
Embedding Proof Problems into Query-answering Problems and
Problem Solving by Equivalent Transformation

Kiyoshi Akama1 and Ekawit Nantajeewarawat2

1Information Initiative Center, Hokkaido University, Hokkaido, Japan
2Computer Science, Sirindhorn International Institute of Technology, Thammasat University, Pathumthani, Thailand

Keywords: Question-answering Problems, Proof Problems, Equivalent Transformation, Solving Logical Problems.

Abstract: A proof problem is a “yes/no” problem concerning with checking whether one logical formula is a logical
consequence of another logical formula, while a query-answering problem (QA problem) is an “all-answers
finding” problem concerning with finding all ground instances of a query atomic formula that are logical
consequences of a given logical formula. In order to establish a precise relation between these two problem
classes, the concept of an embedding mapping is introduced. When one problem class can be embedded into
another problem class at low computational cost, the former class can be regarded as a subclass of the latter
class and, consequently, problems in the former class can be solved through a method for solving problems in
the latter one. Construction of low-cost embedding mappings from proof problems to QA problems is demon-
strated. By such embedding, proof problems can be solved using a procedure for solving QA problems. A
procedure for solving QA problems based on the equivalent transformation principle is presented. Application
of the procedure to the two problem classes is illustrated.

1 INTRODUCTION

Given a first-order formulaK, representing back-
ground knowledge, and an atomic formula (atom)a,
representing a query, aquery-answering problem(QA
problem) is to find the set of all ground instances ofa
that are logical consequences ofK. Characteristically,
it is an “all-answers finding” problem, i.e., all ground
instances of the query atom satisfying the require-
ment must be found. Aproof problem, by contrast,
is a “yes/no” problem; it is concerned with checking
whether or not one given logical formula is a logical
consequence of another given logical formula.

Historically, works on logic-based automated rea-
soning have been centered around proof problems
(Chang and Lee, 1973; Gallier, 1986; Fitting, 1996;
Newborn, 2000). Methods for solving proof prob-
lems were developed, e.g., tableau-based methods
(Beth, 1955) and resolution-based methods (Robin-
son, 1965), and they have been subsequently adapted
to address other classes of logical problems, including
some specific subclasses of QA problems, e.g., QA
problems on definite clauses (Lloyd, 1987). As op-
posed to such a proof-centered approach, we present
in this paper a direct approach towards solving QA
problems on the basis of theequivalent transforma-

tion (ET) principle. We show that proof problems can
naturally be considered as QA problems of a special
form; therefore, a method for solving QA problems
also lends itself to solve proof problems in a straight-
forward way.

In order to clearly understand the relation between
proof problems and QA problems, we introduce the
notion of an embedding mapping from one problem
class to another problem class. Using an embedding
mapping, we demonstrate that proof problems can
be formulated as a subclass of QA problems. We
propose a framework for solving QA problems by
ET. A given input QA problem on first-order logic is
converted into an equivalent QA problem on an ex-
tended clause space, called the ECLSF space, through
meaning-preserving Skolemization (Akama and Nan-
tajeewarawat, 2011). The obtained QA problem is
then successively transformed on the ECLSF space by
application of ET rules until the answer to the original
problem can be readily obtained. With an embedding
mapping from proof problems to QA problems, this
framework can be used for solving proof problems.

To begin with, Section 2 formalizes QA problems
and proof problems. Section 3 defines an embedding
mapping and shows how to embed proof problems
into QA problems. Section 4 introduces extended

253Akama K. and Nantajeewarawat E..
Embedding Proof Problems into Query-answering Problems and Problem Solving by Equivalent Transformation.
DOI: 10.5220/0004546202530260
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2013), pages 253-260
ISBN: 978-989-8565-81-5
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

clauses, the extended space ECLSF and QA problems
on this space. Section 5 presents our ET-based proce-
dure for solving QA problems. Section 6 defines un-
folding transformation on the ECLSF space and pro-
vides some other ET rules on this space. Section 7
illustrates application of our framework. Section 8
concludes the paper.

2 QA PROBLEMS AND PROOF
PROBLEMS

2.1 Interpretations and Models

In this paper, an atom occurring in a first-order for-
mula can be either a usual atom or a constraint atom.
The semantics of first-order formulas based on a log-
ical structure given in (Akama and Nantajeewarawat,
2012) is used. The set of all ground usual atoms, de-
noted byG , is taken as the interpretation domain. An
interpretationis a subset ofG . A ground usual atomg
is true with respect to an interpretationI iff g belongs
to I . Unlike ground usual atoms, the truth values of
ground constraint atoms are predetermined indepen-
dently of interpretations. Amodelof a first-order for-
mula E is an interpretation that satisfiesE. The set
of all models of a first-order formulaE is denoted by
Models(E). Given first-order formulasE1 andE2, E2
is a logical consequenceof E1 iff every model ofE1
is a model ofE2.

