
tScore: Making Computers and Humans Talk about Time

Markus Lepper1 and Baltasar Trancón y Widemann1;2

1<semantics/> GmbH, Berlin, Germany
2Ilmenau University of Technology, Ilmenau, Germany

Keywords: Knowledge Acquisition, Temporal Data, Man–Machine Interface, Domain-specific Languages.

Abstract: Textual denotation of temporal data is a challenge. In different domains very different notation systems have
been developed for pen and paper during history, reflecting domain specific theory and practice. They work
with symbolic representation of activities and combined expressional and spatial representation of time. In
contrast, existing computer-readable formats are either simple lists or complicated expression languages. The
formalism and software presented here, called tScore, try to bridge the gap between these two worlds by
studying the most advanced example of the former, the Conventional Western Notation of music. By ab-
stracting its basic principles, a generic notation framework is defined, suited for reading and writing by both
humans and computers. The syntactic framework of the front-end representation and a mathematical formu-
lation of the underlying semantics are given, which both are parametrisable and allow to plug in application
specific parsers and data models. The current state of library implementation is shortly sketched, together with
a practical example of moderately complex music notation.

1 MOTIVATION AND DESIGN
GOALS OF tScore

In the first place, tScore is the name of a new text for-
mat for denotating arbitrary time-related information
structures. Furthermore, it is the software framework
for processing this information.

The development of tScore starts from the obser-
vation that a temporal description language is highly
desirable which . . .

� can be read and written equally well by humans
and computers,

� is neither restricted to one fixed model of “time”
nor to prescribed parameter values,

� and can be handled with paper and pencil, or with
chalk and blackboard, as the minimally required
information processing hardware.

There are many potential application areas for
such a language in the fields of handling technical sys-
tems and of æsthetic production. In general it enables
the communication between users and computer sys-
tems for the purposes of

� automated performance (sequencing),

� automated transformation/generation of temporal
data,

T

(a)

(c)
(b)

Figure 1: Information Flow Between User, Computer and
Stage.

� computer aided analysis,

� documentation and type setting into multiple for-
mats.

The most complex use cases arise in the context
of æsthetic production and live performance. Figure 1
shows different flows of information related to some
live stage activity between a human user and a com-
puter system: (a) The user writes a score which is
“sequenced” or “performed” by the IT system, (b) the
user writes a protocol of what he/she perceives, which

176 Lepper M. and Trancón y Widemann B..
tScore: Makes Computers and Humans Talk About Time.
DOI: 10.5220/0004540701760183
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2013), pages 176-183
ISBN: 978-989-8565-81-5
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

is rendered nicely by the IT system, (c) the computer
writes a protocol (using motion/gesture/pitch detec-
tion technologies) and delivers a readable score to
the human. In all theses cases (and many more one
can think of) a tScore score object can be the cen-
tral means for information exchange. The motivation
of the authors came out of a concrete composition
project, where it is necessary to unify “Conventional
Western Music Notation” (CWN) and technical con-
trol parameters for electronic sound processing in one
single human- and computer-readable score.

But tScore as such shall not be restricted to these
two domains. In fact, it is one of its central design cri-
teria that the “time axis” as well as the “value range”
are in no way a priori restricted, but can be mapped
to almost arbitrary user-defined domains.

The main problem w.r.t. the time axis is that even
the basic notion of time, the assumptions about its be-
haviour and structure, the permitted denotations and
algebraic operations, the whole so-called model of
time, shall not be defined in advance, but definable
by the user, fitting the application context. The value
axis is in most cases less critical, but, e.g. in case of
CWN, subject of controversial discussions and cannot
be pre-defined either.

Of course, all these necessary definitions need not
be reiterated from scratch, but the user is given a col-
lection of pre-defined library components, which can
be parameterised and plugged together.

