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Abstract: We present a framework for merging the non-fuzzy real-world information stored in databases with the fuzzy
knowledge that we (human beings) have. The interest in this aggregation is providing a (fuzzy and non-fuzzy)
search engine able to answer flexible and expressive queries without sacrificing a friendly user interface.
We achieve this task by using a new syntax (whose semantics are included too) for modelling the domain
knowledge and a flexible and enough general structure to represent any user query. We expect this work
contributes to the development of more human-oriented fuzzy search engines.

1 INTRODUCTION

Most of the real-world information is stored in non-
fuzzy databases, but most of the queries that we (hu-
man beings) wanna pose to a search engine are fuzzy.
One example of this is the databases containing the
distance of a restaurant to the center and the user
query “I want a restaurant close to the center”. As-
suming that it is nonsense to teach every search en-
gine user how to translate the (almost always) fuzzy
query they have in mind into a query that a machine
can understand and answer, the problem to be solved
has two very different parts: recognition of the query
and execution of the recognized query.

The recognition of the query has basically two
parts: syntactic and semantic recognition. The first
one has to be with the lexicographic form of the set
of words that compose the query and tries to find a
query similar to the user’s one but more commonly
used. The objective with this operation is to pre-cache
the answers for the most common queries and return
them in less time, although sometimes it serves to re-
move typos in the user queries. An example of this
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is replacing “cars”, “racs”, “arcs” or “casr” by “car”.
The detection of words similar to one in the query
is called fuzzy matching and the decision to propose
one of them as the “good one” is based on statistics of
usage of words and groups of words. The search en-
gines usually ask the user if they want to change the
typed word(s) by this one(s).

The semantic recognition is work still in progress
and it is sometimes called “natural language process-
ing”. In the past search engines were tools to re-
trieve the web pages containing the words typed in the
query, but today they tend to include capabilities to
understand the user query. An example is computing
4 plus 5 when the query is “4+5” or presenting a cur-
rency converter when we write “euro dollar”. This is
still far away from our proposal: retrieving web pages
containing “fast red cars” instead of the ones contain-
ing the words “fast”, “red” and “car”.

The execution of the recognized query is the sec-
ond part. Suppose a query like “I want a restaurant
close to the center”. If we assume that the computer
is able to “understand” the query then it will look for
a set of restaurants in the database satisfying it and
return them as answer, but the database does not con-
tain any information about “close to the center”, just
the “distance of a restaurant to the center”. It needs
a mapping between the “distance” and the meaning
of “close”, and this knowledge must be stored some-
where.

One of the most successful programming lan-
guages for representing knowledge in computer sci-
ence is Prolog, whose main advantage with respect to
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name distance price avg. food type
Il tempietto 100 30 italian

Tapasbar 300 20 spanish
Ni Hao 900 10 chinese
Kenzo 1200 40 japanese

0

1

close

100 1000 distance

Figure 1: Restaurants database and close fuzzification func-
tion.

the other ones is being a more declarative program-
ming language2. Prolog is based on logic. It is usual
to identify logic with bi-valued logic and assume that
the only available values are “yes” and “no” (or “true”
and “false”), but logic is much more than bi-valued
logic. In fact we use fuzzy logic (FL), a subset of
logic that allow us to represent not only if an individ-
ual belongs or not to a set, but the grade in which it be-
longs. Supposing the database contents, the definition
for “close” in Fig. 1 and the question “Is restaurant X
close to the center?” with FL we can deduce that
Il tempietto is “definitely” close to the center, Tapas-
bar is “almost” close, Tapasbar is “hardly” close and
Kenzo is “not” close to the center. We highlight the
words “definitely”, “almost”, “hardly” and “not” be-
cause the usual answers are “1”, “0.9”, “0.1” and “0”
and their humanization is done by defuzzification.