2.2 QA Problems

A query-answering problem(QA problem) is a pair
〈K,a〉, whereK is a first-order formula, representing
background knowledge, anda is a usual atom, repre-
senting a query. The answer to a QA problem〈K,a〉,
denoted byanswerqa(〈K,a〉), is defined as the set of
all ground instances ofa that are logical consequences
of K. UsingModels(K), the answer to a QA problem
〈K,a〉 can be equivalently defined as

answerqa(〈K,a〉) = (
⋂

Models(K))∩ rep(a),

whererep(a) denotes the set of all ground instances
of a. Accordingly, a QA problem can also be seen
as a model-intersection problem. When no confu-
sion is caused,answerqa(〈K,a〉) is often written as
answerqa(K,a).

2.3 Proof Problems

A proof problemis a pair〈E1,E2〉, whereE1 andE2
are first-order formulas, and the answer to this prob-

lem, denoted byanswerpr(〈E1,E2〉), is defined by

answerpr(〈E1,E2〉) =







“yes” if E2 is a logical
consequence ofE1,

“no” otherwise.

It is well known that a proof problem〈E1,E2〉 can be
converted into the problem of determining whether
E1 ∧ ¬E2 is unsatisfiable (Chang and Lee, 1973),
i.e., whetherE1 ∧ ¬E2 has no model. As a result,
answerpr(〈E1,E2〉) can be equivalently defined by

answerpr(〈E1,E2〉) =







“yes” if Models(E1∧¬E2)
is the empty set,

“no” otherwise.

When no confusion is caused,answerpr(〈E1,E2〉) is
often written asanswerpr(E1,E2).

3 EMBEDDING PROOF
PROBLEMS INTO QA
PROBLEMS

3.1 Embedding Mappings

The notion of a class of problems and that of an em-
bedding mapping are formalized below.

Definition 1. A class C of problems is a triple
〈PROB,ANS,answer〉, where

1. PROB and ANS are sets,
2. answeris a mapping from PROB to ANS.

The sets PROB and ANS are called theproblem space
and theanswer space, respectively, ofC. Their el-
ements are calledproblemsand (possible)answers,
respectively, inC. Given a problemprb ∈ PROB,
answer(prb) is the answer toprb in C.

Definition 2. Let C1 = 〈PROB1,ANS1,answer1〉 and
C2 = 〈PROB2,ANS2,answer2〉 be classes of prob-
lems. Anembedding mappingfrom C1 to C2 is a pair
〈π,α〉, whereπ is an injective mapping from PROB1
to PROB2 andα is a partial mapping from ANS2 to
ANS1 such that for anyprb∈ PROB1, answer1(prb) =
α(answer2(π(prb))).

Let C1 andC2 be classes of problems. Suppose
that (i) there exists an embedding mapping〈π,α〉
from C1 to C2, (ii) there exists a procedureP for solv-
ing problems inC2, and (iii) there also exist a proce-
durePπ for realizingπ and a procedurePα for real-
izing α. Then a procedure for solving problems in
C1 can be obtained by making the composition of the

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

254

proceduresPπ, P andPα. C1 is regarded as asubclass
of C2 iff there exists an embedding mapping〈π,α〉
from C1 to C2 such thatπ andα can be realized at
low computational cost.

3.2 Embedding Proof Problems into QA
Problems

Next, we show how to embed proof problems into QA
problems. Assume that:

• Cqa = 〈PROBqa,ANSqa,answerqa〉 is the class of
QA problems defined by Section 2.2, i.e., PROBqa
is the set of all QA problems, ANSqa is the power
set ofG , andanswerqa : PROBqa→ANSqa is given
by Section 2.2.

• Cpr = 〈PROBpr,ANSpr,answerpr〉 is the class of
proof problems defined by Section 2.3, i.e.,
PROBpr is the set of all proof problems, ANSpr =
{“yes” , “no”}, andanswerpr : PROBpr→ ANSpr is
given by Section 2.3.

In order to construct an embedding mapping from
Cpr to Cqa, we want to construct from any ar-
bitrary given proof problem〈E1,E2〉 a QA prob-
lem 〈K,yes〉 such thatanswerpr(E1,E2) = “yes” iff
answerqa(K,yes) = {yes}, whereyesis a 0-ary pred-
icate symbol and the atomyesoccurs in neitherE1
nor E2. The following approaches can be taken for
constructing such a formulaK:

• ConstructK such that every model ofK contains
yesiff answerpr(E1,E2) = “yes”.

