Bayesian versus Neural Network Analysis of Algae Data Population A New Method to Predict and Analyse Cause and Effect

Jen J. Lee¹, Jorge A. Achcar², Emílio A. C. Barros³ and Carlos D. Maciel¹

¹Signal Processing Laboratory, University of São Paulo (USP), São Carlos, Brazil
 ²Social Medicine Department, University of São Paulo (USP), Ribeirão Preto, Brazil
 ³Statistics Department, Maringá State University (UEM), Maringá, Brazil

Keywords: Algae, Bayes, Neural Network, Population, Machine Learning.

Abstract:

In biology, advanced modelling techniques are needed since there is a mixture of qualitative, linguistics and numerical data on the environmental and biological relationships. Also, experiments and data collecting are expensive and time consuming, so determine which variables are relevant and using inference models less data demanding are highly desirable. In this work, from a set of 200 multivariate data samples of algae population and environmental variables, we propose a Bayesian method to predict compositional population distribution. This is a good application example, since measuring environmental variables are easier to automate, faster and less expensive than population counting that usually involves the need of a large amount of specialized human interaction. An additive log-ratio transformation and a regression model were applied to the data and 255.000 Gibbs samples were simulated using the OPENBUGS software. Also an Artificial Neural Network (ANN) was designed on Matlab to predict the distribution for benchmarking purposes. Both models showed similar prediction performance, but on the Bayesian model an analysis of credible interval of the variables corresponding to the each regression parameters is possible, showing that most of the variables on this study are relevant, which is consistent to the expected results in this case.

1 INTRODUCTION

The geographic region, anthropomorphic impacts but mainly hydrology, gives to aquatic environments great heterogeneity, especially regarding to the concentrations of nutrients and abundance of organisms (López-Flores et al., 2011).

Currently, it's clear that subtle variations in nutrient levels and chemical balance from farming land run-off and waste from sewage treatment have serious effects, even if indirect, in the state of rivers, lakes and even the ocean. The summers of temperate climates around the world are characterized by numerous reports of seasonal algal overgrowth, resulting in poor water clarity, massive deaths of fish from reduced oxygen levels and the closure of recreational water facilities because of toxic effects from algae (Univesity of California - Irvine, 1999). However, algae, when maintained in controlled processes, can be used for carbon sequestration, production of biomass, oils, compounds of interest for the industry and act as biological indicators, such as diatoms, that have a high sensitivity in small changes in acidity of its environment.

The need to reduce human impact on our waters and make use of algae on controllable processes has stimulated numerous researches, mainly in the field of biology with the goal of identifying the crucial variables for chemical control in biological processes. That said, the relationship between chemical and biological characteristics is complex and the need for advanced modeling techniques is expected, especially when using data containing, in addition to the great number of variables, the mixture of qualitative (fuzzy), linguistic and numerical information. It is important to note that, in biological processes, conducting experiments and/or collecting samples probably has a great cost of time and resources to be made and samples are often incomplete or inconsistent, therefore, little data may be available, affecting inference methods and analysis that are based solely on a large amount of data

Regardless of the approach one takes to statistics, the process of statistics involves (1) formulating a research question, (2) collecting data, (3) developing a probability model for the data, (4) estimating the

482 J. Lee J., A. Achcar J., A. C. Barros E. and D. Maciel C..

 Bayesian versus Neural Network Analysis of Algae Data Population - A New Method to Predict and Analyse Cause and Effect. DOI: 10.5220/0004552304820488
 In Proceedings of the 5th International Joint Conference on Computational Intelligence (NCTA-2013), pages 482-488
 ISBN: 978-989-8565-77-8

Copyright © 2013 SCITEPRESS (Science and Technology Publications, Lda.)

model, and (5) summarizing the results in an appropriate fashion to answer the research question (a process often called "statistical inference") (Lynch, 2007).

At this work we suggest the use of a Bayesian model for multivariate compositional processing of data collected in European rivers to create a model for inference of population distribution of algae that have quantitative (concentrations of chemical compounds, pH, etc.) and qualitative (season, etc.) variables. We also propose a method to identify the variables that cause the most significant effects on this population distribution. The performance of Bayesian inference model was also compared to an Artificial Neural Network.

On section 2 we describe the data and the preprocessing method used to prepare the variables and the compositional data to analysis, on section 3 the Bayesian model is described and the results of this analysis are presented, on section 4 the Artificial Neural Network design is described and on section 5 there is a comparison of performance between the two prediction models, finally on section 6 the conclusions are discussed.

2 DATA SAMPLES

The data used in this paper are the results of a research on river water quality, where samples were taken from different European rivers over a period of approximately one year. These samples were analyzed for several variables as nitrogen in the form of nitrates, nitrites and ammonium, phosphates, pH, oxygen, chloride. In parallel, algae population distributions from these samples were determined.

Although chemical analysis is relatively inexpensive and easily automated, biological analysis involves the examination under a microscope, requiring trained manpower and is usually expensive and very slow.

The data set contains 200 samples, where the first 11 values are: season of the year (*winter*, *spring, autumn* or *summer*), river size (*small, medium* or *large*), water speed (*low, medium* or *high*) and 8 chemical concentrations (according to Table 1). These variables are known to be relevant to the algae species population distribution.

The last 7 columns represent the distribution of different types of algae (according to Table 2), and these do not represent the entire population of algae in the medium, some of the species were omitted. The data, kindly donated by prof. Jens Strackeljan from *Otto von Guericke University Magdeburg* (OVGU), do not indicate which components are represented by each chemical concentration column and neither which algae species are presented in the distribution of population. Also, the location and date of the samples were not disclosed for public as well. For modeling purposes these characteristics do not affect the result.

