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Abstract: A proof problem is a “yes/no” problem concerning with checking whether one logical formula is a logical
consequence of another logical formula, while a query-answering problem (QA problem) is an “all-answers
finding” problem concerning with finding all ground instances of a query atomic formula that are logical
consequences of a given logical formula. In order to establish a precise relation between these two problem
classes, the concept of an embedding mapping is introduced. When one problem class can be embedded into
another problem class at low computational cost, the former class can be regarded as a subclass of the latter
class and, consequently, problems in the former class can be solved through a method for solving problems in
the latter one. Construction of low-cost embedding mappings from proof problems to QA problems is demon-
strated. By such embedding, proof problems can be solved using a procedure for solving QA problems. A
procedure for solving QA problems based on the equivalent transformation principle is presented. Application
of the procedure to the two problem classes is illustrated.

1 INTRODUCTION tion (ET) principle. We show that proof problems can
naturally be considered as QA problems of a special

Given a first-order formulaK, representing back- form; therefore, a method for solving QA problems
ground knowledge, and an atomic formula (atcan) also lends itself to solve proof problems in a straight-
representing a queryaery-answering problef@QA forward way.
problen) is to find the set of all ground instancesaf In order to clearly understand the relation between
that are logical consequencedafCharacteristically, ~ proof problems and QA problems, we introduce the
it is an “all-answers finding” problem, i.e., all ground notion of an embedding mapping from one problem
instances of the query atom satisfying the require- class to another problem class. Using an embedding
ment must be found. Avroof problem by contrast, mapping, we demonstrate that proof problems can
is a “yes/no” problem; it is concerned with checking be formulated as a subclass of QA problems. We
whether or not one given logical formula is a logical propose a framework for solving QA problems by
consequence of another given logical formula. ET. A given input QA problem on first-order logic is
Historically, works on logic-based automated rea- converted into an equivalent QA problem on an ex-
soning have been centered around proof problemstended clause space, called the EEsface, through
(Chang and Lee, 1973; Gallier, 1986; Fitting, 1996; meaning-preserving Skolemization (Akama and Nan-
Newborn, 2000). Methods for solving proof prob- tajeewarawat, 2011). The obtained QA problem is
lems were developed, e.g., tableau-based methodghen successively transformed on the EEkBace by
(Beth, 1955) and resolution-based methods (Robin- application of ET rules until the answer to the original
son, 1965), and they have been subsequently adapte@roblem can be readily obtained. With an embedding
to address other classes of logical problems, including mapping from proof problems to QA problems, this
some specific subclasses of QA problems, e.g., QA framework can be used for solving proof problems.
problems on definite clauses (Lloyd, 1987). As op- To begin with, Section 2 formalizes QA problems
posed to such a proof-centered approach, we presentaind proof problems. Section 3 defines an embedding
in this paper a direct approach towards solving QA mapping and shows how to embed proof problems
problems on the basis of theqjuivalent transforma-  into QA problems. Section 4 introduces extended
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clauses, the extended space E€b8d QA problems

on this space. Section 5 presents our ET-based proce-

dure for solving QA problems. Section 6 defines un-
folding transformation on the EClgSspace and pro-
vides some other ET rules on this space. Section 7
illustrates application of our framework. Section 8
concludes the paper.

2 QA PROBLEMS AND PROOF
PROBLEMS

2.1 Interpretations and Models

In this paper, an atom occurring in a first-order for-
mula can be either a usual atom or a constraint atom.
The semantics of first-order formulas based on a log-
ical structure given in (Akama and Nantajeewarawat,
2012) is used. The set of all ground usual atoms, de-
noted bygG, is taken as the interpretation domain. An
interpretationis a subset of;. A ground usual atorg

is true with respect to an interpretatibiff g belongs

to l. Unlike ground usual atoms, the truth values of

ground constraint atoms are predetermined indepen-

dently of interpretations. Anodelof a first-order for-
mula E is an interpretation that satisfi€&s The set
of all models of a first-order formulg is denoted by
ModelgE). Given first-order formulag; andEy, E;
is alogical consequencef E; iff every model ofE;
is a model ofEs.