• Construct K such that K has no model iff
answerpr(E1,E2) = “yes”.

We refer to the first approach aspositiveconstruction,
and the second one asnegativeconstruction. They are
given below.

3.2.1 Embedding using Positive Construction

Positive construction of an embedding mapping from
Cpr to Cqa can be obtained by Proposition 1.

Proposition 1. Let E1 andE2 be first-order formulas.
Assume that:

1. yesis a 0-ary predicate symbol andyesoccurs in
neitherE1 norE2.

2. prb1 is the proof problem〈E1,E2〉.
3. prb2 is the QA problem〈yes↔ (E1→ E2),yes〉.

Then answerpr(prb1) = “yes” iff answerqa(prb2) =
{yes}.

Proposition 1 determines an embedding mapping
〈πa,αa〉 from Cpr to Cqa as follows:

• For any proof problem〈E1,E2〉,

πa(〈E1,E2〉) = 〈yes↔ (E1→ E2),yes〉.

• αa({yes}) = “yes” and αa(/0) = “no”.

3.2.2 Embedding using Negative Construction

The next proposition illuminates negative construc-
tion of an embedding mapping fromCpr to Cqa.

Proposition 2. Let E1 andE2 be first-order formulas.
Assume that:

1. yesis a 0-ary predicate symbol andyesoccurs in
neitherE1 norE2.

2. prb1 is the proof problem〈E1,E2〉.
3. prb2 is the QA problem〈E1∧¬E2,yes〉.

Thenanswerpr(prb1) = “yes” iff answerqa(prb2) =
{yes}.

Proposition 2 determines an embedding mapping
〈πb,αb〉 from Cpr to Cqa as follows:

• For any proof problem〈E1,E2〉,

πb(〈E1,E2〉) = 〈E1∧¬E2,yes〉.

• αb({yes}) = “yes” andαb(/0) = “no”.

4 QA PROBLEMS ON AN
EXTENDED SPACE

To solve a QA problem〈K,a〉 on first-order logic,
the first-order formulaK is usually converted into a
conjunctive normal form. The conversion involves
removal of existential quantifications by Skolemiza-
tion, i.e., by replacement of an existentially quantified
variable with a Skolem term determined by a relevant
part of a formula prenex. The classical Skolemiza-
tion, however, does not preserve the logical mean-
ing of a formula—the formula resulting from Sko-
lemization is not necessarily equivalent to the orig-
inal one (Chang and Lee, 1973). In (Akama and
Nantajeewarawat, 2011), a theory for extending the
space of first-order formulas was developed and how
meaning-preservingSkolemization can be achieved in
the obtained extended space was shown. A procedure
for converting first-order formulas into extended con-
junctive normal forms in an extended clause space,
called the ECLSF space, was also presented.

The basic idea of meaning-preserving Skolemiza-
tion is to use existentially quantified function vari-
ables instead of usual Skolem functions. Func-
tion variables, extended clauses, extended conjunctive
normal forms and QA problems on ECLSF are intro-
duced below.

Embedding�Proof�Problems�into�Query-answering�Problems�and�Problem�Solving�by�Equivalent�Transformation

255

4.1 Function Constants, Function
Variables and func-Atoms

A usual function symbol, sayf , in first-order logic
denotes an unevaluated function; it is used for con-
structing from existing terms, sayt1, . . . , tn, a syntac-
tically new term, e.g.,f (t1, . . . , tn), possibly recur-
sively, without evaluating the new termf (t1, . . . , tn).
A different class of functions is used in the extended
space. A function in this class is an actual mathe-
matical function, sayh, on ground terms; when it
takes ground terms, sayt1, . . . , tn, as input,h(t1, . . . , tn)
is evaluated for determining an output ground term.
We called a function in this class afunction constant.
Variables of a new type, calledfunction variables, are
introduced; each of them can be instantiated into a
function constant or a function variable, but not into a
usual term.

In order to clearly separate function constants
and function variables from usual function symbols
and usual terms, a new built-in predicate symbol
func is introduced. Given anyn-ary function con-
stant or n-ary function variable f̄ , an expression
func(f̄ , t1, . . . , tn, tn+1), where theti are usual terms,
is considered as an atom of a new type, called afunc-
atom. When f̄ is a function constant and theti are
all ground, the truth value of this atom is evaluated as
follows: it is true iff f̄ (t1, . . . , tn) = tn+1.

