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Abstract: In biology, advanced modelling techniques are needed since there is a mixture of qualitative, linguistics and 
numerical data on the environmental and biological relationships. Also, experiments and data collecting are 
expensive and time consuming, so determine which variables are relevant and using inference models less 
data demanding are highly desirable. In this work, from a set of 200 multivariate data samples of algae 
population and environmental variables, we propose a Bayesian method to predict compositional population 
distribution. This is a good application example, since measuring environmental variables are easier to 
automate, faster and less expensive than population counting that usually involves the need of a large 
amount of specialized human interaction. An additive log-ratio transformation and a regression model were 
applied to the data and 255.000 Gibbs samples were simulated using the OPENBUGS software. Also an 
Artificial Neural Network (ANN) was designed on Matlab to predict the distribution for benchmarking 
purposes. Both models showed similar prediction performance, but on the Bayesian model an analysis of 
credible interval of the variables corresponding to the each regression parameters is possible, showing that 
most of the variables on this study are relevant, which is consistent to the expected results in this case. 

1 INTRODUCTION 

The geographic region, anthropomorphic impacts 
but mainly hydrology, gives to aquatic environments 
great heterogeneity, especially regarding to the 
concentrations of nutrients and abundance of 
organisms (López-Flores et al., 2011). 

Currently, it's clear that subtle variations in 
nutrient levels and chemical balance from farming 
land run-off and waste from sewage treatment have 
serious effects, even if indirect, in the state of rivers, 
lakes and even the ocean. The summers of temperate 
climates around the world are characterized by 
numerous reports of seasonal algal overgrowth, 
resulting in poor water clarity, massive deaths of fish 
from reduced oxygen levels and the closure of 
recreational water facilities because of toxic effects 
from algae (Univesity of California - Irvine, 1999). 
However, algae, when maintained in controlled 
processes, can be used for carbon sequestration, 
production of biomass, oils, compounds of interest 
for the industry and act as biological indicators, such 
as diatoms, that have a high sensitivity in small 
changes in acidity of its environment. 

The need to reduce human impact on our waters 
and make use of algae on controllable processes has 
stimulated numerous researches, mainly in the field 
of biology with the goal of identifying the crucial 
variables for chemical control in biological 
processes. That said, the relationship between 
chemical and biological characteristics is complex 
and the need for advanced modeling techniques is 
expected, especially when using data containing, in 
addition to the great number of variables, the 
mixture of qualitative (fuzzy), linguistic and 
numerical information. It is important to note that, in 
biological processes, conducting experiments and/or 
collecting samples probably has a great cost of time 
and resources to be made and samples are often 
incomplete or inconsistent, therefore, little data may 
be available, affecting inference methods and 
analysis that are based solely on a large amount of 
data. 

Regardless of the approach one takes to statistics, 
the process of statistics involves (1) formulating a 
research question, (2) collecting data, (3) developing 
a probability model for the data, (4) estimating the 
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model, and (5) summarizing the results in an 
appropriate fashion to answer the research question 
(a process often called “statistical inference”) 
(Lynch, 2007). 

At this work we suggest the use of a Bayesian 
model for multivariate compositional processing of 
data collected in European rivers to create a model 
for inference of population distribution of algae that 
have quantitative (concentrations of chemical 
compounds, pH, etc.) and qualitative (season, etc.) 
variables. We also propose a method to identify the 
variables that cause the most significant effects on 
this population distribution. The performance of 
Bayesian inference model was also compared to an 
Artificial Neural Network.  

On section 2 we describe the data and the pre-
processing method used to prepare the variables and 
the compositional data to analysis, on section 3 the 
Bayesian model is described and the results of this 
analysis are presented, on section 4 the Artificial 
Neural Network design is described and on section 5 
there is a comparison of performance between the 
two prediction models, finally on section 6 the 
conclusions are discussed. 

2 DATA SAMPLES 

The data used in this paper are the results of a 
research on river water quality, where samples were 
taken from different European rivers over a period 
of approximately one year. These samples were 
analyzed for several variables as nitrogen in the 
form of nitrates, nitrites and ammonium, phosphates, 
pH, oxygen, chloride. In parallel, algae population 
distributions from these samples were determined. 

Although chemical analysis is relatively inexpensive 
and easily automated, biological analysis involves 
the examination under a microscope, requiring 
trained manpower and is usually expensive and very 
slow. 