The simplicity of the previous example introduces
a question that the curious reader might have in mind:
“Does adding a column “close” of type float to the
database and computing its value for each row solves
the problem?”. The answer is yes, but only if our
query is not modifiable: It does not help if we can
change our question to “I want a very close to the
center restaurant” or to “I want a not very close to
the center restaurant”. Adding a column for each pos-
sible question results into a storage problem, and in
some sense it is unnecessary: all this values can be
computed from the distance value.

Getting fuzzy answers for fuzzy queries from non-
fuzzy information stored in non-fuzzy databases has
been studied in some works, for example in (Bosc
and Pivert, 1995), the SQLf language. The PhD.
thesis of Leonid Tineo (Rodriguez, 2005) and the

2We say that it is a more declarative programming language
because it removes the necessity to specify the flow control in most
cases, but the programmer still needs to know if the interpreter or
compiler implements depth or breadth-first search strategy and left-
to-right or any other literal selection rule.

work (Dubois and Prade, 1997) are good revisions, al-
though maybe a little bit outdated. Most of the works
mentioned in this papers focus in improving the ef-
ficiency of the existing procedures, in including new
syntactic constructions or in allowing to introduce the
conversion between the non-fuzzy values needed to
execute the query and the fuzzy values in the query,
for which they use a syntax rather similar to SQL (re-
flected into the name of the one mentioned before).
The advantages of using a syntax similar to SQL are
many (removal of the necessity to retrieve all the en-
tries in the database, SQL programmers can learn the
new syntax easily, ...) but there is an important dis-
advantage: the user needs to teach the search engine
how to obtain the fuzzy results from the non-fuzzy
values stored in the database to get answers to his/her
queries and this includes that he/she must know the
syntax and semantics of the language and the struc-
ture of the database tables. This task is the one we
try to remove by including in the representation of
the problem the knowledge needed to link the fuzzy
knowledge with the non-fuzzy one.

To include the links between fuzzy and non-fuzzy
concepts we could use any of the existing frame-
works for representing fuzzy knowledge. Leaving
apart the theoretical frameworks, as (Vojtáš, 2001),
we know about the Prolog-Elf system (Ishizuka and
Kanai, 1985), the FRIL Prolog system (Baldwin et al.,
1995), the F-Prolog language (Li and Liu, 1990), the
FuzzyDL reasoner (Bobillo and Straccia, 2008), the
Fuzzy Logic Programming Environment for Research
(FLOPER) (Morcillo and Moreno, 2008) the Fuzzy
Prolog system (Vaucheret et al., 2002; Guadarrama
et al., 2004), or Rfuzzy (Muñoz-Hernández et al.,
2011). All of them implement in some way the
fuzzy set theory introduced by Lotfi Zadeh in 1965
((Zadeh, 1965)), and all of them let you implement
the connectors needed to retrieve the non-fuzzy infor-
mation stored in databases, but we needed more meta-
information than the one they provide.

Retrieving the information needed to ask the query
is part of the problem but, as introduced before, it
is needed to determine what the query is asking for
before answering it. Instead of providing a free-text
search field and recognize the query we do it in the
other way: we did an in-depth study on which are all
the questions that we can answer from the knowledge
stored in our system and we created a general query
form that allows to introduce any of this questions.
This is why in sec. 3 we do not only present the se-
mantics of our syntactic constructions, but the infor-
mation that helps us to instantiate the general query
form for each domain.

To our knowledge, the works similar to ours are
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(Ribeiro and Moreira, 2003), (Bosc and Pivert, 2011)
and (Bordogna and Pasi, 1994). While the last two
seem to be theoretical descriptions with no implemen-
tation associated the first one does not appear to be a
search engine project. They provided a natural lan-
guage interface that answers queries of the types (1)
does X (some individual) have some fuzzy property,
for example “Is it true that IBM is productive?”, and
(2) do an amount of elements have some fuzzy prop-
erty, for example “Do most companies in central Por-
tugal have sales profitability?”.