2.2 QA Problems

A query-answering problertQA problen) is a pair
(K,a), whereK is a first-order formula, representing
background knowledge, aradis a usual atom, repre-
senting a query. The answer to a QA probléfa),
denoted byanswega((K,a)), is defined as the set of
all ground instances afthat are logical consequences
of K. UsingModelgK), the answer to a QA problem
(K,a) can be equivalently defined as

answepa((K,a)) = (ﬂModels{K)) Nrep(a),

whererep(a) denotes the set of all ground instances
of a. Accordingly, a QA problem can also be seen
as a model-intersection problem. When no confu-
sion is causedanswega((K,a)) is often written as
answepa(K, a).

2.3 Proof Problems

A proof problemis a pair(E;, E2), whereE; andE;
are first-order formulas, and the answer to this prob-
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lem, denoted bynswep,((E1, E2)), is defined by

“yes” if Ezisalogical
answep((E1,E2)) = consequence d;,
“no” otherwise.

It is well known that a proof problerE;, E,) can be
converted into the problem of determining whether
E1 A —E is unsatisfiable (Chang and Lee, 1973),
i.e., whetherE; A =E»> has no model. As a result,
answep((E1, E2)) can be equivalently defined by

“ ”

yes” if ModelgE; A —Ey)
answep((E1,Ez)) = is the empty set,
“no”  otherwise.

When no confusion is causednswep((E1, E2)) is
often written asanswep,(Ex, E2).

3 EMBEDDING PROOF
PROBLEMS INTO QA
PROBLEMS

3.1 Embedding Mappings

The notion of a class of problems and that of an em-
bedding mapping are formalized below.

Definition 1. A class C of problemsis a triple
(PrROB,ANS,answe}, where

1. ProB and Ans are sets,
2. answeris a mapping from ROB to ANS.

The sets Roe and ANs are called theproblem space
and theanswer spacerespectively, ofC. Their el-
ements are callegroblemsand (possiblegnswers
respectively, inC. Given a problemprb € PROB,
answe(prb) is the answer tprbin C. O

Definition 2. LetCy = (PROB1, ANS;,answej) and
C, = (PrROBy,ANSy,answep) be classes of prob-
lems. Anembedding mappinigom C1 to C, is a pair
(m,a), wherettis an injective mapping from 0B,
to PrROB; anda is a partial mapping from As; to
ANs; such that for anprb € PROB1, answei (prb) =
o(answes(ti(prb))). O

Let C; andC; be classes of problems. Suppose
that (i) there exists an embedding mappifrga)
from C1 to Cy, (ii) there exists a proceduRefor solv-
ing problems inC», and (iii) there also exist a proce-
dure Py for realizingmt and a procedur®y for real-
izing a. Then a procedure for solving problems in
C1 can be obtained by making the composition of the
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procedure®y, P andP,. C; is regarded as subclass
of C, iff there exists an embedding mappikm, a)
from C4 to C, such thatit anda can be realized at
low computational cost.

3.2 Embedding Proof Problems into QA
Problems

Next, we show how to embed proof problems into QA
problems. Assume that:

o Cga = (PROBga, ANSga, answegq) is the class of
QA problems defined by Section 2.2, i.eR®Bga
is the set of all QA problems, ®sqa is the power
setofG, andanswepga: PROBga — ANSyais given
by Section 2.2.

o Cpr = (PROBpr, ANSpr,answegpy) is the class of
proof problems defined by Section 2.3, i.e.,
PRrROBy is the set of all proof problems, Mspr =
{“yes”,“no” }, andanswep, : PROBp; — ANSpr is
given by Section 2.3.

In order to construct an embedding mapping from
Cpr to Cga, We want to construct from any ar-
bitrary given proof problem(E;,Ez) a QA prob-
lem (K,yes such thatanswep(E1,Ep) = “yes” iff
answepa(K,yes = {yes, whereyesis a 0-ary pred-
icate symbol and the atoryesoccurs in neithee;
nor E>. The following approaches can be taken for
constructing such a formuka:

e Constructk such that every model df contains
yesiff answep,(Eq, E2) = “yes”.

e Construct K such thatK has no model iff
answepr(Ez, E2) = “yes”.

We refer to the first approach pesitiveconstruction,
and the second one megativeconstruction. They are
given below.

3.2.1 Embedding using Positive Construction

Positive construction of an embedding mapping from
Cypr to Cqa can be obtained by Proposition 1.