2.1 Data Pre-processing

The data were described as a representation of population distribution (Univesity of California - Irvine, 1999), therefore a restriction was added to the analysis and data in one additional column was created to represent the complement of the population distribution, i.e. for each row of Table 2 a field was added with the value of $100\% - (Pop.01 + Pop.02 + \dots + Pop.07)$, characterizing

Table 1: Relevant variables related to algae population distribution; 3 of 200 samples shown by lines, 3 qualitative variables (Season, River Size and Water Speed) and 8 numerical variables (Concentrations 1 to 8).

Sample	Season	River Size	Water Speed	Conc. 01	Conc. 02	Conc. 03	Conc. 04	Conc. 05	Conc. 06	Conc. 07	Conc. 08
1	winter	small_	medium	8.000.000	9.800.000	60.800.000	6.238.000	578.000.000	105.000.000	170.000.000	50.000.000
2	spring	small_	medium	8.350.000	8.000.000	57.750.000	1.288.000	370.000.000	428.750.000	558.750.000	1.300.000
200	winter	small_	high	7.740.000	9.600.000	5.000.000	1.223.000	27.286.000	12.000.000	17.000.000	41.000.000

Table 2: Algae species population distribution is the target values for each set of variables related to Table 1; 3 of 200 samples shown by lines of 7 species each sample.

Amostra	Pop. 01	Pop. 02	Pop. 03	Pop. 04	Pop. 05	Pop. 06	Pop. 07
1	0.000000	0.000000	0.000000	0.000000	34.200.000	8.300.000	0.000000
2	1.400.000	7.600.000	4.800.000	1.900.000	6.700.000	0.000000	2.100.000
200	43.500.000	0.000000	2.100.000	0.000000	1.200.000	0.000000	2.100.000

the database as compositional according to Table 3.

To simplify the model development, after preprocessing the data, 16 samples were identified as incomplete or inconsistent and were excluded from the database. Therefore 167 samples were used in this study. For the inclusion of qualitative variables (Season, River Size and Water Speed) the linguistic data were replaced by a binary (0 or 1) variable, when all values in a category are 0, it represents the item that has not a column for itself (Table 4).

Therefore we have in this system, for each sample, 15 input variables and 8 target values.

3 COMPOSITIONAL DATA BAYESIAN ANALYSIS

Compositional data are vectors of proportions specifying G fractions as a whole. Thus, for $\mathbf{x} =$ (x_1, x_2, \dots, x_G) to be a compositional vector, we must have $x_i > 0$, for i = 1, ..., G and $x_1 + x_2 +$ $\dots + x_G = 1$. Compositional data often result when raw data are normalized or when data is obtained as proportions of a certain heterogeneous quantity. These conditions are usual in geology, economics and biology. Standard existing methods to analyze multivariate data under the usual assumption of multivariate normal distribution (see for example, Johnson and Wichern, 1998) are not appropriate to analyze compositional data, since we have compositional restrictions. Different modeling systems have been considered to analyze compositional data. A first model considered to analyze this kind of data is given by the Dirichlet distribution, but this model requires that the correlation structure is wholly negative, a fact not observed for compositional data where some

correlations are positive (see for example, Aitchison, (1982); or Aitchison, (1986)).

Aitchison and Shen (1980) introduced the lognormal distribution to analyze compositional data, transforming the G component vector \mathbf{x} to a vector y in R^{G-1} considering the additive log-ratio (ALR) function. Rayens and Srinivasan (1991a) (1991b) extended the ALR transformation considering Box-Cox transformations as a generalization of the log-ratio function. Usually we could have some difficulties to get classical inference results for these models, especially in the presence of a vector of covariates. Alternatively, the use of Bayesian methods (Gelfand et al., 1995) is a good alternative to analyse compositional data (see for example, Iyengar and Dey, (1996), (1998); or Tjelmeland and Lund, (2003)),especially considering Markov Chain Monte Carlo (MCMC) methods (see for example, Gelfand and Smith, (1990) or Roberts and Smith, (1993)) to simulate samples of the joint posterior distribution of interest.

In our application we have eight compositions (see Table 3), that is, $x_{1i} + x_{2i} + x_{3i} + x_{4i} + x_{5i} + x_{6i} + x_{7i} + x_{8i} = 1$, for i=1,...,167. Let us assume an additive log-ratio (ALR) transformation for the compositional data (see for example, Aitchison (1982), (1986) and Iyengar & Dey (1996) given by

$$y_{ji} = \log\left(\frac{x_{ji}}{x_{8i}}\right) \tag{1}$$

where j = 1, 2, ..., 7 and i = 1, 2, ..., 167.

3.1 Model

To model the compositional data of Table 3 with Table 4 and the additive log-ratio (ALR) transformation Y_{ji} , let us assume the regression models (see for example, Iyengar and Dey (1996)

Table 3: Complementary population data added to database as Pop. 08 and 16 inconsistent samples removed.

Sample	Pop. 01	Pop. 02	Pop. 03	Pop. 04	Pop. 05	Pop. 06	Pop. 07	Pop. 08
1	0.000000	0.000000	0.000000	0.000000	34.200.000	8.300.000	0.000000	57.50
2	1.400.000	7.600.000	4.800.000	1.900.000	6.700.000	0.000000	2.100.000	75.50
167	43.500.000	0.000000	2.100.000	0.000000	1.200.000	0.000000	2.100.000	51.10

Table 4: Qualitative variables data conversion for numerical input in statistical the model.