The paper is structured as follows: the syntax
needed to understand it goes first (sec. 2), the descrip-
tion of our framework after (sec. 3) and conclusions
and current work in last place (sec. 4), as usual.

2 SYNTAX

We will use a signature S of function symbols and a
set of variables V to “build” the term universe TUS;V
(whose elements are the terms). It is the minimal set
such that each variable is a term and terms are closed
under S-operations. In particular, constant symbols
are terms. Similarly, we use a signature P of predicate
symbols to define the term base TBP;S;V (whose ele-
ments are called atoms). Atoms are predicates whose
arguments are elements of TUS;V . Atoms and terms
are called ground if they do not contain variables.
As usual, the Herbrand universe HU is the set of all
ground terms, and the Herbrand base HB is the set
of all atoms with arguments from the Herbrand uni-
verse. A substitution s or x is (as usual) a mapping
from variables from V to terms from TUS;V and can
be represented in suffix ( (Term)s ) or in prefix nota-
tion ( s(Term) ).

To capture different interdependencies between
predicates, we will make use of a signature W

of many-valued connectivesformed by conjunctions
&1;&2; :::;&k, disjunctions _1;_2; :::;_l , implica-
tions  1; 2; :::; m, aggregations @1;@2; :::;@n
and tuples of real numbers in the interval [0; 1] repre-
sented by (p; v).

While W denotes the set of connective symbols,
Ŵ denotes the set of their respective associated truth
functions. Instances of connective symbols and truth
functions are denoted by &i and &̂i for conjunctors,
_i and _̂i for disjunctors, i and  ̂i for implicators,
@i and @̂i for aggregators and (p; v) and ˆ(p; v) for
the tuples.

Truth functions for the connectives are then de-
fined as &̂ : [0;1]2 ! [0;1] monotone3 and non-

3 l As usually, a n-ary function F̂ is called mono-

decreasing in both coordinates, _̂ : [0;1]2 ! [0;1]
monotone in both coordinates,  ̂ : [0;1]2 ! [0;1]
non-increasing in the first and non-decreasing in the
second coordinate, @̂ : [0;1]n ! [0;1] as a function
that verifies @̂(0; : : : ; 0) = 0 and @̂(1; : : : ; 1) = 1
and (p; v) 2 W(0) are functions of arity 0 (constants)
that coincide with the connectives.

Immediate examples for connectives that come
to mind for conjunctors are: in Łukasiewicz
logic (F̂(x;y) = max(0;x + y� 1)), in Gödel logic
(F̂(x;y) = min(x;y)), in product logic (F̂(x;y) = x �
y), for disjunctors: in Łukasiewicz logic (F̂(x;y) =
min(1;x + y)), in Gödel logic (F̂(x;y) = max(x;y)),
in product logic (F̂(x;y) = x � y), for implicators: in
Łukasiewicz logic (F̂(x;y) = min(1;1� x + y)), in
Gödel logic (F̂(x;y) = y if x > y else 1), in product
logic (F̂(x;y) = x � y) and for aggregation operators4:
arithmetic mean, weighted sum or a monotone func-
tion learned from data.

3 THE FRAMEWORK IN DETAIL

As stated in the introduction, the framework we
present provides (1) the syntax needed to model any
knowledge domain and (2) an enough expressive syn-
tactical structure for representing any query we can
answer with the information stored in the system. We
can view it as the sum of three parts: (1) a con-
figuration file (CF) that defines the fuzzy and non-
fuzzy concepts of our domain and the relations be-
tween them, (2) a framework that understands the CF
and provides the search capabilities and (3) a web ap-
plication that understands the CF, knows the frame-
work capabilities and generates an easy to use human-
oriented interface for posing queries to the search en-
gine and show the answers to the user.