The data set contains 200 samples, where the 
first 11 values are: season of the year (winter, 
spring, autumn or summer), river size (small, 
medium or large), water speed (low, medium or 
high) and 8 chemical concentrations (according to 
Table 1). These variables are known to be relevant 
to the algae species population distribution.  

The last 7 columns represent the distribution of 
different types of algae (according to Table 2), and 
these do not represent the entire population of algae 
in the medium, some of the species were omitted. 
The data, kindly donated by prof. Jens Strackeljan 
from Otto von Guericke University Magdeburg 
(OVGU), do not indicate which components are 
represented by each chemical concentration column 
and neither which algae species are presented in the 
distribution of population. Also, the location and 
date of the samples were not disclosed for public as 
well. For modeling purposes these characteristics do 
not affect the result.  

2.1 Data Pre-processing 

The data were described as a representation of 
population distribution (Univesity of California - 
Irvine, 1999), therefore a restriction was added to 
the  analysis and data in one additional column was 
created to represent the complement of the 
population distribution, i.e. for each row of Table 2 a 
field was added with the value of 100% െ
	ሺܲ݌݋. 01 ൅ .݌݋ܲ 02 ൅⋯൅ .݌݋ܲ 07ሻ, characterizing  

Table 1: Relevant variables related to algae population distribution; 3 of 200 samples shown by lines, 3 qualitative variables 
(Season, River Size and Water Speed) and 8 numerical variables (Concentrations 1 to 8). 

Sample Season River Size Water Speed Conc. 01 Conc. 02 Conc. 03 Conc. 04 Conc. 05 Conc. 06 Conc. 07 Conc. 08 

1 winter small_ medium 8.000.000 9.800.000 60.800.000 6.238.000 578.000.000 105.000.000 170.000.000 50.000.000

2 spring small_ medium 8.350.000 8.000.000 57.750.000 1.288.000 370.000.000 428.750.000 558.750.000 1.300.000 

... ... ... ... ... ... ... ... ... ... ... ... 

200 winter small_ high__ 7.740.000 9.600.000 5.000.000 1.223.000 27.286.000 12.000.000 17.000.000 41.000.000

Table 2: Algae species population distribution is the target values for each set of variables related to Table 1; 3 of 200 
samples shown by lines of 7 species each sample. 

Amostra Pop. 01 Pop. 02 Pop. 03 Pop. 04 Pop. 05 Pop. 06 Pop. 07 

1 0.000000 0.000000 0.000000 0.000000 34.200.000 8.300.000 0.000000 

2 1.400.000 7.600.000 4.800.000 1.900.000 6.700.000 0.000000 2.100.000 

... ... ... ... ... ... ... ... 

200 43.500.000 0.000000 2.100.000 0.000000 1.200.000 0.000000 2.100.000 
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the database as compositional according to Table 3. 
To simplify the model development, after pre-

processing the data, 16 samples were identified as 
incomplete or inconsistent and were excluded from 
the database. Therefore 167 samples were used in 
this study. For the inclusion of qualitative variables 
(Season, River Size and Water Speed) the linguistic 
data were replaced by a binary (0 or 1) variable, 
when all values in a category are 0, it represents the 
item that has not a column for itself (Table 4). 

Therefore we have in this system, for each 
sample, 15 input variables and 8 target values. 

3 COMPOSITIONAL DATA 
BAYESIAN ANALYSIS 

Compositional data are vectors of proportions 
specifying ܩ fractions as a whole. Thus, for ܠ	 ൌ
	ሺݔଵ, ,ଶݔ … ,  ሻ’ to be a compositional vector, weீݔ
must have ݔ௜ ൐ 0,  for i	 ൌ 	1, … , G and ݔଵ ൅	ݔଶ ൅
…൅ ீݔ 	ൌ 	1. Compositional data often result when 
raw data are normalized or when data is obtained as 
proportions of a certain heterogeneous quantity. 
These conditions are usual in geology, economics 
and biology. Standard existing methods to analyze 
multivariate data under the usual assumption of 
multivariate normal distribution (see for example, 
Johnson and Wichern, 1998) are not appropriate to 
analyze compositional data, since we have 
compositional restrictions. Different modeling 
systems have been considered to analyze 
compositional data. A first model considered to 
analyze this kind of data is given by the Dirichlet 
distribution, but this model requires that the 
correlation structure is wholly negative, a fact not 
observed for compositional data where some 

correlations are positive (see for example, Aitchison, 
(1982); or Aitchison, (1986)). 