	Sea	son of the	year	River	size	Water s	peed			
Sample	Winter	Spring	Autumn	Medium	Large	Medium	High	Conc. 01	Conc. 02	 Conc. 08
1	1	0	0	0	0	1	0	8.000.000	9.800.000	 50.000.000
2	0	1	0	0	0	1	0	8.350.000	8.000.000	 1.300.000
167	1	0	0	0	0	0	1	7.740.000	9.600.000	 41.000.000

and (1998)) given by:

 $Y_{ji} = \alpha_{j0} + \alpha_{j1} * winter_i + \alpha_{j2} * spring_i + \alpha_{j3} * autumn_i + \alpha_{j4} * medium. river_i + \alpha_{j4} + \alpha_{j$

 $\alpha_{j5} * \text{large. river}_i + \alpha_{j6} *$

 $\begin{array}{l} \text{medium. speed}_{i} + \alpha_{j7} * \text{high. speed}_{i} + \\ \alpha_{j8} * \text{conc. } 01_{i} + \alpha_{j9} * \text{conc. } 02_{i} + \alpha_{j10} * \\ \text{conc. } 03_{i} + \alpha_{j11} * \text{conc. } 04_{i} + \alpha_{j12} * \end{array}$ (2)

conc. $05_i + \alpha_{j13} * \text{conc. } 06_i + \alpha_{j14} * \text{conc. } 07_i + \alpha_{j15} * \text{conc. } 08_i + \epsilon_{1i}$

where j = 1,2,...,7 and i = 1,2,...,167; winter_i, spring_i, autumn_i, medium.river_i, large.river_i, medium.speed_i, high.speed_i, conc.01_i, conc.02_i, conc.03_i, conc.04_i, conc.05_i, conc.06_i, conc.07_i and conc.08_i correspond to a vector of covariates associated to the i-th sample and ε_{ji} are random errors assumed to be independent random variables with a normal distribution N(0, σ_i^2).

For a Bayesian analysis of the model, we assume the following prior distributions for the parameters:

$$\begin{array}{c} \alpha_{j0} \sim N(a_{j0}, b_{j0}^{2}) \\ \alpha_{j1} \sim N(a_{j1}, b_{j1}^{2}) \\ \zeta_{j} \sim G(d_{j}, e_{j}) \end{array}$$
(3)

where $\zeta_j = 1/\sigma_j^2$, G(d, e) denotes a gamma distribution with mean d/e and variance d/e^2 ; a_{j0} , b_{j0} , a_{j1} , b_{j1} , d_j and e_j are known hyper parameters, j = 1, ..., 7.

Let us denote the model defined by (1), (2) and (3) as "model 1".

3.2 Bayesian Analysis for the Data of Table 4

BUGS is an acronym for a class of software package designed to perform Bayesian inference Using Gibbs Sampling Algorithm. The user specifies a statistical model by simply stating the relationships between related variables. The software includes an 'expert system', which determines an appropriate MCMC (Markov Chain Monte Carlo) scheme (based on the Gibbs sampler) for analysing the specified model. It woks assuming that the specified model belongs to a class known as Directed Acyclic Graphs (DAGs), for which there exists an elegant underlying mathematical theory. This allows us to break down the analysis of arbitrarily large and complex structures into a sequence of relatively simple computations. BUGS includes a range of algorithms that its expert system can assign to each such computational task. (OpenBUGS, 2009). Usually, BUGS written software code have the following components:

- Model parameters;
- Specification of the "likelihood function" (or "sampling density") of the data;
- Specification of a "prior distribution" for the model parameters;
- Derivation of the "posterior distribution" for the model parameters;
- Samples variables inputs and outputs to use as simulation parameters.

Assuming the additive log-ratio model defined by (2) and the prior distributions (3), with hyper parameter values; $a_{j0} = 1$, $b_{j0}=10$, $a_{j1} = 1$, $b_{j1} = 10$, $d_j = 1$ and $e_j = 1$, we simulated 255,000 Gibbs samples using the OpenBUGS software where the first 5,000 simulated samples of the joint posterior distribution of interest were discarded to eliminate the effects of the initial values; after this "burn-in-sample" period, we considered every 50th sample among the 250,000 simulated Gibbs samples, which gives a final sample of size 5,000 to get the posterior summaries of interest. Convergence of the simulation algorithm was verified from trace plots of the simulated Gibbs samples.

In Table 5, we have the posterior summaries for the parameters of "model 1" based on these 5,000 final simulated Gibbs samples. The terms marked with asterisks in Table 5 show the variables that do not have a zero value included in their credible intervals corresponding to their regression parameters indicating the variables that have a significant effect in determining the population distribution.