So tScore is intended to serve as a denotation of
temporal structures in very diverse contexts, like

� light control
� video cue lists
� kinetic sculptures / robots
� dramaturgy / radio play
� web animation
� stage performance
� music
� (every other conceivable time-related structure)

2 EXISTING APPROACHES TO
DENOTATE TIME

The existing approaches for denotating temporal
structures can be arranged on a scale from “analog” to
“symbolic”, following the categories of GOODMAN
(Goodman, 1976):

� Modern variants of pure graphical music nota-
tion are “analog” encodings. This means that dis-
tances in time are proportionally represented by

distances on the writing surface, in one distin-
guished direction.
The traditional German word is “Streckennota-
tion”, and the technique is employed in avant-
garde music, mixed with classical notation ele-
ments or even exclusively. The different value as-
pects which change in time are denotated either
by traditional pitch indication, using five line mu-
sical note systems, or by some “y-axis” which in-
terpretes some curved lines.

� On the opposite extreme are the “symbolic” rep-
resentations. In the field of music these are
the pure expression languages, like “musixTEX”
(Taupin et al., 2002), “Guido”, “lilypond” (lily-
pond, 2011), “musicXML” (musicxml, 2011) and
many more. Here no relation between spatial lo-
cation and time is defined. Only the mere sequen-
tial order of sub-terms carries any semantics, in
many cases denotating the mere sequential order
in time. Duration, synchronicity, temporal dis-
tances and parallelism are expressed by expres-
sion terms only, built from lexical atoms and com-
bining operators.

� Somewhere in the middle, more to the symbolic
side, is the classical music notation CWN. It is
a term language because the exact values, e.g.
of durations, are encoded by the chosen lexi-
cal atoms and combining operators (e.g. beams).
Nevertheless, a certain flavour of analog represen-
tation is also present: The distance of the “terms”,
the note symbols, and their horizontal alignment
across different, simultaneously played voices, is
expected to “redundantly” represent the temporal
positioning as spatial layout. The balance of ana-
log and symbolic aspects has been carefully anal-
ysed by DAHLHAUS (Dahlhaus, 1965).

But all of these existing approaches lack the desir-
able flexibility. The above-mentioned problem how to
integrate CWN and technical control parameters is in
practice usually solved by “abusing” some formalism,
e.g. by a brute-force mapping of “Midi” control val-
ues to some semantic user domain without any type
check or declaration.

This ubiquitous practice is a “hack” and neither
adequate to professional software engineering nor to
informatics as the scientific discipline which analyses
culturally determined information structures.

tScore:�Makes�Computers�and�Humans�Talk�About�Time

177

PARS prima
T 19 ! ! 20

VOX sop a b c (d e)f (g a h)
P dyn f f > pp
P art - - > > >

T 20 21
VOX sop a b (e f)

P nota [! clef-vl
]

P art ().-
PARS seconda ...

EOF

11 22 33

4

5

67 8

9 10

1111

1111

1111

12

Figure 2: Example of the tScore Input Format.

3 tScore AS A CONSEQUENCE
FROM CWN

The CWN has been developed over hundreds of years,
and is the result of both research results of dedicated
specialists, and of every-day practical experience of
the musical community. Consequently, it has a lot of
advantages:

� It is highly ergonomic, economic and compact,
due to the requirements and experiences of mu-
sical practice.

� It is flexible, parametrisable and adaptable: With
some “plugged-in” additional definitions it can
cover a large historic era from PEROTIN to
STOCKHAUSEN.

� As mentioned above, it can be “abused” for notat-
ing temporal structures of value ranges outside the
traditional realm of music, e.g. physical motion or
film rhythms.

Naturally, the principle of historic development
led to detours and idiosyncrasies:

� There are multitudes of notational elements for
expressing the same thing; e.g. duration by note
heads, stems, flags, dots, ties and tuplet brackets,
which interact in a complicated way.

� The (mathematically spoken) domain and the
ranges of the denotated (mathematical) function
are restricted to metrical time and to traditional
pitch information.

� But even when applying this restriction, there is a
multitude of semantic interpretations, with partly
contradictory assumptions.

� It is hardly readable by computers.