The syntactical structure we use to query the
search engine has been defined after studying mul-
tiple user queries. In comprises all of them (some-
times with small modifications) while trying to be as
expressive as possible and has the form

I0m looking f or a=an individual(
not q fp

whose nfp co value

)
AND

(1)

tonic in the i-th argument ( i � n ), if x �
x0 implies F̂(x1; : : : ; xi�1; x; xi+1; : : : ; xn) �
F̂(x1; : : : ; xi�1; x0; xi+1; : : : ; xn) and a function is called
monotonic if it is monotonic in all arguments.

4Note that the above definition of aggregation operators
subsumes all kinds of minimum, maximum or mean opera-
tors.
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where individual is the element we are looking for
(car, skirt, restaurant, ...), q is a quantifier (quite,
rather, very, ...), f p is a fuzzy predicate (cheap, large,
close to the center, ...), n f p is a non-fuzzy predicate
(price, size, distance to the center, ...) and co is a
comparison operand (is equal to, is different from, is
bigger than, is lower than, is bigger than or equal to,
is lower than or equal to and is similar to). The ele-
ments in boxes can be modified and the brackets sym-
bolize choosing between a fuzzy predicate query or a
comparison between non-fuzzy values (which can be
a fuzzy comparison). The “AND” serves to add more
lines to the query, to combine multiple conditions.
Some examples of use are “I’m looking for a restau-
rant not very near the city center” (eq. 2), “I’m look-
ing for a restaurant whose food type is mediterranean”
(eq. 3) and “I’m looking for a restaurant whose food
type is similar to mediterranean and near the city cen-
ter” (eq. 4).

I0m looking f or a=an restaurant

not very near the city center (2)

I0m looking f or a=an restaurant

whose food type is mediterranean (3)

I0m looking f or a=an restaurant

whose food type is similar to

mediterranean
near the city center

AND (4)

The syntax that we provide to model any knowl-
edge domain is highly coupled to the information that
we need to retrieve for providing the values for “in-
dividual”, “not”, “q” (quantifier), “fp” (fuzzy predi-
cate), “nfp” (non-fuzzy predicate), “co” (comparison
operand) and “value”, and to present the answers in a
human-readable way. This is why when we provide
its semantics we do it in two ways: by providing the
formal ones and by providing what the web interface
understands from them. We present first a brief but,
for our purposes, complete introduction to the multi-
adjoint semantics with priorities that we use to give
formal semantics to our syntactical constructions. For
a more complete description we recommend reading
the papers cited below.

The structure used to give semantics to our pro-
grams is the multi-adjoint algebra, presented in (Med-
ina et al., 2002; Medina et al., 2001a; Medina et al.,
2001b; Medina et al., 2001c; Medina et al., 2004;
Moreno and Ojeda-Aciego, 2002). The interest in us-
ing this structure is that we can obtain the credibility

for the rules that we write from real-world data, al-
though this time we do not focus in that advantage.
We simply highlight this fact so the reader knows why
this structure and not some other one.

This structure provides us with the basis, but for
our purposes we need that the maximum operator
used to decide between multiple rules results the valid
one chooses the value of the less generic rule instead
of just the higher value. This is why we take as point
of departure the work (Pablos-Ceruelo and Muñoz-
Hernández, 2011). Definitions needed to understand
the formal sematics are given in advance, as usually.

In (Pablos-Ceruelo and Muñoz-Hernández, 2011)
the meaning of a fuzzy logic program gets condi-
tioned by the combination of a truth value and a pri-
ority value. So, the usual truth value v 2 [0;1] is
converted into (p; v) 2 W(0), a tuple of real num-
bers between 0 and 1 where p 2 [0;1] denotes the (ac-
cumulated) priority. The usual representation (p;v)
is sometimes changed into (pv) to highlight that the
variable is only one and it can take the value ?. The
set of all possible values is symbolized by KT and the
ordering between its elements is defined as follows:

Definition 3.1 (4 KT).

?4 KT ?4 KT (p; v)

(p1; v1)4 KT (p2; v2) $ ( p1 < p2 ) or
( p1 = p2 and v1 � v2 ) (5)

where < is defined as usually ( vi and p j are just real
numbers between 0 and 1).

