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Abstract: Enterococci are dangerous opportunistic pathogens which are responsible of a huge number of nosocomial 
infections, displaying intrinsic resistance to many antibiotics. The battle against enterococci by using 
antimicrobial chemotherapies will depend on the design of new antibacterial agents with high activity and 
low toxicity. Multi-target methodologies focused on quantitative-structure activity relationships (mt-
QSAR), have contributed to rationalize the process of drug discovery, improving the knowledge about the 
molecular patterns related with antimicrobial activity. Until know, almost all mt-QSAR models have 
considered the study of biological activity or toxicity separately. Here, we developed a unified mtk-QSBER 
(multitasking quantitative-structure biological effect relationships) model for simultaneous prediction of 
anti-enterococci activity and toxicity on laboratory animal and human immune cells. The mtk-QSBER 
model was created by using artificial neural network (ANN) analysis combined with topological indices, 
with the aim of classifying compounds as positive (high biological activity and/or low toxicity) or negative 
(otherwise) under multiple experimental conditions. The mtk-QSBER model correctly classified more than 
90% of the whole dataset (more than 10900 cases). We used the model to predict multiple biological effects 
of the investigational drug BC-3781. Results demonstrate that our mtk-QSBER may represent a new 
horizon for the discovery of desirable anti-enterococci drugs. 

1 INTRODUCTION 

The genus Enterococcus is formed by a group of 
low-GC Gram-positive, catalase-negative, non-
spore-forming, facultative anaerobic bacteria that 
can occur both, as single cocci and in chains (Fisher 
and Phillips, 2009). Several species belonging to 
Enterococcus spp. are opportunistic pathogens 
which constitute the major cause of nosocomial 
infections such as bacteremia, bacterial endocarditis, 
diverticulitis, meningitis and urinary tract infections 
(Ryan and Ray, 2004). The successful elimination of 
infections produced by enterococci will depend on 
two very important aspects: the efficiency of the 
antimicrobial chemotherapies used against the 
infection and the safety of the drugs for human 
health. 

Antimicrobial chemotherapies against 
Enterococcus spp. are focused on the use of the β-
lactam antibiotic ampicillin or combination of a cell 
wall–active agent (such as ampicillin or 
vancomycin) with aminoglycosides (gentamicin, 

tobramycin), which may result in synergistic 
bactericidal activity against enterococci (Ryan and 
Ray, 2004). However, enterococci are intrinsically 
resistant to a broad range of antibiotics commonly 
used in the hospital setting, which explains in some 
way, the high prevalence of these bacteria in 
nosocomial infections (Brachman and Abrutyn, 
2009). The most alarming aspect in enterococci is 
that they are reservoirs for antibiotic resistance 
genes, as may be exemplified by their ability to 
transfer vancomycin resistance to methicillin-
resistant Staphylococcus aureus (MRSA), for which 
vancomycin remains the last therapeutic alternative 
(Figure 1). For this reason, there is an increasing 
necessity for the search of new, potent and more 
efficient antibacterial chemotherapies against 
enterococci. On the other hand, when any 
antibacterial drug is designed, serious concerns are 
expected due to its appearance of toxic effects on 
human health. Thus, many trials are carried out on 
laboratory animals. 

In this sense, Mus musculus and Rattus 
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norvegicus are the most valuable species (Hau and 
Schapiro, 2011), suffering as consequence of endless 
batteries of toxicity tests. At the same time, the study 
of the effects of chemicals on human immune 
system cells is also very important because these are 
the lines of defense of the human body, protecting it 
against the entry of any foreign agent (Flaherty, 
2012).  

 

 

Figure 1: Vancomycin: one of the most powerful broad 
spectrum antibacterial drugs. 

In the last six years, several researchers have 
emphasized the use of multi-target for quantitative-
structure activity relationships (mt-QSAR), which 
have emerged as very useful tools for rational design 
and virtual screening of compounds with dissimilar 
biological activities, by considering many different 
biological targets (biomolecules, cell lines, tissues, 
organisms) (Munteanu et al., 2009; Prado-Prado et 
al., 2009; Speck-Planche and Kleandrova, 2012; 
Speck-Planche et al., 2012), to the assessment of 
pharmacological/toxicological profiles in multiple 
assay conditions (Speck-Planche et al., 2013; 
Tenorio-Borroto et al., 2012). 