The design of tScore is the consequence of gen-
eralizing the “orthogonal” aspects of CWN:

� Time flows from left to right, top to bottom where
lines must be broken.

� Temporal distribution is indicated by dividing
space.

� Synchronicity is established by super-position and
horizontal alignment.

� Multiple voices run in parallel, which again con-
sist of multiple parameter tracks.

On the other hand tScore avoids the above-
mentioned restrictions and deficiencies of CWN and
ad-hoc computer languages:

� There is no pre-defined model of time, but only
minimally necessary basic definitions.

� There are no pre-definitions on the value axes, but
the user has to “plug” the required syntactic and
semantic structures into the abstract framework.

� It allows arbitrary lexical identifiers for value de-
notation, and arbitrary overloading, organized by
parameter tracks.

� The front-end representation of tScore is mere
type-writer text. This means a simple linear se-
quence of characters. ASCII suffices, and a larger

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

178

subset of Unicode is possible, as long as a mono-
space font is used to establish the y-coordinate as
text column.

4 SYNTAX OF THE tScore
INPUT FORMAT

Figure 2 shows the basic elements of the tScore input
format:

1. The reserved keyword “PARS”, followed by a
unique identifier, separates independent parts of
a score file.

2. The reserved keyword “T” marks the beginning of
a dedicated line of input text called time line.

3. Textual entries (of arbitrary format) in such a time
line link the text column of their appearance to
some instant of the chosen time domain.

4. The horizontal ranges between two neighbours of
this time instances can be sub-divided by excla-
mation marks. (The resulting ranges can further
be divided by dots, which is not shown in this ex-
ample.)

5. The reserved keyword “VOX”, followed by an
identifier, marks the beginning of a so-called
“voice-line”, which is used to construct a single
voice object. A voice is defined as a sequence
of adjacent, non-overlapping events. Each such
event is thus related to one particular voice and
one particular time instant as its coordinates.
One single lexical entity appearing in a voice line
has two-fold semantics: Firstly it declares the
mere existence of one single event with the co-
ordinates corresponding to its position in the text,
namely line and column number.
Secondly it defines the value of one of the events
parameters, namely the chosen main parameter.1

6. Such an event-defining entity can appear at a text
column which is already defined by a temporal
mark in the time line, . . .

1Two remarks:
First: The divisions of the horizontal text areas (numeric
constants dividing the whole time-line, exclamation marks
between the numbers, events between the exclamation
marks, parentheses between events, etc.) contribute only
with their mere number: A division by three(3) has the
same semantics independent of the numbers of concrete text
columns and appearing white space characters in between.

Second: the very last column of a time line may not carry
any event; any event starting at this time point must be no-
tated at the beginning of the corresponding system, which
is normally the next following in the score file.

7. . . . or it can appear in between, which defines a
further level of (“spontaneous”) sub-division of
the temporal interval.

8. In a voice line, arbitrarily nested round parenthe-
ses can be used for further sub-division: The “log-
ical time” is distributed evenly between all single
events and parenthesized expressions appearing in
one time segment. The same rule holds for the
contents of the latter, and hence recursively for ar-
bitrarily nestings.

9. The reserved keyword “P”, followed by an identi-
fier, starts a line which defines a further parameter
for the events of the current voice.

10. Parameter values follow some arbitrary syntax,
defined with the name of the parameter track.
They can, but need not, appear in every column
which is bound to an event. (But cannot define
new events and time instances of their own.)

11. Esp. overloading is easily possible, the lack of
which is a severe deficiency of nearly all compet-
ing systems. Here “f” is used for a pitch and for
an intensity, “>” for a diminuendo fork and an ar-
ticulation mark, and “(” as grouping in the event
defining line, as described above, and as sign for
legato in the parameter line.

12. The lexers for the different parameter tracks may
support arbitrarily defined “ascii art”.

5 FIRST PARSING PHASE AND
GENERIC SEMANTICS

The first parsing steps convert the two-dimensional
input, as described in the preceding section, into an
intermediate data model. In the technical sense, in
the sense of classical compiler construction, this data
model already plays the role of a “semantic model” .
Seen from the application’s viewpoint, it is not a se-
mantic model, but a generic and intermediate one, and
the real semantics will be constructed by subsequent
transformations, defined by the user. Figure 3 depicts
these both levels in an informal way.