Definition 3.2 (Multi-Adjoint Logic Program). A
multi-adjoint logic program is a set of clauses of the
form

A
(p; v); &i �����@ j (B1; : : : ;Bn) if COND (6)

where (p; v) 2 KT, &i is a conjunctor, @ j an aggre-
gator (unnecessary if k 2 [1::1]), A and Bk, k 2 [1::n],
are atoms and COND is a first-order formula (basi-
cally a bi-valued condition) formed by the predicates
in TBP;S;V , the predicates =,�,�, > and < restricted
to terms from TUS;V , the symbol true and the conjunc-
tion ^ and disjunction _ in their usual meaning.

Definition 3.3 (Valuation, Interpretation). A
valuation or instantiation s : V ! HU
is an assignment of ground terms to vari-
ables and uniquely constitutes a mapping
ŝ : TBP;S;V ! HB that is defined in the
obvious way.

A fuzzy Herbrand interpretation (or short, inter-
pretation) of a fuzzy logic program is a mapping
I : HB! KT that assigns an element in our lattice
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to ground atoms5.
It is possible to extend uniquely the mapping I

defined on HB to the set of all ground formulas of
the language by using the unique homomorphic ex-
tension. This extension is denoted Î and the set of
all interpretations of the formulas in a program P is
denoted IP.

Definition 3.4 (The operator � ). The application of
some conjunctor &̄ (resp. implicator  ̄ , aggrega-
tor @̄ ) to elements (p; v) 2 KT n f?g refers to the
application of the truth function &̂ (resp.  ̂ , @̂ )
to the second elements of the tuples while �& (resp.
� , �& ) is the one applied to the first ones. The
operator � is defined by

x �& y =
x + y

2
and z � y = 2 � z � y .

Definition 3.5 (Satisfaction, Model). Let P be a
multi-adjoint logic program, I 2 IP an interpretation
and A 2 HB a ground atom. We say that a clause
Cli 2 P of the form shown in eq. 6 is satisfied by I or
I is a model of the clause Cli ( I  Cli ) if and only if
( iff ) for all ground atoms A 2HB and for all instan-
tiations s for which Bs 2 HB (note that s can be
the empty substitution) it is true that

Î(A)< KT (p; v) &̄i @̄i( Î(B1s); : : : ; Î(Bns) ) (7)

whenever COND is satisfied (true). Finally, we say
that I is a model of the program P and write I  P
iff I  Cli for all clauses in our multi-adjoint logic
program P.

Now that we have introduced the basics of our for-
mal semantics we introduce the syntax, semantics and
what the web interface interprets from them.

The first and most important syntactic structure is
the one used to define the individuals we can play
with, as “restaurants” in the previous examples. Since
the database tables storing the information of an in-
dividual can be more than one we decided to allow
the programmer to use the Prolog facilities for mix-
ing all the information into a predicate and we depart
from this predicate. This means that if we have two
tables for storing the information of a restaurant, one
for the “food type” ( f t) and another for the “distance
to the city center” (dttcc) we can do the operations in
eqs. 8, 9, 10, 11 and 12 to obtain all the information
about a restaurant. If instead of that we have all the
information of a restaurant in just one table we can
make use of the code in eqs. 13 and 14.