Table 5: Posterior summaries of "model 1" after simulation.

	mean	SD	val2.5pc	Median	val97.5pc
α10	-0.69	5.18	-10.72	-0.82	9.70
α11	-0.04	0.75	-1.47	-0.04	1.47
α110	-0.01	0.01	-0.03	-0.01	0.00
α111	-0.13	0.15	-0.42	-0.13	0.17
α112	0.00	0.00	0.00	0.00	0.00
α113	-0.01	0.01	-0.02	-0.01	0.01
α114	-0.01	0.01	-0.02	-0.01	0.01
α115(*)	-0.03	0.02	-0.07	-0.03	0.00
α116	0.35	0.79	-1.20	0.35	1.84
α13	0.66	0.83	-1.00	0.66	2.29
α14	0.08	0.72	-1.32	0.09	1.45
α15(*)	-2.88	0.90	-4.64	-2.88	-1.12
α16	-1.10	0.85	-2.75	-1.09	0.57
α17	-1.45	0.98	-3.41	-1.44	0.45
α18	0.01	0.65	-1.25	0.02	1.26
α19	0.16	0.15	-0.14	0.17	0.46
α20 (*)	-18.39	5.73	-29.72	-18.29	-7.25
α21	-0.08	0.79	-1.66	-0.08	1.43
α210	0.01	0.01	-0.01	0.01	0.02
α211 (*)	0.48	0.16	0.17	0.48	0.79
α212(*)	-0.01	0.00	-0.01	-0.01	0.00
α213	0.01	0.01	-0.01	0.01	0.03
α214	0.00	0.01	-0.02	0.00	0.01
a215(*)	0.04	0.02	0.01	0.04	0.08

