I;C) g OrdCl

a 2 PropAtom, e 2 0;1g, Cny;Cny 2 PropConj, | 2 fa P 0;a P 1g, C 2 OrdCl.

(One literal transitivity rule) (29)
T
TLF(Cny 1Cnp) 1 (Cng 2Cny)g
T is a unit order clausal theory;
Cni; 1Cny; Cn3 2CnNy 27T,
for all a 2 atoms(Cny;:::;Cny); 0 a;a 12T.

(Trichotomy branching rule) (30)

T

T fll_Cg [fllg
T fly_Cg[fCg[flg
T fly_Cg[fCg[flsg

I, _C2T;C& ;l;_I,_lsisatrichotomy;
for all a 2 atoms(ls;12;13); 0 a;a 12T.

Rules (24)-(30) are sound in view of satisfiabil-
ity. The proof is straightforward. The refutational
completeness argument of the basic rules, Theo-
rem 4.2(ii), can be provided using the excess literal
technique (Anderson and Bledsoe, 1970). From this
point of view, Rules (24) and (29) handle the base
case: T is a unit order clausal theory; while Rule (30)
handles the induction one: it subtracts the excess lit-
eral measure of T at least by 1 for the clausal theory

220

in every branch of its consequent.
T is closed under Rules (24) and (29) iff for every

application of Rules (24) and (29) of the form

TY=T. By trans(T)
such that trans(T)
Rules (24), (29).

Using the basic rules, one can construct a finitely
generated tree with the input theory as the root in
the usual manner, so as the classical DPLL procedure
does; for every parent vertex, there exists an appli-
cation of Rule (24)—(30) such that the theory in its
antecedent is in the parent vertex and the theories in
its consequent are in the children vertices. A branch
of a tree is closed iff it contains a vertex T’ such that

2 T A branch of a tree is open iff it is not closed.
A tree is closed iff every branch of it is finite and
closed. A closed tree is finite by Konig’s Lemma. A
tree is open iff it is not closed. A tree is linear iff it
consists of only one branch, beginning in its root and
ending in its only leaf.

The following lemma shows that Rules (24) and
(29) are refutation complete for a special kind of
(countable) unit order clausal theory, which will be
exploited in the base case of Theorem 4.2(ii).

Lemma 4.1. Let T =trans(T) OrdCl be a count-

ﬁa
OrdCl we denote the least set
T and trans(T) is closed under

able unit order clausal theory such that for all a 2
atoms(T), either there existsaP e 2 T, e 2 f0; 19,
satisfying, forallC2T andC & a P ¢, a& atoms(C);
orO aja 12T. There exists a partial model A of
T, dom(A) = atoms(T).

Proof. By the lemma assumption that T is a unit or-
der clausal theory, & T =trans(T). In addition,
by the lemma assumption that T is a countable set,
there existg wand asequenced:g ¥ atoms(T)
of atoms(T). At first, we define a partial valuation V5
by recursionona gin Table 5. It is straightforward
to prove the following statements:

For all a g, Vg is a partial valuation, (31)
dom(Vy) =d[a];and foralla a' ¢, Va

al-

The proof is by inductionona. g.

Foralla gandl 2T such that atoms(l) (32)
dom(V,), Va =11

The proof is by inductionona_ g.
We put A=V, By (31), A'is a partial valua-

tion, dom(A) &2 d[g] = atoms(T). Let | 2 T. Then

atoms(l) atoms(T) = dom(A) and Aj% I. So,
A FE T. We conclude that A is a partial model of T,
dom(A) = atoms(T). O

The DPLL procedure is refutation sound and com-
plete.

Theorem 4.2 (Refutational Soundness and Complete-
ness of the DPLL Procedure). LetS g OrdCl.

(i) If there exists a closed tree Tree with the root
S constructed using Rules (24)—(30), then S is
unsatisfiable.

(if) There exists a finite tree Tree with the root S con-
structed using Rules (24)—(30) with the follow-
ing properties:

if S is unsatisfiable, then Tree is closed; (33)

if S is satisfiable, then Tree is open (34)
and there exists a partial model A of S,
dom(A) = atoms(S), related to Tree.