4.2 Extended Clauses

An extended clause Cis a closed formula of the form

∀v1, . . . ,∀vm : (a1∨ ·· ·∨an ∨ ¬b1∨·· ·∨¬bp
∨ ¬f1∨·· ·∨¬fq),

wherev1, . . . ,vm are usual variables, each ofa1, . . . ,

an,b1, . . . ,bp is a usual atom or a constraint atom,
andf1, . . . , fq arefunc-atoms. It is often written sim-
ply as (a1, . . . ,an ← b1, . . . ,bp, f1, . . . , fq). The sets
{a1, . . . ,an} and{b1, . . . ,bp, f1, . . . , fq} are called the
left-hand sideand theright-hand side, respectively, of
the extended clauseC, denoted bylhs(C) andrhs(C),
respectively. Whenn = 0, C is called anegative ex-
tended clause. Whenn = 1, C is called anextended
definite clause, the only atom inlhs(C) is called the
headof C, denoted byhead(C), and the setrhs(C) is
also called thebodyof C, denoted bybody(C). When
n > 1, C is called amulti-head extended clause. All
usual variables in an extended clause are universally
quantified and their scope is restricted to the clause
itself. When no confusion is caused, an extended
clause, a negative extended clause, an extended defi-
nite clause and a multi-head extended clause will also
be called aclause, anegative clause, adefinite clause
and amulti-head clause, respectively.

An extended normal form calledexistentially
quantified conjunctive normal form(ECNF) is a for-
mula of the form∃vh1, . . . ,∃vhm : (C1 ∧ ·· · ∧Cn),
wherevh1, . . . ,vhm are function variables andC1, . . . ,

Cn are extended clauses. It is often identified with
the set{C1, . . . ,Cn}, with implicit existential quantifi-
cations of function variables and implicit clause con-
junction. Function variables in such a clause set are
all existentially quantified and their scope covers en-
tirely all clauses in the set.

4.3 QA Problems on ECLSF

The set of all ECNFs is referred to as theextended
clause space(ECLSF). By the above identification of
an ECNF with a clause set, we often regard an ele-
ment of ECLSF as a set of (extended) clauses. With
occurrences of function variables, clauses contained
in a clause set in the ECLSF space are connected
through shared function variables. By instantiating
all function variables in such a clause set into func-
tion constants, clauses in the obtained set are totally
separated.

A QA problem 〈Cs,a〉 such thatCs is a clause
set in ECLSF and a is a usual atom is called aQA
problem onECLSF. Given a QA problem〈K,a〉
on first-order logic, the first-order formulaK can be
converted equivalently by meaning-preserving Skol-
emization, using the conversion procedure given in
(Akama and Nantajeewarawat, 2011), into a clause
setCs in the ECLSF space. The obtained clause set
Cs may be further transformed equivalently in this
space for problem simplification, by using unfolding
and other transformation rules.

5 SOLVING QA PROBLEMS

Using the notation introduced in Sections 5.1 and 5.2,
our ET-based procedure is presented in Section 5.3.

5.1 Inclusion of Query Information

The following notation is used. A setA of usual atoms
is said to beclosediff for any a ∈ A and any substi-
tution θ for usual variables,aθ belongs toA. Assume
that (i) A is the set of all usual atoms, (ii)A1 andA2
are disjoint closed subsets ofA , and (iii) φ is a bijec-
tion from A1 to A2 such that for anya∈ A1 and any
substitutionθ for usual variables,φ(aθ) = φ(a)θ. For
any i, j ∈ {1,2}, an extended clauseC is said to be
from Ai to A j iff all usual atoms inrhs(C) belong to
Ai and all those inlhs(C) belong toA j .

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

256

Let 〈K,a〉 be a QA problem such thatK is a first-
order formula in which all usual atoms belong toA1
anda∈A1. As will be detailed in Section 5.3, to solve
this problem using ET,K is transformed by meaning-
preserving transformation into a setCs of extended
clauses fromA1 to A1 and a singleton setQ consist-
ing only of the clause(φ(a)← a) from A1 to A2 is
constructed from the query atoma. The resulting
QA problem〈Cs∪Q,φ(a)〉 is then successively trans-
formed using ET rules.

5.2 Triples for Transformation

In order to make a clear separation between a set of
extended clauses fromA1 to A1 and a set of those
from A1 to A2 in a transformation process of QA
problems, the following notation is introduced: Given
a setCs of extended clauses fromA1 to A1, a setQ
of extended clauses fromA1 to A2 and an atomb in
A2, let the triple〈Cs,Q,b〉 denote the QA problem
〈Cs∪Q,b〉. A QA problem〈Cs,Q,b〉 can be trans-
formed by changingCs, by changingQ, or by chang-
ing bothCsandQ.