Aitchison and Shen (1980) introduced the 
lognormal distribution to analyze compositional 
data, transforming the ܩ component vector ܠ to a 
vector ࢟ in ܴீିଵ considering the additive log-ratio 
(ALR) function. Rayens and Srinivasan  (1991a)  
(1991b) extended the ALR transformation 
considering Box-Cox transformations as a 
generalization of the log-ratio function. Usually we 
could have some difficulties to get classical 
inference results for these models, especially in the 
presence of a vector of covariates. Alternatively, the 
use of Bayesian methods (Gelfand et al., 1995) is a 
good alternative to analyse compositional data (see 
for example, Iyengar and Dey, (1996), (1998); or 
Tjelmeland and Lund, (2003)), especially 
considering Markov Chain Monte Carlo (MCMC) 
methods (see for example, Gelfand and Smith, 
(1990) or Roberts and Smith, (1993)) to simulate 
samples of the joint posterior distribution of interest. 

In our application we have eight compositions 
(see Table 3), that is, ݔଵ௜ ൅	ݔଶ௜ 	൅	ݔଷ௜ 	൅	ݔସ௜ 	൅
ହ௜ݔ	 	൅	ݔ଺௜ 	൅	ݔ଻௜ 	൅	଼ݔ௜ 	ൌ 	1, for i=1,...,167. Let 
us assume an additive log-ratio (ALR) 
transformation for the compositional data (see for 
example, Aitchison (1982), (1986) and Iyengar & 
Dey (1996) given by 

 

௝௜ݕ ൌ ݃݋݈ ൬
௝௜ݔ
௜଼ݔ
൰ (1)

 

where j ൌ 1,2, . . . ,7 and  i ൌ 1,2, . . . ,167	. 

3.1 Model 

To model the compositional data of Table 3 with 
Table 4 and the additive log-ratio (ALR) 
transformation ௝ܻ௜, let us assume the regression 
models (see for example, Iyengar and Dey (1996)

Table 3: Complementary population data added to database as Pop. 08 and 16 inconsistent samples removed. 

Sample Pop. 01 Pop. 02 Pop. 03 Pop. 04 Pop. 05 Pop. 06 Pop. 07 Pop. 08 
1 0.000000 0.000000 0.000000 0.000000 34.200.000 8.300.000 0.000000 57.50 
2 1.400.000 7.600.000 4.800.000 1.900.000 6.700.000 0.000000 2.100.000 75.50 
... ... ... ... ... ... ... ... ... 

167 43.500.000 0.000000 2.100.000 0.000000 1.200.000 0.000000 2.100.000 51.10 

Table 4: Qualitative variables data conversion for numerical input in statistical the model. 

Season of the year River size Water speed 
Sample Winter Spring Autumn Medium Large Medium High Conc. 01 Conc. 02 ... Conc. 08 

1 1 0 0 0 0 1 0 8.000.000 9.800.000 ... 50.000.000 
2 0 1 0 0 0 1 0 8.350.000 8.000.000 ... 1.300.000 
... ... ... ... ... ... ... ... ... ... ... ... 

167 1 0 0 0 0 0 1 7.740.000 9.600.000 ... 41.000.000 
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and (1998)) given by: 
 

௝ܻ௜ ൌ α୨଴ ൅ α୨ଵ ∗ winter௜ ൅ α୨ଶ ∗ spring௜ ൅
α୨ଷ ∗ autumn௜ ൅ α୨ସ ∗ medium. river௜ ൅

	α୨ହ ∗ large. river௜ ൅	α୨଺ ∗
medium. speed௜ ൅	α୨଻ ∗ high. speed௜ ൅
	α୨଼ ∗ conc. 01௜ ൅	α୨ଽ ∗ conc. 02௜ ൅	α୨ଵ଴ ∗
conc. 03௜ ൅	α୨ଵଵ ∗ conc. 04௜ ൅	α୨ଵଶ ∗
conc. 05௜ ൅	α୨ଵଷ ∗ conc. 06௜ ൅	α୨ଵସ ∗
conc. 07௜ ൅	α୨ଵହ ∗ conc. 08௜ ൅	Єଵ௜  