Proof. (i) The proof is by induction on the structure
of Tree using Rules (24)—(30).

(ii) In the first phase, we can construct a finite tree
Tree with leaves Sj, i n, using Rules (24)—(28) such
that for all i n, atoms(S;) atoms(S), S; f=p S; for
all a 2 atoms(S;), either there existsaP e 2 S;, e 2
f0; 19, satisfying, forallC2S;jandC & aPe, ag
atoms(C); or0 aja 12§;; S is satisfiable if and
only if there exists i n such that S; is satisfiable.
The proof is by induction on katoms(S)k.

A DPLL Procedure for the Propositional Product Logic

In the second phase, we exploit the excess lit-
eral technique. Let S g OrdCl. We define
elmeasure(S7) = (cpsF KCK) kSFk. Foralli n,
there exists a finite tree Tree; with the root S; con-
structed using Rules (24), (29), (30) with the follow-
ing properties:

if Sj is unsatisfiable, then Tree;j is closed; (35)

if S; is satisfiable, then Tree; is open and there (36)
exists a partial model A; of Sj, dom(A;) =
atoms(S;), related to Tree;.

Leti n. We proceed by induction on elmeasure(S;).

Case 1: elmeasure(S;) = 0. We distinguish two
cases.

Case 1.1: 2'S;. We put Tree; = S;. Then S; is
unsatisfiable; Tree; is a closed tree with the root S;j;
(35) holds and (36) holds trivially.

Case 1.2: R S;. Then Sj is a unit order clausal
theory; there exists a finite linear tree Treej with
the root S; and the leaf trans(S;) constructed using
Rules (24) and (29). We get two cases.

Case 1.2.1: ~ 2trans(S;). Then Tree; is closed;
its only branch from S; to trans(S;) is closed; by (i)
for Treej, Sj is unsatisfiable; (35) holds and (36) holds
trivially.

Case 1.2.2: R trans(Sj). Then Tree; is open;
its only branch from S; to trans(S;) is open; trans(S;)
is a unit order clausal theory; we have, for all a 2
atoms(S;), either there exists a P e 2 S;, e 2 f0; 19,
satisfying, forallC 2 S;and C & a P e, a 2 atoms(C);
or0 aja 12§S;j;forallC2trans(S;) S;, forall
a2atoms(C),0 aja 12S; trans(S;);the proof
is by induction on ktrans(S;) S;jk using Rule (29);
for all a 2 atoms(S;) = atoms(trans(S;)), either there
existsaPe2S; trans(S;), e 2 f0;1g, satisfying, for
allC 2 trans(Sj) and C & a P e, a 2 atoms(C); or 0
a;a 12S; trans(S;); by Lemma 4.1 for trans(S;),
there exists a partial model A; of trans(S;), dom(A;) =
atoms(trans(S)); Aj, dom(A;) = atoms(trans(S;)) =
atoms(Sj), is a partial model of S; trans(S;) related
to Tree;j; S; is satisfiable; (36) holds and (35) holds
trivially.

Case 2: elmeasure(Sj) > 0. Then there exist
I1;12;132O0rdLit, &C2O0rdCl,andly_C2S;, 11
I, __l3 is a trichotomy. We put St = (Si fl;_Cg) [
flig ¢ OrdCl, S?=(S; fly_Cg)[fCg[fl.g F

OrdCl, Si3 =(5 fly_Cg)[fCg[fl.g ¢ OrdCl
Then

B

st s s

is an application of Rule (30); forall 1 j 3,
eImeasure(SiJ) <elmeasure(S;); forall1 j 3, by
induction hypothesis for Si‘, there exists a finite tree

221

1JCCI 2013 - International Joint Conference on Computational Intelligence

Table 5: V3.