Definition 3. A transformation of a QA problem
〈Cs,Q,b〉 into a QA problem〈Cs′,Q′,b〉 is equiva-
lent transformation(ET) iff answerqa(Cs∪Q,b) =
answerqa(Cs′∪Q′,b).

5.3 A Procedure for Solving QA
Problems by ET

Let A1 be a closed set of usual atoms. Assume that a
QA problem〈K,a〉 is given, whereK is a first-order
formula in which all usual atoms belong toA1 and
a ∈ A1. To solve the QA problem〈K,a〉 using ET,
perform the following steps:

1. TransformK by meaning-preserving Skolemiza-
tion into a clause setCs in the ECLSF space.

2. Determine (i) a closed setA2 of usual atoms such
that A1 andA2 are disjoint and (ii) a bijectionφ
from A1 to A2 such that for anya ∈ A1 and any
substitutionθ for usual variables,φ(aθ) = φ(a)θ.

3. Successively transform the QA problem〈Cs,
{(φ(a)← a)},φ(a)〉 in the ECLSF space using un-
folding and other ET rules (see Section 6).

4. Assume that the transformation yields a QA prob-
lem 〈Cs′,Q,φ(a)〉. Then:

(a) If Models(Cs′) = /0, then outputrep(a) as the
answer.

(b) If Models(Cs′) 6= /0 andQ is a set of unit clauses
such that the head of each clause inQ is an in-
stance ofφ(a), then output as the answer the set

φ−1(
⋃

C∈Q

rep(head(C))).

(c) Otherwise stop with failure.

It is shown in (Akama and Nantajeewarawat, 2013)
that the obtained answer is always correct.

The setA2 and the bijectionφ satisfying the re-
quirement of Step 2 can be determined as follows:
First, introduce a new predicate symbol for each pred-
icate symbol occurring inA1. Next, let A2 be the
atom set obtained fromA1 by replacing the predicate
of each atom inA1 with the new predicate introduced
for it. Finally, for each atoma ∈ A1, let φ(a) be the
atom obtained froma by such predicate replacement.

6 ET RULES ON ECLSF

Next, ET rules for unfolding and definite-clause re-
moval are presented, along with some other ET rules.

6.1 Unfolding Operation on ECLSF

Assume that (i)Cs is a set of extended clauses, (ii)D
is a set of extended definite clauses, and (iii)occ is
an occurrence of an atomb in the right-hand side of a
clauseC in Cs. By unfoldingCsusingD at occ, Cs is
transformed into

(Cs−{C})∪ (
⋃
{resolvent(C,C′,b) |C′ ∈ D}),

where for eachC′ ∈ D, resolvent(C,C′,b) is defined
as follows, assuming thatρ is a renaming substitution
for usual variables such thatC andC′ρ have no usual
variable in common:

• If b and head(C′ρ) are not unifiable, then
resolvent(C,C′,b) = /0.

• If they are unifiable, thenresolvent(C,C′,b) =
{C′′}, whereC′′ is the clause obtained fromC and
C′ρ as follows, assuming thatθ is the most general
unifier ofb andhead(C′ρ):

– lhs(C′′) = lhs(Cθ)
– rhs(C′′) = (rhs(Cθ)−{bθ})∪body(C′ρθ)

The resulting clause set is denoted by UNFOLD(Cs,
D,occ).

Embedding�Proof�Problems�into�Query-answering�Problems�and�Problem�Solving�by�Equivalent�Transformation

257

6.2 ET by Unfolding and Definite-clause
Removal

Let Atoms(p) denote the set of all atoms having a
predicatep. ET rules on ECLSF for unfolding and
for definite-clause removal are described below.

6.2.1 ET by Unfolding

Let 〈Cs,a〉 be a QA problem on ECLSF. Assume that:

1. q is the predicate of the query atoma.

2. p is a predicate such thatp 6= q.

3. D is a set of extended definite clauses inCs that
satisfies the following conditions:

(a) For anyC∈ D, head(C) ∈ Atoms(p).
(b) For anyC′ ∈ Cs−D, lhs(C′)∩Atoms(p) = /0.

4. occis an occurrence of an atom inAtoms(p) in the
right-hand side of an extended clause inCs−D.

Then〈Cs,a〉 can be equivalently transformed into the
QA problem〈UNFOLD(Cs,D,occ),a〉.