More precise are the formulas in Table 1. Let S
be the set of all trimmed string values, and S1 its sub-
set without the empty string, and Id the strings usable
as alphanumeric identifiers. The central notions are
those of an “event” E and a “voice” V .

The time points on this level of abstraction repre-
sent “mere syntactical time”. They are constructed as
the algebraic data type Tsynt, with certain consistency
conditions.

tScore:�Makes�Computers�and�Humans�Talk�About�Time

179

Voice

Tsynt

Event

eventsOf
<ordered>

1 0..1
id

ParamText

0..1

domain
specific
interpretation

= user-defined
semantics

Figure 3: The tScore first step generic model, symbolic.

They start with the top-level time points, repre-
sented by the constructor top() applied to some text
argument. These represent the columns in the source
text which are marked by some textual entry (but not
by the subdivision signs “!” or “.”) in the “T . . . ”
time ruler line, see number (3) in Figure 2. Please
note that the contents of these texts are totally left
open. In many cases they will be numeric, repre-
senting measure numbers in case of CWN, or phys-
ical time units, etc., and ascending order will be re-
quired. But this must be defined in the subsequent
user-defined transformation step, as indicated by the
broad arrow symbol in Figure 3. On this level of def-
inition, arbitrary text is allowed.

The further horizontal divisions induced by the
source text (either on the time scale line, or in the
event generating voice lines, see preceding section
for details) are represented by the application of div,
which takes two existing time points, divides the in-
terval into count sub interval’s, and takes the start of
the n-th sub interval as a new time point, where n is
encoded as pos. This data type is restricted, as from
must be earlier than to, count must be greater or equal
to two(2), and pos must be greater zero(0) and less
than count. Again, there are no assumptions on par-
ticular methods for dividing intervals, i.e. there are no
equalities like “2=4 = 1=2” imposed on this generic
level.

Every event from E is related to one single voice
from V and one single timepoint Tsynt, and uniquely
identified by their combination. The map eventAt is
a (partial) bijection: At most one event occurs at a
given time instance in a given voice. Conversely, ev-
ery event is related to one voice and one time instance.

Beyond this role as mere labels for events and
their sequential order, no further properties of Tsynt

Table 1: Data model of tScore. Upper part: pure syntactic
data. Lower part: user-defined interpretation of parameter
values.

disjoint(S;E;V)

S ::= all trimmed string values
Id � S S1 = Snfeg

Tsynt ::= top(S1)
j div(from; to : Tsynt;count:pos : N)

eventAt : (V �Tsynt)9! E
eventsOf : V ! E�

paramText : (E� Id)9 S
————————————————————-

U = Õ j : Id;e : E:(Vj tf?noDatag)
L j : S! (S�Vj)[f?noMatchg
� j : (Vj [f?noDatag)�Vj!Vj

L j;e : (S�U)! (S�U)

L j(s) = (s0;v) jsj> js0j
L j;e(s;u) = (s0;u�f(j;e) 7! (u(j;e)� j v)g)

L j(s) =?noMatch

L j;e(s;u) = (s;u)

ScoreFormat : Id 9 L j
�

parse1param : E� Id!U
u0 = Id�E�f?noDatag

ScoreFormat(i) = hc j1 ; : : : ;c jni
paramText(e; i) = s

lim
k!¥

(c j1;e # : : : # c jn;e)
k(s;u0) = (hi;u)

parse1param(e; i) = u

U =
[

e : E; i : Id:parse1param(e; i)

are assumed. All semantic properties, and their sig-
nificance for the events related to them, must be cal-
culated in the subsequent, user-defined processing by
mapping them to some domain specific model of time.
This may impose equalities and further restrictions.