Vo =0;
Va=Va 1[fd@ 1);la 1)g (1

1
kCn;kVa 1
kCnpkVa 1

S

Ea 1=

1

kCnikVa 1 "

n (o]
kekVa 1jd(a 1)Pe2T;e2f01g ;
C 11
kCnikVa 1 "

D =
at KCnokVa 1

C

1

a gisasuccessor ordinal);

D)

Cn; Pd(a 1)"&Cn, 2 T;Cny;Cn, 2 PropConj;atoms(Cny;Cny) dom(Va 1) [

D)

Cn; Pd(a 1)"2T;Cn; 2 PropConj;atoms(Cn;) dom(Va 1) [

D)

Cn; d(a 1)"&Cn, 2 T;Cny;Cny 2 PropConj;atoms(Cny;Cny) dom(Va 1) [

D)

kcnik¥a 1 " cny d(a 1)"2T;Cn; 2 PropConj;atoms(Cn;) dom(Va 1) ;

C 1
kCn;kVa 1

kCngkVa 1

1
n

S

Ua 1=

C
kCn;kVa 1

8w A\
< Dai1+ Ua:
Ia 1 = 2

-wW

" Ea else;

if Ea 1:0;

Vy = I:Va (g is a limit ordinal)

a<g

D)

d@ 1)"&Cn, Cny 2 T;Cny;Cny 2 PropConj;atoms(Cny;Cny) dom(Va 1) [

D)

d@@ 1)" Cny 2T;Cng 2 PropConj;atoms(Cn;) dom(Va 1)

Treeij with the root Sij constructed using Rules (24),
(29), (30), and (35), (36) hold for Treei’. We put
Si)

Tree! Tree? Tree?
Then Treg; is a finite tree with the root S; constructed
using Rules (24), (29), (30). We get two cases.

Case 2.1: Sj is unsatisfiable. Then, for all 1
j 3, S is unsatisfiable; by (35) for Tree/, Tree} is
closed; Tree; is closed; (35) holds and (36) holds triv-
ially.

Case 2.2: §j is satisfiable. Then there exists
1 j 3andS! is satisfiable; by (36) for Tree]
Tree! is open, there exists a partial model A/
of S}, dom(A!) = atoms(S]), related to Tree/ ;
Treej is open; we have I _ I, I3 isa trichot_omy;
atoms(ly) = atoms(l;) = atoms(l3), atoms(SiJ)
atoms(Si), S{ j=p Si. We put Aj =A! [f(a;0)ja2
atoms(S;) atoms(SiJ)9, dom(A;) = atoms(S;), a
partial valuation. Then A'Jatoms(SiJ y = Al F S,
Ai F Si, Ai, dom(A;) = atoms(S;), is a partial model
of S;, related to Tree;; (36) holds and (35) holds triv-
ially. The induction is completed.

Treej =

222

We construct Tree from Tree by replacing the leaf
S; with Tree; for every i n. We have Tree , for all
i n, Treej are finite. Hence, Tree is finite. It remains
to prove (33) and (34).

Let S be unsatisfiable. We have S is satisfiable if
and only if there exists i n such that S; is satisfi-
able. Then, foralli n, S; is unsatisfiable; by (35)
for Tree;, Tree; is closed; Tree is closed; (33) holds.

Let S be satisfiable. We have S is satisfiable if
and only if there exists i n such that S; is sat-
isfiable. Then, there exists i n and S; is satisfi-
able; by (36) for Treej , Tree; is open, there exists
a partial model A; of S;, dom(A;) = atoms(S;),
related to Tree; ; Tree is open; we have, for all
i n,atoms(S;) atoms(S), Si F=p S; atoms(S;)
atoms(S), Si FpS. We put A=A [f(a;0)ja2
atoms(S) atoms(S;)g, dom(A) = atoms(S), a par-
tial valuation. Then Ajaomss,) =Ai FSi, AFS,
A, dom(A) = atoms(S), is a partial model of S related
to Tree; (34) holds. The theorem is proved. O

The set of basic rules has been proposed as a min-
imal one, which is suitable for theoretical purposes;
i.e. not to get complicated soundness and complete-
ness arguments. For practical computing, it may be

A DPLL Procedure for the Propositional Product Logic

Table 6: Translation of f to S¥.