Nowadays, no methodology has been reported 
for the prediction of anti-enterococci activity and 
toxicity at the same time. Furthermore, sometimes, 
non-linear modeling by using pattern recognition 
methods such as Artificial Neural Networks (ANN) 
(Prado-Prado et al., 2010; Tenorio-Borroto et al., 
2012), should be considered in order to find better 
relationships between the molecular descriptors 
describing the chemical structure of the compounds, 
and their biological activities and/or toxicities. Thus, 
with the objective to reduce the high costs of 
experimentation, in this work we introduce the first 
unified multitasking model based on quantitative-
structure biological effect relationships (mtk-
QSBER) and ANN analysis, for the simultaneous 

prediction of anti-enterococci activities and 
toxicological profiles in multiple assay conditions.  

2 MATERIALS AND METHODS 

2.1 Topological Indices 

Molecular descriptors have served as essential 
support for the development and consolidation of 
important disciplines such as chemoinformatics 
(Oprea, 2005). Among them, topological indices 
(TIs) have been very useful to correlate the chemical 
structure of compounds with the pharmacological 
activity (QSAR) or with the toxicity (QSTR) 
(Todeschini and Consonni, 2009). Descriptors like 
TIs can be considered as numerical parameters of a 
graph which characterize its topology, being graph 
invariants, i.e., they will never depend on how the 
graph (molecule) will be drawn and/or enumerated 
(Todeschini and Consonni, 2009). Then, the 
topology of a molecule can be studied in terms of its 
size (volume), molecular accessibility, shape, 
electronic factors and many other properties. For 
development of this work, we selected some of the 
classical TIs which include valence connectivity 
indices (Kier and Hall, 1986), bond connectivity 
indices (Estrada, 1995), and Balaban index 
(Balaban, 1982). 

2.2 Dataset: Calculation of the 
Descriptors and Development of the 
mtk-QSBER Model 

One of the main factors to take into account for the 
development of a predictive model is the use of an 
appropriate dataset. In this sense, we extracted a raw 
dataset from the large and highly accurate database 
CHEMBL (Gaulton et al., 2012), which is available 
at http://www.ebi.ac.uk/chembldb/. We retrieved 
13073 endpoints of different biological effects 
reported for more than 9000 compounds. With the 
aim of reducing the uncertainty of the data, we 
deleted all the endpoints with missing values or units 
of biological effects. After that, our dataset was 
formed by Nc = 8560 compounds, being some of 
them tested against more than one experimental 
condition cj. For this reason, the dataset contained 
10918 statistical cases. To develop the mtk-QSBER 
model, we employed a similar methodology to that 
reported for the for the simultaneous modeling of 
antituberculosis activity and toxic effects on 
laboratory animals (Speck-Planche et al., 2013). As 
stated in these previous works, any set of 
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experimental conditions cj by which a compound is 
tested, can be expressed as an ontology cj => (me, bt, 
ai, lc). In this ontology, me represents the measure of 
biological effect (anti-enterococci activities or 
toxicity). The element bt is referred to different 
biological targets such as enterococci, Mus musculus 
and Rattus norvegicus, and human immune system 
cells (lymphocytes). For all biological targets, 
information about different strains was taken into 
consideration. The element ai defines specific 
information regarding a test, i.e., if an assay is 
focused on the study of functional (F) or 
pharmacokinectic/pharmacodynamic profiles (A). 
The term lc is the level of curation or verification of 
the experimental information provided by a 
particular test. The elements me, bt, ai, and lc define 
the four conditions which can change in our dataset. 
So, we had N = 10918 cases from Nc = 8560 
compounds mentioned above, where the 
experiments were performed using at least one out 
of Nme = 18 measures of biological effects, against 
at least one out of Nbt = 131 biological targets, in 
one out of Nai = 2 different types of assay 
information, with at least one out of Nlc = 3 levels of 
curation of the experimental information. In the case 
of the element me, we had diverse measures of 
biological effects which were expressed in different 
units. For this reason, all values of antibacterial 
activity against enterococci were converted to nmol/l 
(nM), while all toxicity values associated with 
laboratory animals were expressed in umol/kg 
(micromoles per kilograms). In both kinds of 
conversions, it was necessary to divide the value of 
each compound by its molar mass, and after multiply 
by a factor (usually 103 or 106). We realized these 
transformations in order to make a better 
interpretation of the biological data which permitted 
us a more rigorous comparison between the 
biological effects of any two compounds, measured 
under exactly the same set of conditions cj. Data 
associated with cytotoxicity against immune cells, 
remained in nM. These transformations together 
with the element lc, also contribute significantly to 
reduce and control data uncertainty. All cases in our 
dataset were assigned to 1 out of 2 possible groups 
related with the biological effect of a defined 
compound i in a specific condition cj [BEi(cj)]. Then, 
any compound was considered as positive [BEi(cj) = 
1] when it had high anti-enterococci activity, or any 
desirable toxicological profile, otherwise, the 
compound was considered as negative [BEi(cj) = 
1]. All assignments were realized taking into 
account certain cutoff values of biological effects 
which are depicted in Table 1. For the whole dataset, 