(2)

 

where j ൌ 1,2, . . . ,7 and  i ൌ 1,2, . . . ,167; winteri, 
springi, autumni, medium.riveri, large.riveri, 
medium.speedi, high.speedi, conc.01i, conc.02i, 
conc.03i, conc.04i, conc.05i, conc.06i, conc.07i and 
conc.08i correspond to a vector of covariates 
associated to the i-th sample and εji  are random 
errors assumed to be independent random variables 
with a normal distribution Nሺ0, σ௝

ଶሻ.  
For a Bayesian analysis of the model, we assume 

the following prior distributions for the parameters: 
 

α୨଴	~	Nሺa୨଴, b௝଴
ଶሻ 

(3)α୨ଵ	~	Nሺa୨ଵ, b௝ଵ
ଶሻ	

ζ௝~ܩሺ ௝݀, ௝݁ሻ 

where ζ௝ ൌ 1 σ௝
ଶ⁄ ,ሺ݀ܩ , ݁ሻ denotes a gamma 

distribution with mean ݀/݁ and variance  ݀/݁ଶ; a୨଴, 
b௝଴

 , a୨ଵ , b௝ଵ, ௝݀ and ௝݁ are known hyper parameters, 
j	 ൌ 	1, … ,7. 

Let us denote the model defined by (1), (2) and 
(3) as “model 1”. 

3.2 Bayesian Analysis for the Data of 
Table 4 

BUGS is an acronym for a class of software package 
designed to perform Bayesian inference Using 
Gibbs Sampling Algorithm. The user specifies a 
statistical model by simply stating the relationships 
between related variables. The software includes an 
‘expert system’, which determines an appropriate 
MCMC (Markov Chain Monte Carlo) scheme 
(based on the Gibbs sampler) for analysing the 
specified model. It woks assuming that the specified 
model belongs to a class known as Directed Acyclic 
Graphs (DAGs), for which there exists an elegant 
underlying mathematical theory. This allows us to 
break down the analysis of arbitrarily large and 
complex structures into a sequence of relatively 
simple computations. BUGS includes a range of 
algorithms that its expert system can assign to each 
such computational task. (OpenBUGS, 2009). 
Usually, BUGS written software code have the 

following components: 

 Model parameters; 
 Specification of the “likelihood function” (or 

“sampling density”) of the data; 
 Specification of a “prior distribution” for the 

model parameters; 
 Derivation of the “posterior distribution” for the 

model parameters; 
 Samples variables inputs and outputs to use as 

simulation parameters. 
 

Assuming the additive log-ratio model defined by 
(2) and the prior distributions (3), with hyper 
parameter values; a୨଴ ൌ 1 , b௝଴=10 , a୨ଵ ൌ 1 , 
b௝ଵ ൌ 10, ௝݀ ൌ 1 and ௝݁ ൌ 1, we simulated 255,000 
Gibbs samples using the OpenBUGS software where 
the first 5,000 simulated samples of the joint 
posterior distribution of interest were discarded to 
eliminate the effects of the initial values; after this 
“burn-in-sample” period, we considered every 50th 
sample among the 250,000 simulated Gibbs 
samples, which gives a final sample of size 5,000 to 
get the posterior summaries of interest. Convergence 
of the simulation algorithm was verified from trace 
plots of the simulated Gibbs samples. 

In Table 5, we have the posterior summaries for 
the parameters of “model 1” based on these 5,000 
final simulated Gibbs samples. The terms marked 
with asterisks in Table 5 show the variables that do 
not have a zero value included in their credible 
intervals corresponding to their regression 
parameters indicating the variables that have a 
significant effect in determining the population 
distribution. 