$a_{312}(*)$ a_{001} a_{000} a_{001} a_{001} a_{001} a_{001} a_{000} a_{011} a_{000} a_{011} a_{011} a_{001} a_{000} a_{011}	siniulatioi	I (com.).					Simulation
a22 0.43 0.84 -2.09 0.42 1.20 $a23$ 0.23 0.88 -1.50 0.24 1.98 $a24$ 0.30 0.76 -1.17 0.30 1.82 $a25$ 0.38 0.77 2.50 0.38 1.71 $a28$ 0.05 0.17 0.58 0.05 0.28 $a30$ 0.52 0.66 0.38 0.05 0.24 $a31$ 0.05 0.01 0.00 0.214 0.57 $a78$ $a313$ 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
a26 0.90 0.93 1.04 0.79 2.59 $a27$ 0.93 1.07 -2.50 -0.33 1.71 $a29$ 0.05 0.17 0.05 1.40 2.84 $a30$ 0.52 5.66 1.570 5.50 6.23 $a31$ 0.96 0.33 1.96 0.33 1.97 $a311$ 0.02 0.01 -0.01 0.00 0.00 $a314$ 0.02 0.01 -0.01 0.00 0.01 0.00 $a313$ 0.02 0.01 -0.01 0.00 0.01 hout nmm seasons $a313$ 0.02 0.01 -0.02 0.01 hout nmm seasons seasons seasons $a33$ 0.46 0.72 -0.73 0.23 2.31 inthe c $a33$ 0.35 0.37 0.31 -0.35 0.37 inthe c seasons $a410$ 0.37 0.31 0.00							
$ \begin{array}{c} \frac{a^2}{a^2(\gamma)} & -0.38 & 107 & -2.50 & -0.38 & 1.71 \\ a^2(\gamma) & -1.40 & 0.71 & -0.05 & 1.40 & 2.84 \\ \frac{a^2}{a^2} & -0.05 & 0.17 & -0.38 & -0.05 & 0.28 \\ a^{21} & -2.32 & 5.66 & -15.70 & -0.36 & 1.24 \\ a^{21} & -0.36 & 0.83 & -1.96 & -0.36 & 1.24 \\ a^{21} & -0.36 & 0.83 & -1.96 & -0.36 & 1.24 \\ a^{21} & -0.36 & 0.08 & 0.24 & 0.57 \\ a^{21} & -0.01 & 0.00 & -0.01 & -0.01 & 0.00 \\ a^{21}(1) & -0.02 & 0.01 & -0.04 & -0.02 & 0.00 \\ a^{21}(1) & -0.02 & 0.01 & -0.04 & -0.02 & 0.00 \\ a^{21}(1) & -0.02 & 0.02 & -0.06 & -0.02 & 0.01 \\ a^{21} & -0.02 & 0.02 & -0.06 & -0.02 & 0.01 \\ a^{21} & -0.02 & 0.02 & -0.06 & -0.02 & 0.01 \\ a^{21} & -0.02 & 0.03 & -1.35 & 0.47 & -2.28 \\ a^{21} & -0.05 & 0.78 & -2.33 \\ a^{21} & -0.23 & 1.10 & -0.13 & -2.04 & 4.13 \\ a^{23} & 0.19 & 0.70 & -1.72 & -0.021 & -1.33 \\ a^{23} & 0.19 & 0.70 & -0.78 & -0.24 & 4.13 \\ a^{23} & 0.19 & 0.70 & -0.78 & -0.24 & 4.13 \\ a^{24} & 0.55 & 0.99 & -0.98 & -0.20 \\ a^{21} & -0.37 & -1.03 & 0.01 & -0.01 & 0.01 & 0.02 \\ a^{21} & -0.37 & -1.03 & 0.14 & -0.27 & -0.75 & 0.01 \\ a^{21} & -0.03 & 0.01 & -0.04 & -0.03 & -0.01 \\ a^{21} & -0.03 & 0.01 & -0.04 & -0.03 & -0.01 \\ a^{21} & -0.03 & 0.01 & -0.04 & -0.03 & -0.01 \\ a^{21} & -0.03 & 0.01 & -0.04 & -0.03 & -0.01 \\ a^{21} & -0.03 & 0.02 & -0.06 & -0.03 & 0.00 \\ a^{21} & 0.05 & 0.75 & -0.55 & 0.95 & 2.48 \\ a^{21} & 0.03 & 0.05 & -0.01 & 0.01 & 0.02 \\ a^{21} & -0.75 & 0.77 & -0.55 & 0.95 & 2.48 \\ a^{21} & -0.75 & 0.77 & -0.27 & 0.75 & 0.79 \\ a^{21} & -0.75 & 0.77 & -0.27 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.77 & -0.27 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.77 & -0.27 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.79 & -0.22 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.79 & -0.22 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.79 & -0.22 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.79 & -0.22 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.79 & -0.22 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.79 & -0.22 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.79 & -0.22 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.79 & -0.22 & -0.75 & 0.79 \\ a^{21} & -0.75 & 0.79 & -0.22 & -0.75 & 0.79 \\ a^{21} & -0.75 &$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
adi -523 5.66 -15.70 -5.50 6.23 adi 0.36 0.38 -1.96 -0.355 0.02 adi1 0.25 0.01 -0.02 -0.355 0.02 adi1 0.25 0.01 -0.01 -0.01 0.00 adi1 0.02 0.01 -0.01 0.00 0.01 adit 0.02 0.01 adi1 0.02 0.02 0.01 0.00 0.02 0.01 having adid 0.02 0.02 0.01 0.04 0.02 0.01 having adid 0.03 -1.46 0.22 0.95 having having adid 0.65 0.99 -0.98 0.96 2.90 having adid 0.67 0.74 0.78 -0.44 0.11 having adid 0.67 0.61 0.67 2.02 having having adid 0.67 0.61 0.67 2.0	α28 (*)	1.40	0.71	0.05	1.40	2.84	α77
ail -0.36 0.83 -1.96 -0.36 1.24 ail0 -0.362 0.01 -0.02 -0.355 0.02 ail1 0.25 0.16 -0.08 0.24 0.57 ail2(*) -0.01 -0.00 -0.01 -0.01 0.00 ail4(*) -0.02 0.01 -0.04 -0.02 0.04 ails -0.02 0.01 -0.06 -0.02 0.04 ails -0.02 0.02 -0.06 -0.02 0.04 ails -0.02 0.02 -0.04 -0.01 having ails 0.02 0.03 -1.43 0.22 1.95 .041 ails 0.10 0.01 -0.78 1.03 2.87 .044 .01 .02 .03 1.46 2.87 .041 .041 .027 .03 .01 .002 .001 .002 .001 .002 .001 .002 .001 .002 .003 .001 <							
ail 0.32 0.01 -0.02 -0.355 0.02 ail1 0.02 0.01 -0.01 0.00 ail1 0.02 0.01 0.00 -0.01 0.00 ail1 0.02 0.01 0.00 0.02 0.00 ail1 0.02 0.01 0.00 0.02 0.01 ail1 0.02 0.01 0.00 0.02 0.01 ail1 0.02 0.01 0.00 0.02 0.01 ail1 0.02 0.07 0.175 0.78 2.33 ail1 0.13 0.24 1.35 0.47 2.28 ail1 0.44 0.17 0.13 2.04 1.13 ail1 0.41 0.01 0.00 0.01 0.02 ail1 0.43 0.65 0.44 0.41 0.02 ail1 0.45 0.65 0.23 0.00 ail2 0.65 0.33 0.00 0.01							α79
ail 0.25 0.06 -0.08 0.24 0.57 ail2(*) 0.00 -0.01 0.00 0.00 ail3 -0.02 0.01 -0.04 -0.02 0.00 ails -0.02 0.01 0.00 0.02 0.04 ails -0.02 0.02 0.04 0.02 0.04 ails -0.02 0.06 -0.02 0.01 have 0.02 ails 0.02 0.04 0.03 0.47 2.28 0.05 0.09 -0.08 0.06 2.00 in the c ails 0.19 0.04 -0.78 1.03 2.87 in the c in the c ails 0.19 0.04 -0.03 1.46 2.87 in the c in the c ails 0.14 0.07 0.01 0.00 0.01 0.01 ain the c in the c ails 0.65 0.53 0.41 2.07 0.03 ain the c in the c <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
ails -0.01 -0.01 -0.01 -0.01 and ails -0.02 0.01 -0.04 -0.02 0.04 ails -0.02 0.01 0.00 0.02 0.04 ails -0.02 0.02 0.07 0.79 0.75 0.78 2.33 aid 0.77 0.79 -0.75 0.78 2.33 aids 0.44 0.99 -0.98 0.96 2.90 aids 0.01 0.01 -0.13 2.04 4.13 aixing aixing aids 0.19 0.70 -1.22 0.21 1.15 aixing							The lis