we used a file containing the SMILES of the 
compounds/cases. Calculation of TIs using SMILES 
was performed with the software MODESLAB 
version 1.5 (Estrada and Gutiérrez, 2002-2004). Our 
intention is to predict the biological effect of any 
compound depending on the molecular structure and 
the experimental conditions cj. For this reason if we 
use the original TIs calculated above, they will not 
discriminate the biological effect for a given 
compound by varying the different conditions cj. To 
achieve that goal, and inspired by the use of the 
moving average approach (MAA) (Hill and Lewicki, 
2006), we introduced new sets of molecular 
descriptors like TIs which can be defined according 
to the following equation: 
 

ΔTIi(cj) = TIi – avgTIi(cj) (1)

In Eq. 1, the descriptor avgTIi(cj) characterizes each 
set G of compounds tested under the same 
experimental condition cj, being calculated as the 
sum of all the TIi values for compounds in a subset 
of G, which were considered as positive cases 
[BEi(cj) = 1] in the same element of the ontology 
(experimental condition) cj. For example, in the case 
of the element bt, the descriptor avgTIi(cj) for a set G 
of compounds tested against a defined target bt 
(bacterial strain, immune cell, etc), was calculated as 
the average of the TIi by considering only the subset 
of G, i.e., those compounds which were considered 
as positive [BEi(cj) = 1]. A similar procedure was 
carried out for the elements me, ai, and lc. Anyway, 
in Eq. 1, the most important element is the 
descriptor ΔTIi(cj), which considers both, the 
molecular structure and the experimental conditions 
cj. For this reason, descriptors of the form ΔTIi(cj) 
(120 in total) were used to develop the mtk-QSBER 
model. These descriptors represent the deviation (in 
structural terms) of a compound from the positive 
compounds. The CHEMBL codes, SMILES and 
other relevant experimental data for all the 
compounds used in this work, appear in the 
Supplementary Information 1 (Suppl. Inf. 1) file. 
Our dataset of 10918 cases was randomly split into 
two series: training and prediction sets. The training 
set was used to construct the mtk-QSBER model. 

This was formed by 8298 cases, with 4217 of 
them considered as positive and 4081 negative. The 
prediction set was used for validation of the model 
and assessment of its predictive power, being 
composed by 2620 cases, 1353 positive and 1267 
negative cases. Taking into consideration that large 
number of molecular descriptors, we used a 
combination of the attribute evaluator 
CFsSubsetEval and the search algorithms called
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Table 1: Cutoff values for diverse measures of biological effects. 

Standard measure 
(units)a Biological profile Description Cutoffb 

CC50 (nM) Cytotoxicity Concentration required to reduce cell viability by 50% ≥70000 

ED50 (umol/kg) 
In vivo antibacterial 

activity 
Concentration required to produce a specific effect in 
half of an animal population comprising a test sample 

≤14.53 

IC50 (nM) Antibacterial activity 
Concentration required to inhibit the growth of a 
microorganism by 50% 

≤836.21 

LD50 (umol/kg)im Toxicity Lethal dose at 50% after intramuscular administration ≥960 

LD50 (umol/kg)ip Toxicity Lethal dose at 50% after intraperitoneal administration ≥1050 

LD50 (umol/kg)iv Toxicity Lethal dose at 50% after intravenous administration ≥502.12 

LD50 (umol/kg)oral Toxicity Lethal dose at 50% after oral administration ≥1110 

LD50 (umol/kg)sc Toxicity Lethal dose at 50% after subcutaneous administration ≥713.58 

MBC (nM) Antibacterial activity Concentration required to kill 100% of microorganisms ≤11040.2 

MIC (nM) Antibacterial activity 
Lowest concentration that prevents the visible growth of 
a microorganism 

≤6000 

MIC50 (nM) Antibacterial activity 
Minimum inhibitory concentration required to inhibit 
the growth of 50% of microorganisms 