5The domain of an interpretation is the set of all atoms in
the Herbrand Base (interpretations are total functions), although
for readability reasons we present interpretations as sets of pairs
(A;(p; v)) where A 2 HB and (p; v) 2 KT n f?g (we omit
those atoms whose interpretation is the truth value ?).

sql persistent location(r f t;

db(0SQL0;user; pass;0 host 0 : port)): (8)
:�sql persistent(r f t(integer;string);

r f t(id; f t);r f t): (9)
sql persistent location(rdttcc;

db(0SQL0;user; pass;0 host 0 : port)): (10)
:�sql persistent(rdttcc(integer; integer);

rdttcc(id;dttcc);rdttcc): (11)
restaurant(id; f t;dttcc) :�

r f t(id; f t);rdttcc(id;dttcc): (12)

sql persistent location(restaurant;

db(0SQL0;user; pass;0 host 0 : port)): (13)
:�sql persistent(

restaurant(integer;string; integer; integer);
restaurant(id; f t;yso;dttcc);restaurant): (14)

Once we have all the information accessible we use
the syntactical structure in eq. 15 to define our vir-
tual database table (vdbt), where pT is the name of
the vdbt (the individual or subject of our searches),
pA is the arity of the predicate or the vdbt, pN is the
name assigned to a column of the vdbt pT and pT 0

is a basic type, one of fboolean type; enum type;
integer type; f loat type; string typeg. We provide
an example in eq. 16 to clarify, in which the restaurant
vdbt has four columns (or the predicate has four argu-
ments), the first for the name of the restaurant (the id,
of string type), the second for the food type served in
the restaurant, the third for the number of years since
its opening and the last one for the distance to the city
center from that restaurant.

de f ine database(pT=pA; [(pN; pT 0)]) (15)
de f ine database(restaurant=4; [
(id;string type);
( f ood type;enum type);
(years since opening; integer type);
(distance to the city center; integer type)]): (16)

This syntactical construction has no formal se-
mantics because it is just for defining the input data,
but it provides a lot of information to the web in-
terface and setters/getters that can be used in the
programs. First, it provides an instance value for
the query field “individual”, pT (restaurant). Sec-
ondly, a list of values for n f p (id, food type, years
since opening and distance to the city center) and
their types (string type, enum type, integer type, in-
teger type) which means that in co we can show “is
equal to” and “is different from” if it of string type,
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“is equal to”, “is different from” and “is similar to”
if it is of enum type or “is equal to”, “is different
from”, “is bigger than”, “is lower than”, “is bigger
than or equal to” and “is lower than or equal to” if
it is of interger type. Third, for each column we
have a setter/getter so that for the example in eq. 16
we get by free the predicates f ood type(R;FT ) and
distance to the city center(R;dttcc) that set/obtain
in their second argument the respective value in the
database column for the restaurant R.

The second syntactical construction is the one
used to define similarity between the individuals of
enum type. It is shown in eq. 17, where pT and pN
mean the same as in eq. 15, V 1 and V 2 are possible
values for the column pN of the vdbt pT , column that
must be of type enum type, and TV is the truth value
(a float number) we assign to the similarity between
V 1 and V 2. We show an example in eq.20, in which
we say that the food type mediterranean is 0.8 simi-
lar to the spanish food6. The syntactical constructions
in eqs. 18 and 19 are optional tails for the syntactical
construction in eq. 17. Since they can be used as tails
when using any of the syntactical constructions that
follow this one, we dedicate the paragraph after this
one to explain how the semantics of the constructions
change when they are used. With respect to the se-
mantics of eq. 17, we show them in eq.21. For the
variables in common we take the values written using
the new syntax, while for v, &i, p and COND we have
by default7 the values 1, product, 0:8 and true. This
construction does not provide any information to the
web interface.

similarity between(pT; pN(V 1); pN(V 2);TV ) (17)
with credibility(credOp;credVal) (18)

only f or user 0UserName0 (19)
similarity between(restaurant;

f ood type(mediterranean);
f ood type(spanish);0:8) (20)

similarity(pT (pN(V 1;V 2)))
(p; v); &i ����� TV

if COND (21)

We explain now the changes that the use of
the tails’ constructions in eqs. 18, 19 and 23 in-
troduce in the semantics of the constructions in
eqs. 17, 22, 26, 31, 32 and 35. The “by default”
values for the variables v, &i, p and COND in the
semantics any of this clauses are the values given to

6Be careful, we are not saying that the spanish food is
0.8 similar to the mediterranean one. You need to add an-
other clause with that information if you wanna say that too.