a314 0.02 0.01 0.00 0.02 0.04 a314 0.02 0.02 0.06 0.02 0.08 a31 0.02 0.02 0.06 0.02 0.08 a33 0.46 0.93 1.35 0.47 2.28 a34 0.77 0.79 0.75 0.78 2.33 a34 0.77 0.79 0.75 0.78 2.37 a35 0.95 0.99 -0.88 0.56 2.90 a36 0.19 0.70 -1.22 0.21 1.53 a38 0.19 0.70 -1.22 0.21 1.53 a39(*) 0.44 0.17 0.78 0.44 -0.17 a410 0.01 0.00 0.00 0.01 0.01 a412(*) 0.01 0.00 0.02 0.03 0.01 a414(*) 0.25 0.75 0.55 0.95 2.43 a414 0.65 0.294							that only
ais -0.02 0.02 -0.06 -0.02 0.01 ais 0.22 0.97 -1.19 0.22 1.95 ais 0.22 0.93 -1.15 0.47 2.28 aid 0.77 0.79 4.75 0.78 2.33 aid 0.97 0.78 1.03 2.04 4.13 ais 0.19 0.70 -1.22 0.21 1.53 ais 0.19 0.70 -1.22 0.21 1.53 ais 0.19 0.70 -1.22 0.21 1.53 aid 0.01 0.00 0.01 0.01 0.01 aid10 0.01 0.00 0.01 0.01 0.01 aid12(*) 0.01 0.00 0.02 0.03 aid1 aid4 0.65 0.80 0.82 -0.22 1.37 3.02 aid11(*) 0.403 0.61 0.67 2.06 1.09 aid4 aid4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
a32 0.22 0.87 -1.49 0.22 1.95 a33 0.46 0.93 -1.35 0.47 2.23 a35 0.95 0.99 -0.98 0.96 2.33 a35 0.95 0.99 -0.98 0.96 2.33 a37 2.03 1.10 -0.13 2.04 1.13 a38 0.19 0.70 -1.22 0.21 1.53 a39(*) -0.44 0.17 -0.78 -0.44 0.01 a411 -0.47 0.14 -0.75 -0.47 -0.20 a411 -0.47 0.14 -0.75 -0.47 -0.20 a414(*) 0.02 0.01 -0.04 -0.03 0.00 a413(*) 0.02 0.06 -0.03 0.00 -0.3 a413 0.68 0.88 -2.22 1.37 3.02 a44 0.67 0.67 -0.61 0.67 -0.40 a448(*) -1.68							
a33 0.46 0.93 -1.35 0.47 2.28 a34 0.77 0.79 -0.75 0.78 2.33 a35 0.95 0.99 -0.98 0.96 2.90 a36 0.103 0.94 -0.78 1.03 2.87 a38 0.19 0.70 -1.22 0.21 1.53 a38 0.19 0.70 -1.22 0.21 1.53 a36 0.19 0.77 8.0-0.44 0.11 5.37 a410 0.01 0.00 0.01 0.02 a.33 a412(*) 0.01 0.00 0.01 0.01 a.33 a412(*) 0.02 0.03 0.46 2.23 a.43 a414 0.67 0.66 -0.03 0.00 a.44 a43 0.65 0.80 -2.23 1.37 3.61 a44 0.67 0.66 -2.00 a.43 0.65 2.23 a44 0.67 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(<i>small</i>) an</td>							(<i>small</i>) an
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							having the
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
a37 203 1.10 -0.13 2.04 4.13 a38 0.19 0.70 -1.22 0.21 1.53 a39(*) 0.444 0.17 0.78 -0.44 -0.11 a40 6.57 5.24 -3.44 6.48 16.77 a410 0.01 0.00 0.01 0.02 auxilian -0.47 -0.20 a412(*) 0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.03 -0.01 -0.03 -0.01							
a38 0.19 0.70 -1.22 0.21 1.53 a39(*) -0.44 0.17 40.78 -0.44 -0.11 a400 6.57 5.24 -3.44 6.48 16.77 a410 0.01 0.00 0.01 0.02 attribute a410 0.01 0.00 0.01 0.02 attribute attribute a411 -0.47 0.01 -0.00 0.01 0.01 attribute attribute a412(*) 0.02 0.01 -0.00 0.02 0.03 attribute a414(*) 0.02 0.01 0.00 0.02 0.03 attribute a43 0.65 0.75 -0.55 0.95 2.43 a43 0.65 -2.24 1.1.67 -0.64 1.92 a44 0.67 0.67 -0.79 -0.21 -0.75 0.79 a51 -0.75 0.79 -2.27 -0.75 0.79 a51 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>in the crec</td></th<>							in the crec
038 0.19 0.10 -0.12 0.21 1.33 040 6.57 5.24 -3.44 6.44 16.77 041(2) 1.43 0.72 0.03 1.46 2.87 041(2) 1.43 0.72 0.03 1.46 2.87 041(1) -0.01 0.01 0.00 0.01 0.02 0411 -0.07 0.01 0.00 0.01 0.01 041(2) 0.01 0.00 0.00 0.01 0.01 041(2) 0.01 0.00 0.00 0.01 0.01 041(2) 0.03 0.02 -0.03 0.00 0.01 041(2) 0.03 0.02 0.03 0.00 0.01 041(2) 0.03 0.02 0.03 0.00 0.03 041(2) 0.046 0.03 0.00 0.00 0.01 042 0.95 0.21 1.37 3.01 043 0.65 0.28							they are al
add 6.57 5.24 -3.44 6.48 16.77 a410 0.01 0.02 0.03 1.46 2.87 a410 0.01 0.00 0.01 0.02 attables a411 -0.47 0.14 -0.75 -0.47 -0.20 a412(*) 0.03 0.01 -0.00 0.00 0.01 a413(*) -0.03 0.00 -0.06 -0.03 0.00 a415 -0.03 0.02 -0.06 -0.03 0.00 a44 0.67 0.67 -0.61 0.67 2.08 a44 0.67 0.67 -0.61 0.67 2.09 a44 0.65 0.29 -1.37 3.02 a44 0.65 -2.24 -1.67 -0.46 a44 0.65 -2.24 -1.67 0.48 a44 0.65 -2.24 -1.67 0.79 a51 -0.50 0.02 -0.31 0.00							
ad10 0.01 0.01 0.00 0.01 0.02 ad10 0.01 0.01 0.00 0.01 0.02 ad12 0.01 0.00 0.01 0.02 0.01 ad12 0.01 0.00 0.00 0.01 0.01 ad14 -0.03 0.00 0.00 0.02 0.03 ad15 -0.03 0.02 0.06 -0.03 0.00 ad4 0.65 0.80 -0.96 0.64 2.23 ad3 0.65 0.80 -0.96 0.64 2.20 ad4 0.67 -0.61 0.67 -0.40 ad46 1.38 0.82 -0.22 1.37 3.02 ad4 0.50 0.15 -0.59 -0.31 0.00 a51 0.50 0.16 0.19 0.49 0.81 a510 0.00 0.00 0.00 0.00 0.00 a514 0.52 0.28 -1.29							TT 11 (
ad10 0.01 0.01 0.02 out							Table 6:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							variables.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	α411	-0.47	0.14	-0.75	-0.47	-0.20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							· · - ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							NOLOG
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
a49(*) -0.30 0.15 -0.59 -0.31 0.00 a50 -8.65 5.28 -19.21 -8.65 1.82 a51 0.075 0.79 -2.27 -0.75 0.79 a510 0.00 0.01 -0.01 0.00 0.02 a511/* 0.50 0.16 0.19 0.49 0.81 a512 0.00 0.00 0.00 0.00 0.00 a513 -0.454 0.01 -0.02 -0.404 0.02 a514 0.01 0.01 -0.01 0.01 0.02 a52 0.55 0.84 -2.20 -0.56 1.09 a53 0.52 0.88 -1.29 0.52 2.22 a54(*) 1.93 0.76 0.49 1.94 3.44 a55 0.79 0.90 -0.98 0.80 2.53 a57 0.79 1.05 -1.30 0.80 2.86 a58 -0.21 0.16 -0.12 0.21 0.51 a60 -7.50 5.83 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-0.08		-0.01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	α.58	-0.21	0.66	-1.54	-0.21	1.12]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α613	-0.01	0.01	-0.03	-0.01	0.01]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α66(*)		0.97	0.42		4.27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							{
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							{
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							4 AR
α713 -0.01 0.01 -0.03 -0.01 0.01 α714 0.01 0.01 -0.01 0.01 0.03							NET
α714 0.01 0.01 -0.01 0.01 0.03							
α/14 0.01 0.01 -0.01 0.01 0.03							4
	α/14	0.01	0.01	-0.01	0.01	0.03	