≤2112.21 

MIC90 (nM) Antibacterial activity 
Minimum inhibitory concentration required to inhibit 
the growth of 90% of microorganisms 

≤4982.18 

ND50 (umol/kg)ip Toxicity 
Dose causing a neurological deficit in 50% of 
organisms after intraperitoneal administration 

≥239.71 

ND50 (umol/kg)oral Toxicity 
Dose causing a neurological deficit in 50% of 
organisms after oral administration 

≥375.52 

PI Activity/Toxicity Protective index ≥4.9 

TD50 (umol/kg)ip Toxicity 
Dose at which toxicity occurs in 50% of organisms after 
intraperitoneal administration 

≥395.21 

TD50 (umol/kg)oral Toxicity 
Dose at which toxicity occurs in 50% of organisms after 
oral administration 

≥632.5 

TD50 (umol/kg)sc Toxicity 
Dose at which toxicity occurs in 50% of organisms after 
subcutaneous administration 

≥1144.41 
a Referred to the element me of the ontology cj.

 b Necessary condition for considering a compound as positive. 

BestFirst and GeneticSearch, all of them 
implemented in the program WEKA version 3.6.9 
(Hall et al., 1999-2013). The purpose was to reduce 
the dimensionality, i.e., the number of molecular 
descriptors. We took into account that at least one 
descriptor representing each element of the ontology 
cj, must be selected. To seek the best mtk-QSBER 
model, ANN analysis was performed using the 
software STATISTICA 6.0 (StatSoft, 2001). In order 
to select the most important descriptors, a sensitivity 
analysis was performed. In this sense, the neural 
network module of STATISTICA has defined a 
missing value substitution procedure, which is used 
to allow predictions to be made in the absence of 
values for one or more input variables (StatSoft, 
2001). Thus, to define the sensitivity of a particular 
input variable (descriptor) v, each ANN is run on a 
defined set of cases (training cases), where a 
network error is accumulated (Hill and Lewicki, 
2006). After, the network is run again using the 
same cases, but this time replacing the observed 
values of v with the value estimated by the missing 
value procedure. So, a new network error is 

accumulated. Taking into consideration that some 
information that each network uses, has effectively 
been removed (i.e. one of the input variables), it is 
logical to expect some deterioration in error to occur 
(Hill and Lewicki, 2006). Then, the sensitivity of 
any input variable is calculated as the ratio of the 
error with missing value substitution to the original 
error. The more sensitive the network is to a 
particular input variable (descriptor), the greater the 
deterioration we can expect, and therefore the 
greater the ratio. This procedure used to detect the 
relative importance of a variable, is efficiently 
implemented in STATISTICA 6.0 (StatSoft, 2001). 
We need to emphasize that only the variables with 
high sensitivity values (>1) were selected, and we 
ensured that at least one variable belonging to each 
element of the ontology cj was among the chosen 
variables in the final model. The quality and 
predictive power of our mtk-QSAR model by 
examining some statistical indices such as the 
sensitivity (Sens) and specificity (Spec), the 
Mathew's correlation coefficient (MCC), and the 
areas under the receiver operating characteristic 
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(ROC) curves (Speck-Planche et al., 2012) in both, 
training and prediction sets. When the analyst does 
not know the system a priori, very sophisticated 
methods to seek the best descriptors and optimize of 
the neural networks may be needed. However, 
taking in mind that the dataset was rigorously 
curated, and that descriptors of type ΔTIi(cj) can 
phenomenologically explain the structural variation 
in the dataset, simple rules for optimizing neural 
network can be applied. Thus, the Intelligent 
Problem Solver was used to seek the best networks. 
This module provides the search for the best models, 
and through an internal algorithm, it considers the 
maximum number of hidden units, based on the 
number of variables and cases (for each type of 
network architecture) (StatSoft, 2001). 

The first five runs served to determine the best 
type of neural network. After, the number of hidden 
units of the network selected as the best was 
employed as maximum number of hidden units in 
five new runs. The process was repeated until a 
network had enough small number of hidden units 
and the total percentage of correct classification 
(accuracy) of cases was ≥90% in both training and 
prediction sets. 