6.2.2 ET by Definite-clause Removal

Let 〈Cs,a〉 be a QA problem on ECLSF. Assume that:

1. q is the predicate of the query atoma.

2. p is a predicate such thatp 6= q.

3. D is a set of extended definite clauses inCs that
satisfies the following conditions:

(a) For anyC∈ D, head(C) ∈ Atoms(p).
(b) For anyC′ ∈ Cs−D, lhs(C′)∩Atoms(p) = /0.

4. For anyC′ ∈ Cs−D, rhs(C′)∩Atoms(p) = /0.

Then〈Cs,a〉 can be equivalently transformed into the
QA problem〈Cs−D,a〉.

6.3 Some other ET Rules on ECLSF

Next, ET rules for mergingfunc-atoms having the
same call pattern, for removing isolatedfunc-atoms,
and for removing subsumed clauses are presented.
They are used in examples in Section 7.

6.3.1 Mergingfunc-Atoms with the Same
Invocation Pattern

Let 〈Cs,a〉 be a QA problem on ECLSF. Suppose that
C ∈ Csandrhs(C) containsfunc-atomsf1 andf2 that
differ only in their last arguments. Then:

1. If the last arguments off1 and f2 are unifiable,
with their most general unifier beingθ, andC′ is
an extended clause such that

• lhs(C′) = lhs(Cθ), and
• rhs(C′) = (rhs(C)−{f2})θ,

then〈Cs,a〉 can be equivalently transformed into
the QA problem〈(Cs−{C})∪{C′},a〉.

2. If their last arguments are not unifiable, then
〈Cs,a〉 can be equivalently transformed into the
QA problem〈Cs−{C},a〉.

6.3.2 Elimination of Isolatedfunc-Atoms

A func-atom func(h, t1, . . . , tn,v), wherev is a usual
variable, is said to beisolatedin an extended clauseC
iff there is only one occurrence ofv in C.

Now let〈Cs,a〉 be a QA problem on ECLSF. Sup-
pose that:

1. C ∈ Cs such thatC contains afunc-atom that is
isolated inC.

2. C′ is the extended clause obtained fromC by re-
moving allfunc-atoms that are isolated inC.

Then〈Cs,a〉 can be equivalently transformed into the
QA problem〈(Cs−{C})∪{C′},a〉.

6.3.3 Elimination of Subsumed Clauses

An extended clauseC1 is said to subsumean ex-
tended clauseC2 iff there exists a substitutionθ
for usual variables such thatlhs(C1)θ ⊆ lhs(C2) and
rhs(C1)θ⊆ rhs(C2).

A subsumed clause can be removed as follows:
Let 〈Cs,a〉 be a QA problem on ECLSF. If Cs con-
tains extended clausesC1 andC2 such thatC1 sub-
sumesC2, then 〈Cs,a〉 can be equivalently trans-
formed into the QA problem〈Cs−{C2},a〉.

7 EXAMPLES

Example 1 demonstrates how the procedure in Sec-
tion 5.3 solves a QA problem using the ET rules in
Section 6. Example 2 shows how to apply the proce-
dure to solve a proof problem based on the embedding
mapping in Section 3.2.2.

Example 1. Consider the “Tax-cut” problem dis-
cussed in (Motik et al., 2005). This problem is to
find all persons who can have discounted tax, with the
knowledge that (i) any person who has two children
or more can get discounted tax, (ii) men and women
are not the same, (iii) a person’s mother is always a
woman, (iv) Peter has a child named Paul, (v) Paul is
a man, and (vi) Peter has a child, who is someone’s
mother. This background knowledge is represented

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

258

in first-order logic as the formulasF1–F6 below, as-
suming thathc, ns, tc, mn, wmandmostand, respec-
tively, for hasChild, notSame, TaxCut, Man, Woman
andmotherOf:

F1: ∀x: ((∃y1∃y2 :
(hc(x,y1)∧hc(x,y2) ∧ ns(y1,y2)))→ tc(x))

F2: ∀x∀y: ((mn(x)∧wm(y))→ ns(x,y))
F3: ∀x: ((∃y : mo(x,y))→ wm(x))
F4: hc(Peter,Paul)
F5: mn(Paul)
F6: ∃x: (hc(Peter,x)∧ (∃y: mo(x,y)))

Accordingly, the “Tax-cut” problem is formulated as
the QA problem〈K, tc(x)〉, whereK is the conjunc-
tion of F1–F6. Using the meaning-preserving Skol-
emization procedure given in (Akama and Nantajee-
warawat, 2011), the first-order formulaK is trans-
formed into a clause setCsconsisting of the following
extended clauses:

C1: tc(x)← hc(x,y1),hc(x,y2),ns(y1,y2)
C2: ns(x,y)←mn(x),wm(y)
C3: wm(x)←mo(x,y)
C4: hc(Peter,Paul)←
C5: mn(Paul)←
C6: hc(Peter,x)← func(h1,x)
C7: mo(x,y)← func(h1,x), func(h2,y)

The clausesC6 and C7 together represent the first-
order formulaF6, whereh1 andh2 are 0-ary function
variables.