Table 5: Posterior summaries of "model 1" after simulation (cont.).

Table	5:	Posterior	summaries	of	"model	1"	after
simula	tion	(cont.).					

	mean	SD	val2.5pc	Median	val97.5pc
α715(*)	0.05	0.02	0.02	0.05	0.09
α72	0.33	0.92	-1.45	0.31	2.15
α73	-0.11	0.97	-2.05	-0.10	1.80
α74	0.31	0.82	-1.29	0.31	1.93
α75	0.42	1.04	-1.62	0.41	2.48
α76	0.73	0.98	-1.22	0.73	2.68
α77	0.54	1.14	-1.65	0.53	2.74
α78	-1.43	0.74	-2.87	-1.43	0.10
α79	-0.02	0.18	-0.38	-0.02	0.33

The list of significant variables in Table 6 shows that only variable Conc. 3 is low significant. The seasons (Spring and Autumn), the size of the river (small) and the speed of the river (low), despite having the value 0 in the credible interval, have terms that compose the variable without the term 0 in the credible interval (Summer, Winter, Large), so they are also significant.

Table	6:	Posterior	summaries	indicating	significant
variabl	les.				

	Term	Related variable	
JOLOG	α115	Conc. 8	ONS
	α15	Size: Large	
	α20	Season: Summer	
	α211	Conc. 4	
	α212	Conc. 5	
	α215	Conc. 8	
	α28	Conc. 1	
	α312	Conc. 5	
	α314	Conc. 7	
	α39	Conc. 2	
	α41	Season: Winter	
	α411	Conc. 4	
	α412	Conc. 5	
	α413	Conc. 6	
	α414	Conc. 7	
	α48	Conc. 1	
	α49	Conc. 2	
	α511	Conc. 4	
	α515	Conc. 8	
	α54	Size: medium	
	α611	Conc. 4	
	α64	Size: medium	
	α66	Speed: medium	
	α67	Speed: High	
	α69	Conc. 2	
	α715	Conc. 8	

ARTIFICIAL NEURAL 4 **NETWORK**

Like its counterpart in the biological nervous

Bayesian versus Neural Network Analysis of Algae Data Population - A New Method to Predict and Analyse Cause and Effect

system, a neural network can learn and therefore can be trained to find solutions, recognize patterns, classify data, and forecast future events. The behavior of a neural network is defined by the way its individual computing elements are connected and by the strengths of those connections, or weights. The weights are automatically adjusted by training the network according to a specified learning rule until it performs the desired task correctly (The MathWorks, Inc., 1994-2013). According to da Silva, et al. (2010) the Artificial Neural Networks (ANN) is a popular choice to solve biological problems and have works published over the following topics:

- Bat species identification from biosonar data;
- Cancer prediction based on individuals genetic profiles;
- Analyse weather influence over the grow rate of trees.

An ANN approach was applied to this problem using a supervised network that was designed as a two-layer feed-forward network with sigmoid hidden neurons and linear output neurons. The network was trained with Levenberg-Marquardt backpropagation algorithm. The *Neural Network Toolbox* (nnstart) from *MatLab R2012b* was used to create the network with the topology presented in Figure 1 as a *Fitting* problem.

Figure 1: Neural Network (n=15 inputs, $n_i=12$ hidden neurons and m=8 outputs). Adapted from: (da Silva et al., 2010).