3 RESULTS AND DISCUSSION 

For the selection of the best mtk-QSBER model we 
analyzed the different types of ANNs. These were 
linear neural network (LNN), probabilistic neural 
network (PNN), radial basis function (RBF), and 
multilayer perceptron (MLP). We also took into 
consideration the principle of parsimony, which 
means that the model with the highest statistical 
quality, but having as few variables as possible, 
should be selected. As depicted in Table 2, the best 
mtk-QSBER model found by us was that associated 
with the RBF-ANN, which displays the highest 
performance in terms of sensitivity and specificity, 
with the lowest errors when compared with the other

ANNs. The profile of this ANN is: RBF 5:5-767-
1:1. The symbologies for all the descriptors together 
with their corresponding meanings appear 
represented in Table 3. Our mtk-QSBER model, 
could correctly classify 7740 out of 8298 cases were 
correctly classified, for an accuracy of 93.28% in 
the training set, while in prediction set, 2395 out of 
2620 cases were correctly classified and the 
value of accuracy was 91.41%. More details about 
the results of classification and predictions can be 
found in Table 4 and Supplementary Information 2 
(Suppl. Inf. 2) file respectively. All the average 
descriptors used in this work, together with the 
percentages of correct classification depending on 
the elements me, bt, ai, and lc, can be found in 
Supplementary Information 3 (Suppl. Inf. 3) .  

The values of areas under ROC curves played an 
important role to confirm the quality and the 
predictive power of the model. The values of area 
under the ROC curve were 0.981 and 0.965 for 
training and prediction sets respectively (Figure 2). 
These values of area can be interpreted as follows: 
value of area 0.981, means that a randomly selected 
compound or case from the active group (protein 
inhibitor) will have a larger value of probability than 
a randomly selected compound or case from the 
inactive group, 98.1% of the times. A similar 
deduction can be made from the area under the ROC 
curve for the case of the prediction set. We are 
demonstrating that our mtk-QSBER model is not a 
random classifier because the areas under the ROC 
curves are clearly different from those obtained by 
random classifiers (area = 0.5). By analyzing the 
results of Table 4 and the values of areas under the 
ROC curves, we can say that our mtk-QSBER model 
has excellent quality and predictive power which is 
comparable with other reports in the literature 
related to the use of the mt-methodologies combined 
with ANN analysis (Prado-Prado et al., 2010; 
Tenorio-Borroto et al., 2012). The use of classical 
TIs permits to obtain simple substructural and 
physicochemical information. One important aspect 
is that all descriptors employed to construct the mtk- 

Table 2: Performance of the different ANNs. 

CHARACTERISTICS 
Symbology LNN MLP (TLP)a MLP (FLP)b RBF PNN 

Profile 5:5-1:1 5:5-8-1:1 5:5-7-10-1:1 5:5-767-1:1 5:5-8298-2-2:1 

Training set 
Sens (%) 58.88 72.11 77.35 92.98 95.04 

Spec (%) 58.61 72.38 77.82 93.58 27.96 

Prediction set 
Sens (%) 58.17 72.28 77.01 90.76 94.38 

Spec (%) 61.01 73.72 78.06 92.11 28.02 
a Abbreviation for three layer perceptron ANN. b Nomenclature referred to four layer perceptron ANN. 
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Table 3: Descriptors used to construct the mtk-QSBER model. 

Descriptor Concept 

Δ[3χv
p(me)] 

Deviation of the vertex connectivity index of order 3 and type path, dependent on the molecular structure and the 
measure of biological effect  

Δ[2ep(bt)] 
Deviation of the bond connectivity index of order 2 and type path, dependent on the molecular structure and the 
biological target 

Δ[6ech(bt)] 
Deviation of the bond connectivity index of order 6 and type chain (ring), dependent on the molecular structure and 
the biological target 

ΔJ(ai) Deviation of the Balaban index, dependent on the molecular structure and the assay information 

Δ[5ech(lc)] 
Deviation of the bond connectivity index of order 5 and type chain (ring), dependent on the molecular structure and 
the level of curation of the experimental information 

 
QSBER model have the form ΔTIi(cj). These 
descriptors can be considered as measures of the 
similarity/dissimilarity of a given compound respect 
a group of positive cases depending on the molecular 
structure, and a specific element of the ontology cj 
(me, bt, ai, or lc). Thus, the descriptor Δ[3χv

p(me)] 
encodes information related with the molecular 
accessibility in those regions which contain linear 
fragments formed by three bonds (Estrada, 2002). 
This variable takes into consideration the structure of 
the molecule and the measure of biological effect 
which was used for that molecule. The variable 
Δ[2ep(bt)], is strongly related with the molecular 
volume in linear substructures containing two bonds 
(Estrada, 1995). 

 

 

Figure 2: ROC curves for the mtk-QSBER model. 