Assume that all usual atoms occurring inCs be-
long toA1, ansis a newly introduced unary predicate
symbol, allans-atoms belong toA2, and for any term
t, φ(tc(t)) = ans(t). Let

C0 = (ans(x)← tc(x)).

To solve the QA problem〈K, tc(x)〉, the QA problem
〈Cs,{C0},ans(x)〉 is successively transformed by ap-
plying the ET rules in Section 6 as follows:

1. By unfoldingC0 at tc(x) using {C1}, C0 is re-
placed with:

C8: ans(x)← hc(x,y1),hc(x,y2),ns(y1,y2)

2. By unfoldingC8 at the last body atom using{C2},
C8 is replaced with:

C9: ans(x)← hc(x,y1),hc(x,y2),mn(y1),wm(y2)

3. By unfoldingC9 at the third body atom using
{C5}, C9 is replaced with:

C10: ans(x)← hc(x,Paul),hc(x,y2),wm(y2)

4. By unfolding C10 at the last body atom using
{C3}, C10 is replaced with:

C11: ans(x)← hc(x,Paul),hc(x,y2),mo(y2,z)

5. By unfolding C11 at the last body atom using
{C7}, C11 is replaced with:

C12: ans(x)← hc(x,Paul),hc(x,y2), func(h1,y2),
func(h2,z)

6. By removing an isolatedfunc-atom, C12 is re-
placed with:

C13: ans(x)← hc(x,Paul),hc(x,y2), func(h1,y2)

7. By unfoldingC13 at the first body atom using
{C4,C6}, C13 is replaced with:

C14: ans(Peter)← hc(Peter,y2), func(h1,y2)
C15: ans(Peter)← func(h1,Paul),hc(Peter,y2),

func(h1,y2)

8. By mergingfunc-atoms with the same invocation
pattern,C15 is replaced with:

C16: ans(Peter)← func(h1,Paul),hc(Peter,Paul)

9. SinceC16 is subsumed byC14, C16 is removed.
10. By unfoldingC14 at the first body atom using
{C4,C6}, C14 is replaced with:

C17: ans(Peter)← func(h1,Paul)
C18: ans(Peter)← func(h1,y2), func(h1,y2)

11. By definite-clause removal,C1–C7 are removed.
12. By mergingfunc-atoms with the same invocation

pattern,C18 is replaced with:

C19: ans(Peter)← func(h1,y2)

13. By removing an isolatedfunc-atom, C19 is re-
placed with:

C20: ans(Peter)←

14. SinceC17 is subsumed byC20, C17 is removed.

The resulting QA problem is〈 /0,{C20},ans(x)〉. Since
Models(/0) 6= /0 andC20 is a unit clause whose head is
an instance ofφ(tc(x)), the answer to the “Tax-cut”
problem〈K, tc(x)〉 is determined by

φ−1(
⋂
{rep(head(C20))}) = φ−1({ans(Peter)})

= {tc(Peter)},

i.e., Peter is the only one who gets discounted tax.

Example 2. Refer to the description of the “Tax-cut”
problem, the first-order formulasF1–F6, the clauses
C0–C20 and the clause setCs= {C1, . . . ,C7} in Exam-
ple 1. From the background knowledge of the “Tax-
cut” problem, suppose that we want to prove the ex-
istence of someone who gets discounted tax. This
problem is formulated as the proof problem〈E1,E2〉,
whereE1 is the conjunction ofF1–F6 and E2 is the
first-order formula∃x : tc(x).