The inferred data were compared with the observed data using the ratio: $|x_i - \beta_i|$, where x_i is the population observed value and e β_i the output value of the inference where i = 1, ..., 167.

Figure 2: Linear tendency lines of means of all 167 samples from |Expected - Inferred| from each population.

Table 7: Maximum, Mean and Standard Deviation values for each population of calculated ratios $|x_i - \beta_i|$, where x_i is the observed value and e β_i the output value of the parameterized Bayesian inference where i = 1, ..., 167.

	Pop. 01	Pop. 02	Рор. 03	Pop. 04	Pop. 05	Pop. 06	Pop. 07
Max:	74.860000	70.501000	42.320600	38.680000	42.903000	50.782000	31.1506
Mean:	4.400000	2.940900	4.163577	0.084850	2.357600	0.996700	0.825800
SD:	13.847888	11.291766	6.209362	3.301484	7.728617	9.002339	5.766513

Table 8: Maximum, Mean and Standard Deviation values for each population of calculated ratios $|x_i - \beta_i|$, where x_i is the observed value and e β_i the output value of the Neural Network where i = 1, ..., 167.

	Pop. 01	Pop. 02	Pop. 03	Pop. 04	Pop. 05	Pop. 06	Pop. 07
Max:	58.54958	45.93419	39.78041	9.130595	33.92973	36.03939	27.6264
Mean:	10.08046	7.251721	4.794875	1.405569	4.301284	5.668362	3.439153
SD:	10.83919	6.984214	5.140308	1.474641	4.97424	5.378425	4.046496

For each population ratio column the maximum value, the mean and the standard deviation were extracted and are presented in Table 7 and Table 8.

The prediction performance of the Bayesian inference shows a slightly better performance when we analyze the linear tendency lines of the means of ratios of each population (Figure 2), since it is lower in the graph and nearer from 0, although, comparing Table 7 and Table 8, the Standard Deviation in the ANN approach is lower. Overall, performance of both methods is similar.

6 CONCLUSIONS

In this work we provided a complete statistical analysis method of a complex biological database, including a method to mixture qualitative and quantitative data, which can be used in several inference models. Also, the regression model associated to the compositional data analysis is a powerful statistical tool to understand several biological population data.

The Bayesian method may be improved and other prior distributions for the parameters and/or other error distributions in (2) can be used for a better prediction performance. The ability to evaluate the significance of each variable is an important tool to maximize experiments resources and understand biological processes. It is expected with the improvement of the Bayesian inference method, that less data could be necessary to train the algorithm to acquire good regression parameters. It is important to notice that previously knowledge of the problem can be very useful to model the problem and determine the best distributions for the problems.

REFERENCES

- Aitchison, J., 1982. The statistical analysis of compositional data. *Journal of the Royal Statistical Society*, pp. p. 139-177.
- Aitchison, J., 1986. The statistical analysis of compositional data. Chapman and Hall.
- Aitchison, J. & Shen, S. M., 1980. Logistic-normal distributions: Some properties and uses. *Biometrika*, Issue 67, pp. 261-272.
- da Silva, I. N., Spatti, D. H. & Flauzino, R. A., 2010. Redes Neurais Artificiais para engenharia e ciências aplicadas. I ed. São Paulo: ArtLiber.
- Gelfand, A. E., Carlin, J. B., Stern, H. S. & Rubin, D. B., 1995. Bayesian Data Analysis. Issue 85, pp. 398-409.

- Gelfand, A. E. & Smith, A. F. M., 1990. Sampling based approaches to calculating marginal densities. *Journal* of the American Statistical Association, Issue 85, pp. 398-409.
- Iyengar, M. & Dey, D. K., 1996. Bayesian Analysis of Compositional Data. Department of Statistics, University of Connecticut, Storrs, CT.
- Iyengar, M. & Dey, D. K., 1998. Box-Cox transformations in Bayesian analysis of compositional data. *Environmetrics*, Issue 9, pp. 657-671.
- López-Flores, R., Romaní, A. M. & Quintana, X. D., 2011. Phytoplankton composition in shallow water ecosystems: influence of environmental gradients and nutrient availability, *In* 4th international Workshop on Compositional Data Analysis.
- Lynch, S. M., 2007. Introduction to Applied Bayesian Statistics and Estimation for Social Scientists. s.l.:Springer.
- OpenBUGS, 2009. *OpenBUGS*, accessed 10 Feb 2013, http://www.openbugs.info/w.cgi/FrontPage>.
- Rayens, W. S. & Srinivasan, C., 1991a. Box-Cox transformations in the analysis of compositional data. *Journal of Chemometrics*, Issue 5, pp. 227-239.
- Rayens, W. S. & Srinivasan, C., 1991b. Estimation in compositional data. *Journal of Chemometrics*, Issue 5, pp. 361-374.
- Roberts, G. O. & Smith, A. F. M., 1993. Bayesian methods via the Gibbs sampler and related Markov Chain Monte Carlo methods. *Journal of the Royal Statistical Society*, 55(1), pp. 3-23.
- The MathWorks, Inc., 1994-2013. *Neural Network Toolbox*, accessed 20 Jan 2013, http://www.mathworks.com/products/neural-network/description2.html>.
- Tjelmeland, H. & Lund, K. V., 2003. Bayesian modelling of spatial compositional data, preprint n.1. *Journal of Applied Statistics*, Issue 30, pp. 87-100.
- Univesity of California Irvine, 1999. COIL 1999 Competition Data, accessed 10 Jul 2013, <http://kdd.ics.uci.edu/databases/coil/coil.data.html>.