Proposition 1. Let E; andE> be first-order formulas.
Assume that:

1. yesis a 0-ary predicate symbol arygsoccurs in
neitherEy nor E,.
2. prby is the proof problendE;, E).
3. prbyis the QA problemyes« (E1 — Ep),yes.
Thenanswep,(prby) = “yes” iff answega(prby) =
O

{yes.

e For any proof problendE;, E),
Ta((E1, E2)) = (yes<> (E1 — Ez),yes.
o 0,({yes) ="yes” andoy(0) = “no”.

3.2.2 Embedding using Negative Construction

The next proposition illuminates negative construc-
tion of an embedding mapping fro@, to Cqa.

Proposition 2. Let E; andE; be first-order formulas.
Assume that:

1. yesis a 0-ary predicate symbol arygsoccurs in
neitherEy norE,.

2. prby isthe proof problemEs, Ez).

3. prby is the QA problemE; A —Ep, yes.

Thenanswep,(prby) = “yes” iff answega(prby) =
{yes. O

Proposition 2 determines an embedding mapping
(T, ap) from Cpr to Cqa as follows:

e For any proof problendE;, Ez),
Th((Eq, E2)) = (E1 A —Ez,yes.
e Op({yes) ="“yes” and ap(0) = “no”.

4 QA PROBLEMS ON AN
EXTENDED SPACE

To solve a QA problemK,a) on first-order logic,
the first-order formul& is usually converted into a
conjunctive normal form. The conversion involves
removal of existential quantifications by Skolemiza-
tion, i.e., by replacement of an existentially quantified
variable with a Skolem term determined by a relevant
part of a formula prenex. The classical Skolemiza-
tion, however, does not preserve the logical mean-
ing of a formula—the formula resulting from Sko-
lemization is not necessarily equivalent to the orig-
inal one (Chang and Lee, 1973). In (Akama and
Nantajeewarawat, 2011), a theory for extending the
space of first-order formulas was developed and how
meaning-preserving Skolemization can be achievedin
the obtained extended space was shown. A procedure
for converting first-order formulas into extended con-
junctive normal forms in an extended clause space,
called the ECL§ space, was also presented.

The basic idea of meaning-preserving Skolemiza-
tion is to use existentially quantified function vari-
ables instead of usual Skolem functions. Func-
tion variables, extended clauses, extended conjunctive

Proposition 1 determines an embedding mapping normal forms and QA problems on ECE&re intro-

(T, 0a) from Cyr to Cqa as follows:

duced below.
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4.1 Function Constants, Function
Variables and func-Atoms

A usual function symbol, say, in first-order logic
denotes an unevaluated function; it is used for con-
structing from existing terms, say, ...,t,, a syntac-
tically new term, e.g.,f(t1,...,tn), possibly recur-
sively, without evaluating the new teriits, ... t,).

A different class of functions is used in the extended
space. A function in this class is an actual mathe-
matical function, sayh, on ground terms; when it
takes ground terms, séy . . ., tn, as inputh(ty, ... ,tn)

is evaluated for determining an output ground term.
We called a function in this classfanction constant
Variables of a new type, callédnction variablesare

An extended normal form calle@xistentially
quantified conjunctive normal forficCNF) is a for-
mula of the form3vhy,...,3Vhm : (C1 A -+ ACy),
wherevyq,...,Vhy are function variables and, . . .,

C, are extended clauses. It is often identified with
the set{Cy,...,Cy}, with implicit existential quantifi-
cations of function variables and implicit clause con-
junction. Function variables in such a clause set are
all existentially quantified and their scope covers en-
tirely all clauses in the set.

4.3 QA Problems on ECLS

The set of all ECNFs is referred to as thetended
clause spac€¢ECLS:). By the above identification of

introduced; each of them can be instantiated into a an ECNF with a clause set, we often regard an ele-

function constant or a function variable, but not into a
usual term.

In order to clearly separate function constants
and function variables from usual function symbols
and usual terms, a new built-in predicate symbol
funcis introduced. Given any-ary function con-
stant_orn-ary function variablef, an expression
fund f,ti,...,th,th+1), where thet; are usual terms,
is considered as an atom of a new type, calléaa-
atom Whenf is a function constant and theare
all ground, the truth value of this atom is evaluated as
follows: itis true iff f(ts,...,th) = tht1.