Using Proposition 2, this proof problem is con-
verted into the QA problem〈E1∧¬E2,yes〉. Using the
procedure in Section 5.3, this QA problem is solved
as follows:

Embedding�Proof�Problems�into�Query-answering�Problems�and�Problem�Solving�by�Equivalent�Transformation

259

• ConvertE1 ∧ ¬E2 by meaning-preserving Skol-
emization, resulting in the clause setCs∪ {C′0},
whereC′0 is the negative clause(← tc(x)).
• Transform the QA problem

〈Cs∪{C′0},{(φ(yes)← yes)},φ(yes)〉

using ET rules. By following the transformation
Steps 1–14 in Example 1 except that the initial
target clause isC′0 instead ofC0, the clausesC′8–
C′20 are successively produced, where for eachi ∈
{8, . . . ,20},
– lhs(C′i) = /0, and
– rhs(C′i) = rhs(Ci),
andC1–C7 are removed. As a result,Cs∪ {C′0}
is transformed into{C′20}, whereC′20 = (←), and
the QA problem

〈{C′20},{(φ(yes)← yes)},φ(yes)〉

is obtained.
• SinceC′20 is the empty clause, the clause set{C′20}

has no model, i.e.,Models({C′20}) = /0. So the
procedure outputsrep(yes) = {yes} as the answer
to the QA problem〈E1∧¬E2,yes〉.

It follows from Proposition 2 that the answer to the
proof problem〈E1,E2〉 is “yes”, i.e., there exists
someone who gets discounted tax.

8 CONCLUSIONS

Previous approaches to solving QA problems are
proof-centered. They were developed for specific
subclasses of QA problems; for example, answer-
ing queries in logic programming and deductive
databases can be regarded as solving QA problems on
definite clauses and those on a restricted form of def-
inite clauses, respectively. There has been no general
solution method for QA problems on full first-order
formulas.

QA problems on full first-order logic are consid-
ered in this paper. We introduced the concept of em-
bedding and proposed how to embed proof problems
into QA problems. This embedding leads to a uni-
fied approach to dealing with proof problems and QA
problems, allowing one to use a method for solving
QA problems to solve proof problems. It enables
a QA-problem-centered approach to solving logical
problems.

Equivalent transformation (ET) is one of the most
fundamental principles of computation, and it pro-
vides a simple and general basis for verification of
computation correctness. We proposed a framework

for solving QA problems by ET. All computation
steps in this framework are ET steps, including trans-
formation of a first-order formula into an equivalent
formula in the extended clause space ECLSF and
transformation of extended clauses on ECLSF. To the
best of our knowledge, this is the only framework for
dealing with the full class of QA problems on first-
order formulas.

Since many kinds of ET rules can be employed,
the proposed ET-based framework opens up a wide
range of possibilities for computation paths to be
taken. As a result, the framework enables develop-
ment of a large variety of methods for solving logical
problems. The range of possible computation meth-
ods can also be further extended by using computa-
tion spaces other than ECLSF. Proof by resolution
can be seen as one specific example of these possible
methods. As demonstrated in (Akama and Nantajee-
warawat, 2012), it can be realized by using two kinds
of ET rules, i.e., resolution and factoring ET rules, on
a computation space that differs slightly from ECLSF.

REFERENCES

Akama, K. and Nantajeewarawat, E. (2011). Meaning-
Preserving Skolemization. InProceedings of the 2011
International Conference on Knowledge Engineering
and Ontology Development, KEOD 2011, pages 322–
327.

Akama, K. and Nantajeewarawat, E. (2012). Proving Theo-
rems Based on Equivalent Transformation Using Res-
olution and Factoring. InProceedings of the Second
World Congress on Information and Communication
Technologies, WICT 2012, pages 7–12.

Akama, K. and Nantajeewarawat, E. (2013). Embedding
Proof Problems into Query-Answering Problems and
Problem Solving by Equivalent Transformation. Tech-
nical report, Hokkaido University, Sapporo, Japan.

Beth, E. W. (1955).Semantic Entailment and Formal Deriv-
ability. Amsterdam : Noord-Hollandsche Uitg. Mij.

Chang, C.-L. and Lee, R. C.-T. (1973).Symbolic Logic and
Mechanical Theorem Proving. Academic Press.

Fitting, M. (1996). First-Order Logic and Automated The-
orem Proving. Springer-Verlag, second edition.

Gallier, J. H. (1986).Logic for Computer Science: Founda-
tions of Automatic Theorem Proving. Wiley.

Lloyd, J. W. (1987). Foundations of Logic Programming.
Springer-Verlag, second, extended edition.

Motik, B., Sattler, U., and Studer, R. (2005). Query An-
swering for OWL-DL with Rules.Journal of Web Se-
mantics, 3(1):41–60.

Newborn, M. (2000).Automated Theorem Proving: Theory
and Practice. Springer-Verlag.

Robinson, J. A. (1965). A Machine-Oriented Logic Based
on the Resolution Principle.Journal of the ACM,
12:23–41.

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

260