7The meaning of this “by default” is explained too in the
paragraph after this one.

those variables when no tail is appended to them and
they are used as initial values when the tails used
are the ones in eqs. 19 and 23. The tail in eq. 18
serves to define a credibility for a rule together with
the operator needed to combine it with the rule truth
value. In the construction credVal is the credibility, a
number of float type, and credOp is the operator, any
conjunctor having the properties defined in Sec. 2.
When we use it the values for v and &i (usually 1
and product) are changed by credVal and credOp.
The tail in eq. 19 serves to write personalized rules,
rules that only apply when the user logged in and the
user in the rule are the same one. In the construction
Username is the name of any user, any string.
When we use it the value of COND is changed
by COND;currentUser(Me);Me = 0UserName08

and the value for p gets increased by 0:1 because
the rule is considered to be more specialized than
before and it should be chosen before another rule
not having this specialization. The tail in eq. 23
serves (not applicable to the construction in eq. 17)
to limit the individuals for which we wanna use the
fuzzy clause or rule. In the construction pN and pT
mean the same as in eq. 15, cond can take the values
is equal to, is di f f erent f rom, is bigger than,
is lower than, is bigger than or equal to and
is lower than or equal to and value can be an
integer or a string. When we use it the value of
COND is changed by COND; pN(pT ) cond value
and the value for p gets increased by 0:05. The
reason to increase p in 0:05 when the tail is the one in
eq. 23 and to do it in 0:1 when it is the one in eq. 19
is because we want to give to the personalized rules
more importance than to the conditioned ones. For
example, if eq. 20 had a tail of the form in eq. 19 then
the value for p would be 0:85 instead of 0:8.

The third construction (shown in eq. 22) is the one
used to define a fuzzy value for all the individuals in a
vdbt, and is most of the times used in conjunction with
the tail in eq. 23 to limit the assignment to a subset of
individuals. In eq. 22 pT and TV mean the same as
in eqs. 15 and 17 and f PredName is the fuzzy pred-
icate we are defining. Eq. 24 is an example of use in
which we say that the restaurant with id Zalacain is
cheap with a truth value of 0.1. The formal seman-
tics for this construction are shown in eq. 25 and the
default values for v, &i, p and COND are the values
1, product, 0:8 and true. From the point of view of
the interface, the inclusion of a new fuzzy predicate is
taken into account and a new predicate appears in the
list of predicates from which we can choose one for

8Please remember that ’,’ is the Prolog symbol for con-
junction (^).
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the field f p (see eq. 1).

f PredName(pT ) :� value(TV ) (22)
i f (pN(pT ) cond value): (23)

cheap(restaurant) : value(0:1)
i f (id(restaurant) is equal to zalacain): (24)

f PredName
(p; v); &i ����� TV if COND (25)

The fourth construction serves to define fuzzifi-
cations, the computation of fuzzy values for fuzzy
predicates from the non-fuzzy value that the individ-
ual has in some column in the database. The syn-
tax is presented in eq. 26, where pN and pT mean
the same as in eq. 15, f PredName is the name of
the fuzzy predicate that is going to be a fuzzification,
[(valIn;valOut)] is a list of pairs of values such that
valIn belongs to the domain of the fuzzification and
valOut to its image9. An example in which we com-
pute if a restaurant is traditional or not from the num-
ber of years since its opening is presented in eq. 27.
The formal semantics for this construction are shown
in eq. 28, but only for one sequence of two contiguous
points (valIn1;valOut1) (valIn2;valOut2) in 26 (we
need to generate one of this for each piece), and the
default values for v, &i, p and COND are the values
1, product, 0:6 and the COND0 in eq. 30, where OP is
the formula in eq. 29. The web interface takes fuzzi-
fication functions as fuzzy predicates, so it includes
them in the list of available predicates for the field f p
(see eq. 1) when they are not there yet.