4.2 Extended Clauses

An extended clause 8 a closed formula of the form

YW1,...,VVm (al\/---\/an\/ﬁbl\/---\/ﬁbp
V —fy V.- v=fg),

wherevs,...,Vq are usual variables, each af, ...,
an,by,...,bp is a usual atom or a constraint atom,
andfy,...,fq arefuncatoms. It is often written sim-
ply as (ag,...,an < by,...,bp,f1,...,fq). The sets
{a1,...,an} and{by,...,bp,f1,...,fq} are called the
left-hand sideand theright-hand siderespectively, of
the extended clausg, denoted byhs(C) andrhs(C),
respectively. Whem = 0, C is called anegative ex-
tended clauseWhenn =1, C is called anextended
definite clausgthe only atom inhs(C) is called the
headof C, denoted byheadC), and the seths(C) is
also called théodyof C, denoted byodyC). When
n> 1, Cis called amulti-head extended claus@ll

ment of ECL$ as a set of (extended) clauses. With
occurrences of function variables, clauses contained
in a clause set in the ECISspace are connected
through shared function variables. By instantiating
all function variables in such a clause set into func-
tion constants, clauses in the obtained set are totally
separated.

A QA problem (Csa) such thatCsis a clause
set in ECL$ anda is a usual atom is called @A
problem onECLS:=. Given a QA problem(K,a)
on first-order logic, the first-order formula can be
converted equivalently by meaning-preserving Skol-
emization, using the conversion procedure given in
(Akama and Nantajeewarawat, 2011), into a clause
setCsin the ECLS space. The obtained clause set
Cs may be further transformed equivalently in this
space for problem simplification, by using unfolding
and other transformation rules.

5 SOLVING QA PROBLEMS

Using the notation introduced in Sections 5.1 and 5.2,
our ET-based procedure is presented in Section 5.3.

5.1 Inclusion of Query Information

The following notation is used. A sétof usual atoms
is said to beclosediff for any a € A and any substi-
tution 6 for usual variablesa® belongs toA. Assume

usual variables in an extended clause are universallythat (i) 4 is the set of all usual atoms, (i#; and. 2,
qguantified and their scope is restricted to the clause are disjoint closed subsets @f and (iii) @ is a bijec-

itself.

When no confusion is caused, an extended tion from 4; to 4, such that for anya € 4; and any

clause, a negative extended clause, an extended defisubstitutiond for usual variablesp(ad) = @(a)6. For
nite clause and a multi-head extended clause will alsoanyi, j € {1,2}, an extended clauge is said to be

be called aclause anegative clauseadefinite clause
and amulti-head clausgrespectively.
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from 4; to 4; iff all usual atoms irrhs(C) belong to
4; and all those irths(C) belong to4;.
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Let (K,a) be a QA problem such th#t is a first- (b) If ModeldCs) # 0andQ s a set of unit clauses
order formula in which all usual atoms belong.f such that the head of each clause&iis an in-
andae 4;. As will be detailed in Section 5.3, to solve stance ofp(a), then output as the answer the set
this problem using ETK is transformed by meaning- 1
preserving transformation into a st of extended o (U rep(headC))).
clauses from4; to 4; and a singleton sé) consist- CeQ
ing only of the clausé@(a) < a) from 4; to 4, is (c) Otherwise stop with failure.

constructed from the query atom The resulting

QA problem(CsUQ, ¢(a)) is then successively trans- It is shown in (Akama and Nantajeewarawat, 2013)
formed using ET rules. that the obtained answer is always correct.

The set4, and the bijectionp satisfying the re-
quirement of Step 2 can be determined as follows:
First, introduce a new predicate symbol for each pred-
) icate symbol occurring i4;. Next, let 4, be the
In order to make a clear separation between a set ofatom set obtained from,; by replacing the predicate
extended clauses from; to A, and a set of those  of each atom inZ; with the new predicate introduced
from A4; to A, in a transformation process of QA  for jt. Finally, for each atona € 4, let ®(a) be the

a setCs of extended clauses from; to 4;, a setQ

of extended clauses frord; to 4> and an atonb in
4, let the triple(Cs Q,b) denote the QA problem
(CsuQ,b). A QA problem(Cs Q,b) can be trans- 6 ETRULES ONECLSf

formed by changin by changindg, or by chang- ! L
ing bothCysand(g. gs by ging - ’ Next, ET rules for unfolding and definite-clause re-

moval are presented, along with some other ET rules.