Table 5: Posterior summaries of “model 1” after 
simulation. 

  mean SD val2.5pc Median val97.5pc 
α10 -0.69 5.18 -10.72 -0.82 9.70 
α11 -0.04 0.75 -1.47 -0.04 1.47 
α110 -0.01 0.01 -0.03 -0.01 0.00 
α111 -0.13 0.15 -0.42 -0.13 0.17 
α112 0.00 0.00 0.00 0.00 0.00 
α113 -0.01 0.01 -0.02 -0.01 0.01 
α114 -0.01 0.01 -0.02 -0.01 0.01 

α115 (*) -0.03 0.02 -0.07 -0.03 0.00 
α116 0.35 0.79 -1.20 0.35 1.84 
α13 0.66 0.83 -1.00 0.66 2.29 
α14 0.08 0.72 -1.32 0.09 1.45 

α15 (*) -2.88 0.90 -4.64 -2.88 -1.12 
α16 -1.10 0.85 -2.75 -1.09 0.57 
α17 -1.45 0.98 -3.41 -1.44 0.45 
α18 0.01 0.65 -1.25 0.02 1.26 
α19 0.16 0.15 -0.14 0.17 0.46 

α20 (*) -18.39 5.73 -29.72 -18.29 -7.25 
α21 -0.08 0.79 -1.66 -0.08 1.43 
α210 0.01 0.01 -0.01 0.01 0.02 

α211 (*) 0.48 0.16 0.17 0.48 0.79 
α212 (*) -0.01 0.00 -0.01 -0.01 0.00 
α213 0.01 0.01 -0.01 0.01 0.03 
α214 0.00 0.01 -0.02 0.00 0.01 

α215(*) 0.04 0.02 0.01 0.04 0.08 
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Table 5: Posterior summaries of “model 1” after 
simulation (cont.). 

  mean SD val2.5pc Median val97.5pc 
α22 -0.43 0.84 -2.09 -0.42 1.20 
α23 0.23 0.88 -1.50 0.24 1.98 
α24 0.30 0.76 -1.17 0.30 1.82 
α25 1.11 0.96 -0.79 1.10 2.96 
α26 0.80 0.93 -1.04 0.79 2.59 
α27 -0.38 1.07 -2.50 -0.38 1.71 

α28 (*) 1.40 0.71 0.05 1.40 2.84 
α29 -0.05 0.17 -0.38 -0.05 0.28 
α30 -5.23 5.66 -15.70 -5.50 6.23 
α31 -0.36 0.83 -1.96 -0.36 1.24 
α310 -0.362 0.01 -0.02 -0.355 0.02 
α311 0.25 0.16 -0.08 0.24 0.57 

α312(*) -0.01 0.00 -0.01 -0.01 0.00 
α313 -0.02 0.01 -0.04 -0.02 0.00 

α314(*) 0.02 0.01 0.00 0.02 0.04 
α315 -0.02 0.02 -0.06 -0.02 0.01 
α32 0.22 0.87 -1.49 0.22 1.95 
α33 0.46 0.93 -1.35 0.47 2.28 
α34 0.77 0.79 -0.75 0.78 2.33 
α35 0.95 0.99 -0.98 0.96 2.90 
α36 1.03 0.94 -0.78 1.03 2.87 
α37 2.03 1.10 -0.13 2.04 4.13 
α38 0.19 0.70 -1.22 0.21 1.53 

α39(*) -0.44 0.17 -0.78 -0.44 -0.11 
α40 6.57 5.24 -3.44 6.48 16.77 

α41(*) 1.45 0.72 0.03 1.46 2.87 
α410 0.01 0.01 0.00 0.01 0.02 
α411 -0.47 0.14 -0.75 -0.47 -0.20 

α412(*) 0.01 0.00 0.00 0.01 0.01 
α413(*) -0.03 0.01 -0.04 -0.03 -0.01 
α414(*) 0.02 0.01 0.00 0.02 0.03 
α415 -0.03 0.02 -0.06 -0.03 0.00 
α42 0.95 0.75 -0.55 0.95 2.43 
α43 0.65 0.80 -0.96 0.64 2.22 
α44 0.67 0.67 -0.61 0.67 2.00 
α45 -0.68 0.88 -2.38 -0.68 1.09 
α46 1.38 0.82 -0.22 1.37 3.02 
α47 1.73 0.95 -0.13 1.73 3.61 

α48(*) -1.68 0.65 -2.94 -1.67 -0.40 
α49(*) -0.30 0.15 -0.59 -0.31 0.00 
α50 -8.65 5.28 -19.21 -8.65 1.82 
α51 -0.75 0.79 -2.27 -0.75 0.79 
α510 0.00 0.01 -0.01 0.00 0.02 