f=a¥0_(a¥a&bh) b

fa 1; a¥la&b)®b ¥4 17
EY in_{!z_g_i 20) b ¥ g (n
ay E%
fao L& & _&Pandk d_& Péo;(l{az} 1ot 51:((?_!{929) L |Pz}) LRCh) (21);(23)
a3 a as
féo 1,4 50_51 Pég;éz 50_52 Pé’o;o ﬁg_ﬁlpl;ég a_§3Pa;§4 55_54 P55_§5 54&52_55P§4&§2;§5 54_52'31;
b &_bPasa, ¥ L) 22
a5 a7

fdy 1,41 &_&1Péapd &_&Pas0 &_aPla a_&Pad &8_daPa_&8 a&d)_dPa&dd da_aPl,;

b &_bPa&;d;&8 & _&8 &8 Paja d_aP d;a; ¥ & 18
5_ 5,8 &8 & _0&8G P& 6 _ oid7 1 4y I&}g (18)

ag a

st=fg 1 [1] & &_aPa [2] & &_&Pé [8] 0 &_&aP1 [4
a4 a_&Pa [6] &4 &_&aPéas_& &&a_&Pa&d [6 & a_aPl1 [71 b &_bPé& [8]
a4 &8s 57_54 &&; P&y [9] a 55_3 P & [10] a; 53&59_57 P g &a&y [11] as a_§3 Pa [12]

4% b _&Pb [13]g

augmented by additional admissible rules, which do
not change the semantics of the DPLL procedure. For
example, we can add a rule:

(Tautology simplification rule) (37)

T fl_Cg
I _C2T;isatautology.

We can strengthen Rule (29), denoted as (29)*, by
omitting the application condition: T is a unit or-
der clausal theory. Such admissible rules are obvi-
ously sound and helpful for constructing more com-
pact DPLL trees in many cases, however, superfluous
for the completeness argument. Concerning the de-
duction problem of a formula from a finite theory, we
conclude.

Corollary 4.3. Let 2 PropForm@ and T =
PropFormg. There exist AT FA ST F
SimOrdCl AT 8 finite tree Tree with the root ST con-
structed usmg Rules (24)—(30) with the following
properties:

if T j=p T, then Tree is closed; (38)

if T B= T, then Tree is open and there exists a (39)
partial model A of T, dom(A) = atoms(T; T),
related to Tree such that A §= T.

Proof. An immediate consequence of Theorems 3.2
and 4.2. O

Letf=a 8 0_(a ¥ a&b) ¥ b2 PropForms,
a;b 2 PropAtomy. Using Corollary 4.3, we show
that f is a tautology. At first, we translate f to
Sf £ SimOrdCl in Table 6. Before we start DPLL
derivation, it is suitable to investigate several cases
when the input atoms a, b get the truth values 0, 1.
Case 1: kak = 0. Then kfk = 1. Case 2: kak = 1.
Then kfk = kbk) kbk = 1. Hence, in all the cases,
kfk =1, and it remains to investigate whether kfk = 1
forthecase 0 a,a 1,0 b,b 1bythe DPLL
procedure.

Case3: Weadd0 a [14],a 1 [15],0 b [16],
b 1 [17]. Primarily using Rules (27) and (28), we
can derive a branch in the constructed tree such that

foralli 9,0 &, & 1, the other branches are
closed, ending in . We then lengthen this branch by
deriving
4 4 [18] . [7]
& a4 &4 &Pa&E [19] . [6] [18]
b & &&_bPa&a [20] :[19][8]
& a&b_é& Pa&b [21] :[11][12][13]
& &a & _&ar&aPé& [22] :[9][10]
& b_&Pb [23] :[22][21]

[24] :[20][23] (29)%;

az

Hence, all the cases-branches of the constructed tree
are closed; we have reached in all of them. We get
the constructed tree by the DPLL procedure is closed.

223

1JCCI 2013 - International Joint Conference on Computational Intelligence

So, we have proved 0 F=p T and f is a tautology.

5 CONCLUSIONS

We have investigated the deduction problem of a for-
mula from a finite theory in the propositional Prod-
uct logic. The deduction problem has been solved
via translation of a formula to an equivalent satisfi-
able finite order clausal theory, consisting of order
clauses. An order clause is a finite set of order liter-
als of the form e; e, where ¢; is either a conjunction
of propositional atoms or the propositional constant
0 (false) or 1 (true), and is a connective either P
or . Pand are interpreted by the equality and
standard strict order on [0;1], respectively. The tri-
chotomy over order literals: eithere; -~ ex ore; Pes
orez e1, has naturally led to a variant of the DPLL
procedure with a trichotomy branching rule, which is
refutation sound and complete in the finite case.