A similar physicochemical information is 
encoded by the descriptor Δ[6ech(bt)], but with the 
difference that only regions formed by six-
membered rings are taken into account. The variable 
Δ[2ep(bt)] as well as Δ[6ech(bt)] depend on the 
chemical structure and the biological target against 
which a compound was tested. The variable, ΔJ(ai) 
is focused on the global shape (Balaban, 1982), 
depending on the structure of the compound and the 
assay information. Finally, Δ[5ech(lc)] will depend on 

the molecular structure (considering heteroatoms) 
and the level or degree of curation of the 
experimental information, and its structural 
information will be concerned with the molecular 
volume in those regions with five-membered rings. 
Any model should be able to predict compounds 
which were not used either training or prediction 
sets. For this reason, in order to show how our mtk-
QSBER model works, we predict the effects of the 
antibiotic BC-3781 against enterococci, as well as 
different toxicological profiles under diverse 
experimental conditions. BC-3781 is an 
investigational drug (Figure 3), which has being 
studied as a broad spectrum antibacterial agent due 
to its activity against Gram-positive cocci, 
Haemophilus influenzae, and many other bacteria 
which cause serious skin infections, bacterial 
pneumonia or opportunistic infections. BC-3781 has 
been obtained by Nabriva Therapeutics (Sader et al., 
2012), a company focused on developing new class 
of antibiotics against serious bacterial infections.  

Table 4: Results of classification. 

Classification 
Training set Prediction set 

Positive Negative Positive Negative 

Total 4217 4081 1353 1267 

Correcta 3921 3819 1228 1167 

Wrong 296 262 125 100 

Correct (%)b 92.98 93.58 90.76 92.11 

Wrong (%) 7.02 6.42 9.24 7.89 

Acc (%)c 93.28 91.41 

MCC 0.866 0.828 
a Compounds which were correctly classified by the model. 
b Formally known as sensitivity (Sens) for positive cases and 

specificity (Spec) for negative. 
c Referred to the accuracy as total percentage of correct 

classification. 

All information regarding this systemic product 
can be found at http://www.nabriva.com/. 
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Predictions performed by the mtk-QSBER model are 
available in the Supplementary Information 4 
(Suppl. Inf. 4) file. We need to emphasize that 
predictions were realized against the most important 
enterococci, i.e., Enterococcus faecalis and 
Enterococcus faecium, which are the principal 
bacteria of causing nosocomial infections. 
According to the reports available for MIC50 and 
MIC90 values in the webpage of Nabriva 
Therapeutics, and the reference 41, BC-3781 may be 
used to treat infections caused by Enterococcus 
faecium, but not Enterococcus faecalis. Thus, 
predictions made by the mtk-QSBER model, 
confirm the experimental results. Also, in Suppl. Inf. 
4, we performed predictions focused on the 
toxicological profiles. According to the different 
cutoff values of toxicities reported in Table 1, BC-
3781 can be a very safe antibacterial agent. Our 
predictions help to explain why this pleuromutilin 
derivative has undergone phase II clinical trials with 
positive results. At the same time, we are 
demonstrating that our mtk-QSBER model can be 
used for virtual screening of toxicologically safe 
anti-enterococci agents. 

 

Figure 3: Chemical structure of the promising antibiotic 
BC-3781. 

4 CONCLUSIONS 

Mt-QSAR approaches have emerged as novel and 
powerful alternatives in the field of computer-aided 
drug design, displaying very good performance for 
the modeling of many different biological activities, 
against diverse biological targets and experimental 
conditions. In our work, we extended the mt-QSAR 
concept by constructing an mtk-QSBER model that 
allowed us to include not only biological (anti-
enterococci) activity data, but also, toxicological 
profiles over several biological entities. Thus, our 
mtk-QSBER model was developed to perform 
simultaneous prediction of antibacterial activity 
against bacteria of the genus Enterococcus spp. and 
toxicity of compounds on laboratory animals and 
human lymphocytes. The present mtk-QSBER 
model confirms the idea that the use of mt-QSAR 

methodologies permits to obtain more realistic and 
accurate results. The performance of our mtk-
QSBER model, by classifying compounds as 
positive or negative from a large and heterogeneous 
database of compounds, and depending on dissimilar 
measures of biological effects, targets, and 
reliabilities of experimental conditions, permits its 
use with one essential purpose: discovery of novel, 
potent, versatile and safe anti-enterococci drug 
candidates. 
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