α511(*) 0.50 0.16 0.19 0.49 0.81 
α512 0.00 0.00 0.00 0.00 0.00 
α513 -0.454 0.01 -0.02 -0.404 0.02 
α514 0.01 0.01 -0.01 0.01 0.02 

α515(*) -0.05 0.02 -0.08 -0.05 -0.01 
α52 -0.55 0.84 -2.20 -0.56 1.09 
α53 0.52 0.88 -1.29 0.52 2.22 

α54(*) 1.93 0.76 0.49 1.94 3.44 
α55 0.35 0.96 -1.50 0.34 2.24 
α56 0.79 0.90 -0.98 0.80 2.53 
α57 0.79 1.05 -1.30 0.80 2.86 
α58 -0.21 0.66 -1.54 -0.21 1.12 
α59 0.21 0.16 -0.12 0.21 0.51 
α60 -7.50 5.83 -18.81 -7.50 3.97 
α61 -1.46 0.85 -3.12 -1.45 0.20 
α610 0.00 0.01 -0.02 0.00 0.01 

α611(*) 0.53 0.17 0.21 0.53 0.87 
α612 0.00 0.00 0.00 0.00 0.01 
α613 -0.01 0.01 -0.03 -0.01 0.01 
α614 0.01 0.01 -0.01 0.01 0.03 
α615 0.00 0.02 -0.04 0.00 0.03 
α62 -1.33 0.89 -3.04 -1.35 0.44 
α63 0.04 0.96 -1.83 0.06 1.84 

α64(*) 1.95 0.81 0.38 1.95 3.54 
α65 1.95 1.03 -0.06 1.95 3.98 

α66(*) 2.35 0.97 0.42 2.34 4.27 
α67(*) 2.82 1.15 0.54 2.83 5.11 
α68 -1.15 0.74 -2.60 -1.17 0.31 

α69(*) 0.52 0.18 0.15 0.52 0.86 
α70 2.43 5.95 -9.29 2.52 13.86 
α71 -0.07 0.88 -1.80 -0.08 1.67 
α710 -0.01 0.01 -0.03 -0.01 0.00 
α711 0.17 0.17 -0.15 0.17 0.50 
α712 0.994 0.00 0.00 0.00 0.00 
α713 -0.01 0.01 -0.03 -0.01 0.01 
α714 0.01 0.01 -0.01 0.01 0.03 

Table 5: Posterior summaries of “model 1” after 
simulation (cont.). 

  mean SD val2.5pc Median val97.5pc 
α715(*) 0.05 0.02 0.02 0.05 0.09 
α72 0.33 0.92 -1.45 0.31 2.15 
α73 -0.11 0.97 -2.05 -0.10 1.80 
α74 0.31 0.82 -1.29 0.31 1.93 
α75 0.42 1.04 -1.62 0.41 2.48 
α76 0.73 0.98 -1.22 0.73 2.68 
α77 0.54 1.14 -1.65 0.53 2.74 
α78 -1.43 0.74 -2.87 -1.43 0.10 
α79 -0.02 0.18 -0.38 -0.02 0.33 

The list of significant variables in Table 6 shows 
that only variable Conc. 3 is low significant. The 
seasons (Spring and Autumn), the size of the river 
(small) and the speed of the river (low), despite 
having the value 0 in the credible interval, have 
terms that compose the variable without the term 0 
in the credible interval (Summer, Winter, Large), so 
they are also significant. 

Table 6: Posterior summaries indicating significant 
variables. 

Term Related variable 

α115 Conc. 8 

α15 Size: Large 

α20 Season: Summer 

α211 Conc. 4 

α212 Conc. 5 

α215 Conc. 8 

α28 Conc. 1 

α312 Conc. 5 

α314 Conc. 7 

α39 Conc. 2 

α41 Season: Winter 

α411 Conc. 4 

α412 Conc. 5 

α413 Conc. 6 

α414 Conc. 7 

α48 Conc. 1 

α49 Conc. 2 

α511 Conc. 4 

α515 Conc. 8 

α54 Size: medium 

α611 Conc. 4 

α64 Size: medium 

α66 Speed: medium 

α67 Speed: High 

α69 Conc. 2 

α715 Conc. 8 

4 ARTIFICIAL NEURAL 
NETWORK 

Like its counterpart in the biological nervous 
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system, a neural network can learn and therefore can 
be trained to find solutions, recognize patterns, 
classify data, and forecast future events. The 
behavior of a neural network is defined by the way 
its individual computing elements are connected and 
by the strengths of those connections, or weights. 
The weights are automatically adjusted by training 
the network according to a specified learning rule 
until it performs the desired task correctly (The 
MathWorks, Inc., 1994-2013). According to da 
Silva, et al. (2010) the Artificial Neural Networks 
(ANN) is a popular choice to solve biological 
problems and have works published over the 
following topics:  
 Bat species identification from biosonar data; 
 Cancer prediction based on individuals genetic 