REFERENCES

Aguzzoli, S. and Ciabattoni, A. (2000). Finiteness in
infinite-valued tukasiewicz logic. Journal of Logic,
Language and Information, 9(1):5-29.

Anderson, R. and Bledsoe, W. W. (1970). A linear format
for resolution with merging and a new technique for
establishing completeness. J. ACM, 17(3):525-534.

Beckert, B., Hahnle, R., and Manya, F. (2000). The SAT
problem of signed CNF formulas. In Basin, D.,
DAgostino, M., Gabbay, D., Matthews, S., and Vi-
gano, L., editors, Labelled Deduction, volume 17 of
Applied Logic Series, pages 59-80. Springer Nether-
lands.

Biere, A., Heule, M. J., van Maaren, H., and Walsh, T.
(2009). Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications.
10S Press, Amsterdam.

Davis, M., Logemann, G., and Loveland, D. (1962). A ma-
chine program for theorem-proving. Commun. ACM,
5(7):394-397.

Davis, M. and Putnam, H. (1960). A computing procedure
for quantification theory. J. ACM, 7(3):201-215.

de la Tour, T. B. (1992). An optimality result for clause
form translation. J. Symb. Comput., 14(4):283-302.

Guller, D. (2009). On the refutational completeness of
signed binary resolution and hyperresolution. Fuzzy
Sets and Systems, 160(8):1162 — 1176. Featured Issue:
Formal Methods for Fuzzy Mathematics, Approxima-
tion and Reasoning, Part I1.

Guller, D. (2010). A DPLL procedure for the propositional
Gaodel logic. In Filipe, J. and Kacprzyk, J., editors,
1JCCI (ICFC-ICNC), pages 31-42. SciTePress.

Guller, D. (2012). On the satisfiability and validity prob-
lems in the propositional Godel logic. In Madani, K.,

224

Dourado Correia, A., Rosa, A., and Filipe, J., editors,
Computational Intelligence, volume 399 of Studies in
Computational Intelligence, pages 211-227. Springer
Berlin / Heidelberg.

Héhnle, R. (1994a). Many-valued logic and mixed integer
programming. Ann. Math. Artif. Intell., 12(3-4):231-
263.

Héhnle, R. (1994b). Short conjunctive normal forms in
finitely valued logics. J. Log. Comput., 4(6):905-927.

Héahnle, R. (1996). Exploiting data dependencies in many-
valued logics. Journal of Applied Non-Classical Log-
ics, 6(1):49-69.

Héhnle, R. (1997). Proof theory of many-valued logic—
linear optimization—logic design: connections and in-
teractions. Soft Comput., 1(3):107-119.

Hajek, P., Godo, L., and Esteva, F. (1996). A complete
many-valued logic with product-conjunction. Arch.
Math. Log., 35(3):191-208.

Manya, F., Béjar, R., and Escalada-Imaz, G. (1998). The
satisfiability problem in regular CNF-formulas. Soft
Comput., 2(3):116-123.

Metcalfe, G., Olivetti, N., and Gabbay, D. M. (2004). An-
alytic calculi for product logics. Arch. Math. Log.,
43(7):859-890.

Mundici, D. (1987). Satisfiability in many-valued sentential
logic is NP-complete. Theor. Comput. Sci., 52:145-
153.

Nonnengart, A., Rock, G., and Weidenbach, C. (1998). On
generating small clause normal forms. In Kirchner,
C. and Kirchner, H., editors, CADE, volume 1421 of
Lecture Notes in Computer Science, pages 397-411.
Springer.

Plaisted, D. A. and Greenbaum, S. (1986). A structure-
preserving clause form translation. J. Symb. Comput.,
2(3):293-304.

Savicky, P., Cignoli, R., Esteva, F., Godo, L., and Noguera,
C. (2006). On Product logic with truth-constants. J.
Log. Comput., 16(2):205-225.

Sheridan, D. (2004). The optimality of a fast CNF conver-
sion and its use with SAT. In SAT.