5.2 Triples for Transformation

Definition 3. A transformation of a QA problem . .

(CsQ,b) into a QA problem(C<,Q,b) is equiva-  6:1 Unfolding Operation on ECLSe

lent transformation(ET) iff answega(CsU Q,b) = o _

answega(CS UQ',b). 0 Assume that (iCsis a set of extended clauses, (i)
is a set of extended definite clauses, and @i} is
an occurrence of an atolmin the right-hand side of a

5.3 A Procedure for Solving QA clauseC in Cs By unfoldingCsusingD atocg Csis

Problems by ET transformed into
(Cs—{C})U({_J{resolventC,C’,b) |C’ € D}),
Let 4; be a closed set of usual atoms. Assume that a
QA problem(K, a) is given, whereX is a first-order
formula in which all usual atoms belong t& and
ac 4;. To solve the QA problenfK,a) using ET,
perform the following steps:

where for eactC’ € D, resolventC,C’,b) is defined
as follows, assuming thatis a renaming substitution
for usual variables such th@andC’p have no usual
variable in common:

. . _ e If b and headC'p) are not unifiable, then
1. TransformK by meaning-preserving Skolemiza- resolventC,C’,b) = 0.

tion int I ésin the ECL . o
lon Into a clause s&sin the ¥ space e If they are unifiable, therresolven(C,C’,b) =

2. Determine (i) a closed sgh of usual atoms such {C"}, whereC” is the clause obtained fro@and
that 4, and A4 are disjoint and (ii) a bijectiorp C'p as follows, assuming thétis the most general
from 4; to 4, such that for anya € 4; and any unifier ofb andheadC'p):
substitutiond for usual variablesp(af) = ¢(a)6. _ Ihs(C") = Ihs(C8)

3. Successively transform the QA proble(€s, — rhs(C”) = (rhs(C8) — {b8}) Ubody(C'p8)
{(9(a) +a)},9(a)) in the ECLS space using un- ) )
folding and other ET rules (see Section 6). Ehe r()esultlng clause set is denoted byrdLD(Cs,

,0CC).

4. Assume that the transformation yields a QA prob-
lem (C<,Q,@(a)). Then:

(@) If ModelgCs) = 0, then outputrep(a) as the
answer.
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6.2 ET by Unfolding and Definite-clause
Removal

Let Atomgp) denote the set of all atoms having a
predicatep. ET rules on ECLS§ for unfolding and
for definite-clause removal are described below.

6.2.1 ET by Unfolding

Let (Cs a) be a QA problem on ECLS Assume that:
1. gis the predicate of the query atam
2. pis a predicate such that# q.

3. D is a set of extended definite clausedathat
satisfies the following conditions:

(a) ForanyC € D, headC) € Atomgp).
(b) ForanyC’ € Cs— D, Ihs(C') nAtomgp) = 0.

4. occis an occurrence of an atomAdomg p) in the
right-hand side of an extended clauseCis— D.

Then(Cs a) can be equivalently transformed into the
QA problem(UNFOLD(Cs D, 0cc), a).

6.2.2 ET by Definite-clause Removal

Let (Cs a) be a QA problem on ECLS Assume that:
1. gis the predicate of the query ataam
2. pis a predicate such that# q.

3. D is a set of extended definite clausedathat
satisfies the following conditions:

(@) ForanyC € D, headC) € Atomgp).
(b) ForanyC’ € Cs— D, Ihs(C') N Atomgp) = 0.

4. For anyC' € Cs— D, rhs(C') N Atomgp) = 0.
Then(Cs a) can be equivalently transformed into the
QA problem(Cs—D, a).

6.3 Some other ET Rules on ECL§

Next, ET rules for merginguncatoms having the
same call pattern, for removing isolatthcatoms,

e Ihs(C') = 1hs(CH), and
e rhs(C') = (rhs(C) — {f2})8,

then(Cs a) can be equivalently transformed into
the QA problem{(Cs— {C})uU{C'},a).

2. If their last arguments are not unifiable, then
(Csa) can be equivalently transformed into the
QA problem(Cs— {C}, a).

6.3.2 Elimination of Isolatedfunc-Atoms

A funcatomfungh,ty,... ty,v), wherev is a usual
variable, is said to bisolatedin an extended clauge
iff there is only one occurrence #fin C.