f PredName(pT ) :� f unction(pN(pT );
[(valIn;valOut)]) (26)

traditional(restaurant) : f unction(
years since opening(restaurant);
[(0;0);(5;0:1);(10;0:4);(15;1);(100;1)]): (27)

f PredName(valIn)
(p; v); &i ����� OP if COND (28)

OP = valIn � (valOut2� valIn1)
(valIn2� valIn1)

(29)

COND0 = (valIn1 < valIn < valIn2) (30)

The fifth syntactical construction is for defining
rules and has two forms, one used when the body de-
pends on more than one subgoal, shown in eq. 31, and
one used when it is just one subgoal, shown in eq. 32.
In eq. 31 aggr is the aggregator used to combine the
truth values of the subgoals in complexBody, which is
just a conjunction of names of fuzzy predicates, while
in eq. 32 simplexBody it is just the name of a fuzzy

9[(valIn;valOut)] is basically a piecewise function defi-
nition, where each two contiguous points represent a piece.

predicate. In both of them pT means the same as in
eq. 15 and f PredName the same as in eq. 26. The for-
mal semantics for this constructions are respectively
shown in eqs. 33 and 34 and the default values for
v, &i, p and COND are the values 1, product, 0:4
and true. With respect to what the web interface re-
ceives from this syntactic structure, it always includes
fuzzy predicates in the list of available predicates for
the field f p (see eq. 1) when they are not there yet.

f PredName(pT ) :� rule(aggr;complexBody) (31)
f PredName(pT ) :� rule(simpleBody) (32)

f PredName
(p; v); &i ����� aggr(complexBody)

if COND (33)

f PredName
(p; v); &i ����� simplexBody if COND (34)

The sixth syntactical construction is the one used
to define default values for fuzzy computations. Its
main goal is not to stop a derivation when a value is
missing, and it is really useful when a database can
have null values. The syntactic form is presented in
eq. 35, where pT means the same as in eq. 15 and
f PredName the same as in eq. 26, and we provide
an example in eq. 36 in which we say that in absence
of information we consider that a restaurant will not
be close to the city center (this is what the zero value
means). The formal semantics for this constructions
are shown in eq. 37 and the default values for v, &i,
p and COND are the values 1, product, 0 and true.
With respect to what the web interface receives from
this syntactic structure, this structure serves to define
default values for fuzzy predicates and the web in-
terface always includes fuzzy predicates in the list of
available predicates for the field f p (see eq. 1) when
they are not there yet.

f PredName(pT ) :� de f aults to(TV ) (35)
near the city center(restaurant) :�

de f aults to(0): (36)

f PredName
(p; v); &i ����� TV if COND (37)

4 CONCLUSIONS

The framework presented is a fuzzy and flexible
search engine whose main advantage over the exist-
ing ones is providing an easy to use and friendly user
interface, avoiding the necessity to learn the complex
syntax used in the existing ones. For that purpose it
has a syntax (and its semantics) to capture the rela-
tions between the fuzzy and non-fuzzy knowledge of
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any domain (linking information from databases with
real-world concepts) and the definition of a general
query structure. In this way the user interface is gen-
erated automatically from the world representation in-
troduced in the configuration file. This, joint with the
possibility to include Prolog code in our configura-
tion file for complex tasks makes our framework a
very powerful tool for representing the real world and
answering questions about it. A beta version of our
framework FleSe is available at our web page.

Our current research focus on deriving similarity
relations from the information in the database and not
only from the knowledge hard-coded in the program.
In this way we could, for example, derive from the
RGB composition of colors if they are similar or not.
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procedural semantics for multi-adjoint logic program-
ming. In Brazdil, P. and Jorge, A., editors, EPIA,
volume 2258 of Lecture Notes in Computer Science,
pages 290–297. Springer.

Medina, J., Ojeda-Aciego, M., and Vojtáš, P. (2002). A
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