profiles; 
 Analyse weather influence over the grow rate of 

trees.  
 

An ANN approach was applied to this problem 
using a supervised network that was designed as a 
two-layer feed-forward network with sigmoid 
hidden neurons and linear output neurons. The 
network was trained with Levenberg-Marquardt 
backpropagation algorithm. The Neural Network 
Toolbox (nnstart) from MatLab R2012b was used to 

create the network with the topology presented in 
Figure 1 as a Fitting problem. 
 

 

Figure 1: Neural Network (n=15 inputs, n1=12 hidden 
neurons and m=8 outputs). Adapted from: (da Silva et al., 
2010). 

5 PERFORMANCE 
COMPARISON 

The inferred data were compared with the observed 
data using the ratio: |ݔ௜ െ  ௜ is theݔ ௜|, whereߚ
population observed value and e ߚ௜ the output value 
of the inference where ݅ ൌ 1,… ,167. 

 

Figure 2: Linear tendency lines of means of all 167 samples from |Expected - Inferred| from each population. 

Table 7: Maximum, Mean and Standard Deviation values for each population of calculated ratios |ݔ௜ െ  ௜ is theݔ where	௜|,ߚ
observed value and e ߚ௜ the output value of the parameterized Bayesian inference where ݅ ൌ 1,… ,167. 

 Pop. 01 Pop. 02 Pop. 03 Pop. 04 Pop. 05 Pop. 06 Pop. 07 

Max: 74.860000 70.501000 42.320600 38.680000 42.903000 50.782000 31.1506 

Mean: 4.400000 2.940900 4.163577 0.084850 2.357600 0.996700 0.825800 

SD: 13.847888 11.291766 6.209362 3.301484 7.728617 9.002339 5.766513 

Table 8: Maximum, Mean and Standard Deviation values for each population of calculated ratios |ݔ௜ െ  ௜ is theݔ ௜|, whereߚ
observed value and e ߚ௜ the output value of the Neural Network where ݅ ൌ 1,… ,167. 

 Pop. 01 Pop. 02 Pop. 03 Pop. 04 Pop. 05 Pop. 06 Pop. 07 

Max: 58.54958 45.93419 39.78041 9.130595 33.92973 36.03939 27.6264 

Mean: 10.08046 7.251721 4.794875 1.405569 4.301284 5.668362 3.439153 

SD: 10.83919 6.984214 5.140308 1.474641 4.97424 5.378425 4.046496 
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For each population ratio column the maximum 
value, the mean and the standard deviation were 
extracted and are presented in Table 7 and Table 8. 

The prediction performance of the Bayesian 
inference shows a slightly better performance when 
we analyze the linear tendency lines of the means of 
ratios of each population (Figure 2), since it is lower 
in the graph and nearer from 0, although, comparing 
Table 7 and Table 8, the Standard Deviation in the 
ANN approach is lower. Overall, performance of 
both methods is similar. 

6 CONCLUSIONS 

In this work we provided a complete statistical 
analysis method of a complex biological database, 
including a method to mixture qualitative and 
quantitative data, which can be used in several 
inference models. Also, the regression model 
associated to the compositional data analysis is a 
powerful statistical tool to understand several 
biological population data.   

The Bayesian method may be improved and 
other prior distributions for the parameters and/or 
other error distributions in (2) can be used for a 
better prediction performance. The ability to 
evaluate the significance of each variable is an 
important tool to maximize experiments resources 
and understand biological processes. It is expected 
with the improvement of the Bayesian inference 
method, that less data could be necessary to train the 
algorithm to acquire good regression parameters. It 
is important to notice that previously knowledge of 
the problem can be very useful to model the problem 
and determine the best distributions for the 
problems. 
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