Now let(Cs a) be a QA problem on ECLS Sup-
pose that:

1. C € Cssuch thatC contains afuncatom that is
isolated inC.

2. C' is the extended clause obtained fr@hby re-
moving allfuncatoms that are isolated @

Then(Cs a) can be equivalently transformed into the
QA problem((Cs—{C})U{C'},a).

6.3.3 Elimination of Subsumed Clauses

An extended claus€; is said tosubsumean ex-
tended clauseC, iff there exists a substitutio®
for usual variables such thlts(C;)8 C Ihs(C;) and
rhs(C1)0 C rhs(Cyp).

A subsumed clause can be removed as follows:
Let (Csa) be a QA problem on ECLS If Cscon-
tains extended claus€y andC, such thatC; sub-
sumesCy, then (Csa) can be equivalently trans-
formed into the QA probleniCs— {Cz}, a).

7 EXAMPLES

Example 1 demonstrates how the procedure in Sec-
tion 5.3 solves a QA problem using the ET rules in
Section 6. Example 2 shows how to apply the proce-

and for removing subsumed clauses are presenteddyre to solve a proof problem based on the embedding

They are used in examples in Section 7.

6.3.1 Mergingfunc-Atoms with the Same
Invocation Pattern

Let (Cs a) be a QA problem on ECLS Suppose that
C € Csandrhs(C) containsfuncatomsf; andf; that
differ only in their last arguments. Then:

1. If the last arguments df, andf, are unifiable,
with their most general unifier beiry andC’ is
an extended clause such that
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mapping in Section 3.2.2.

Example 1. Consider the “Tax-cut” problem dis-
cussed in (Motik et al., 2005). This problem is to
find all persons who can have discounted tax, with the
knowledge that (i) any person who has two children
or more can get discounted tax, (i) men and women
are not the same, (iii) a person’s mother is always a
woman, (iv) Peter has a child named Paul, (v) Paul is
a man, and (vi) Peter has a child, who is someone’s
mother. This background knowledge is represented
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in first-order logic as the formulds—Fg below, as-

suming thahc, ns tc, mn wmandmo stand, respec-
tively, for hasChild notSamgTaxCut Man, Woman

andmotherOf

Fio WX ((Jyrdye:
(ha(x,y1) AhG(x,y2) A ns(y1.Y2))) = te(X))
Foi Wxvy: ((mn(x) Awm(y)) — ns(x.y))
Fs: vx: ((3y:max,y)) —wm(x))
F4: hc(Peter Paul)
Fs: mn(Paul)
Fe: 3Ix: (hc(Peterx) A (3y: max,y)))

Accordingly, the “Tax-cut” problem is formulated as
the QA problem(K,tc(x)), whereK is the conjunc-
tion of Fj—Fs. Using the meaning-preserving Skol-
emization procedure given in (Akama and Nantajee-
warawat, 2011), the first-order formuk& is trans-
formed into a clause s€tsconsisting of the following
extended clauses:

Cy: te(x) < he(x,y1), he(x,y2),ns(y1, Y2)
Ca: ns(x,y) ¢ mn(x), wm(y)
Cs: wm(x) < ma(x,y)
C4: he(Peter, Paul) +
Cs: mn(Paul) «
Cs: hc(Peterx) + fundhg,Xx)
Cz: max,y) + fundhg,x), fundhy,y)
The clause<s and C; together represent the first-
order formulaFs, whereh; andh, are 0-ary function
variables.

Assume that all usual atoms occurring@s be-
long to 41, ansis a newly introduced unary predicate
symbol, allansatoms belong t2,, and for any term

t, @(tc(t)) = angt). Let
Co = (angx) + tc(x)).
To solve the QA probleniK,tc(x)), the QA problem

(Cs, {Co},angx)) is successively transformed by ap-
plying the ET rules in Section 6 as follows:

1. By unfoldingCp at tc(x) using {C1}, Cp is re-
placed with:

Cg: angx) < hc(x,y1),hc(x,y2),ns(y1,y2)

2. By unfoldingCsg at the last body atom usin@,},
Cg is replaced with:

Co: anqx) — hC(X’ yl)’ hC(X, y2), mn(y]_),Wrﬂ(yz)

3. By unfoldingCg at the third body atom using
{Cs}, Cq is replaced with:

Cio: angx) < he(x, Paul), hc(x,y2), wm(y)

4. By unfoldingCyp at the last body atom using
{C3}, Cip is replaced with:

Ci1: angx) < he(x, Paul), he(x,y2), maly2, 2)

. By unfolding C;1 at the last body atom using
{C7}, Ci1 is replaced with:
Ci2: angx) < he(x, Paul), he(x,y2), fundhy, y2),
fundhy,z)
. By removing an isolateduncatom, C;, is re-
placed with:
Ciz: angx) « hc(x, Paul), hc(x,y2), fundhg, y2)
. By unfolding C13 at the first body atom using
{C4,Cs}, Ci3is replaced with:
Ci4: angPeter) < hc(Peterys), fundhy,ys2)
Cis: angPeter < fundhy, Paul), hc(Petery,),
func(hy, y2)
. By mergingfuncatoms with the same invocation
patternCys is replaced with:
Cis: angPeten « fundhy, Paul), hc(Peter, Paul)
9. SinceCygis subsumed b4, C16 is removed.
10. By unfoldingCy4 at the first body atom using
{C4,Cs}, Caais replaced with:
Ci7: angPeten « fundhy, Paul)
Cig: angPeten « fundhy,y2), fundhi, y2)
By definite-clause remova&l;—C; are removed.
By merginguncatoms with the same invocation
patternCsgis replaced with:
Cig: angPeten + fundhg,y?)
By removing an isolatefuncatom, Cyg is re-
placed with:
Coo: angPeter
14. SinceCy7 is subsumed b¢,p, C17 is removed.
The resulting QA problem i@, {Cxo},angx)). Since
Modelg0) # 0 andCyq is a unit clause whose head is

an instance ofp(tc(x)), the answer to the “Tax-cut”
problem(K,tc(x)) is determined by

¢ (N{rep(headCzo))}) = ¢ *({angPeten})
{tc(Peten},

i.e., Peteris the only one who gets discounted tdx.

11.
12.

13.

Example 2. Refer to the description of the “Tax-cut”
problem, the first-order formulas,—Fg, the clauses
Co—-Cyo and the clause s€s= {Ci,...,C7} in Exam-

ple 1. From the background knowledge of the “Tax-
cut” problem, suppose that we want to prove the ex-
istence of someone who gets discounted tax. This
problem is formulated as the proof probleémy, Ey),
whereE; is the conjunction of;—F; and E; is the
first-order formuladx : tc(x).

Using Proposition 2, this proof problem is con-
verted into the QA problertEy A—Ey, yes. Using the
procedure in Section 5.3, this QA problem is solved
as follows:
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e ConvertE; A —Ez by meaning-preserving Skol- for solving QA problems by ET. All computation

emization, resulting in the clause fesU {Cy}, steps in this framework are ET steps, including trans-
whereCj is the negative clause— tc(x)). formation of a first-order formula into an equivalent
e Transform the QA problem formula in the extended clause space EELlshd
, transformation of extended clauses on EEL® the
(CsU{Co}. {(9(yes « yes}, @(yes) best of our knowledge, this is the only framework for

using ET rules. By following the transformation dealing with the full class of QA problems on first-
Steps 1-14 in Example 1 except that the initial Order formulas.

target clause i€, instead ofCo, the clause€)— Since many kinds of ET rules can be employe.d,
C}, are successively produced, where for eiagh the proposed ET-based framework opens up a wide
(8,...,20}, range of possibilities for computation paths to be
— Ihs(C)) = 0, and taken. As a result, the framework enables develop-
. ' ment of a large variety of methods for solving logical
— ths(C) = rhs(G), problems. The range of possible computation meth-
andCy-Cy are removed. As a resulGsU {Co} ods can also be further extended by using computa-
is transformed intdCy,}, whereCy, = (+-), and  tion spaces other than ECES Proof by resolution
the QA problem can be seen as one specific example of these possible
/ methods. As demonstrated in (Akama and Nantajee-
{{Cao} {(0lyed —yes}. wlyes) warawat, 2012), it can be realized by using two kinds
is obtained. of ET rules, i.e., resolution and factoring ET rules, on

e SinceC) is the empty clause, the clause &84} a computation space that differs slightly from EGLS
has no model, i.e.Modelg{C},}) = 0. So the
procedure outputep(yes = {yes as the answer
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