Every combination of event and Id can point to at
most one arbitrary string constant as the paramText.
This is the text input as extracted from the source text,
related to that event and appearing in the parameter
track with the given id, see preceding section and Fig-
ure 2. Its meaning is, again, constructed in the subse-
quent user-defined transformation.

6 SECOND PARSING PHASE AND
USER-DEFINED SEMANTICS

The basis to model all user-defined semantics is the

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

180

T 19 ! ! 20
VOX sop a b (c d) e f g

P dyn p<>1 !1 >1 !1 >1 !1ff0
// written in two lines is the same:
// P dyn p< ff
// >1 !1 >1 !1 >1 !1

P mat ["Siegfriedmotiv"]

The resulting data structures are (events represented by their “pitch”):

f Group(num = 0;start = ”p <”;end = ” f f ”;events = fa;b;c;d;e; fg);
Group(num = 1;start = ”>”;end = ””;events = fa;bg);
Group(num = 1;start = ”>”;end = ””;events = fc;dg);
Group(num = 1;start = ”>”;end = ””;events = fe; fg);
Group(num = 1;start = ”Siegfriedmotiv”;end = ””;events = fa;b;c;d;e; f ;gg)

g
Figure 4: Tendency and Groups Collector.

unconditional (object-oriented, “co-algebraic”) self-
identity of the events from E. The finally result-
ing user data is an indexed collection U from Ta-
ble 1, where Vj are the different specific ranges of
user-level parameter values, indexed by some iden-
tifier j 2 Id. The transformation from the values of
paramText from the preceding section into these data
is executed by a co-operation of two transformation
steps. The basic idea is as follows:

First, there are lexical parsers L j which (possibly)
consume parts of the raw paramText string data from
S and construct a value of some user-level parameter
domain Vj. This domain must be a monoid together
with the operation � j and ?noData as neutral element,
which are used to combine the results of zero or more
successful parsings. Vj may include a dedicated value
resulting from conflicts and cases of error, which is
treated as a normal parameter value in this stage of
processing.

Second, by selecting one event e 2 E as current
index, we construct a collector L j;e as as a lexer with
result storage U. Seen as a function on S�U, it de-
creasing in its first and increasing in its second com-
ponent.

Finally, a ScoreFormat is a mapping from those
explicit identifiers i which appear in the confirm-
ing scores as names of parameter tracks, like “dyn”,
“art” and “nota” in Figure 2, to a sequence of those
parsers (with implicit identifiers j) which will be ap-
plied to the raw input parameter. (The voice line after
the keyword “VOX” is treated the same way, by substi-
tuting the implicit parameter name $main 2 Id.)

The parse result for one event e 2 E and one
parameter id i 2 Id is realized by the function
parse1param: The parsers are instantiated to collec-
tors for e and applied in turn to the input until the

result stabilizes. This is guaranteed to occur in finite
time, because every proper change to u is accompa-
nied by some consumption of s. When s is totally
consumed then parsing is finished; when no shorten-
ing of s has taken place for a whole loop then an error
condition is detected.

Following this framework, in case of success we
get at last a complete data storage U which relates
every event to an indexed collection of user-defined
value types.

The translation of time values is much more spe-
cific and much less subject to automation: In most
cases dedicated parameter values from U are involved
to create the translation from Tsynt to some domain
specific model of time and duration. In case of CWN
these are meter indications, bar numbers, tempo in-
dications, etc. We assume that in this field further
attempts to automate will soon reach their limits, but
versatile generic libraries must be provided anyhow.

7 GENERIC BUILDING BLOCKS,
CURRENT IMPLEMENTATION

For constructing the implementation of the user-
defined semantics, the current tScore implementa-
tion comes with a library of generic code objects
which can be parametrised and plugged together by
the user. Currently this has to be done by writing
source code in the Java language. Future develop-
ment will include a more easy-to-use configuration
language for replacing the low-level Java program-
ming, as far as possible. The building blocks are
generic and parametrisable, and belong to one of two
groups:

First, there are the lexical analyses and transla-

tScore:�Makes�Computers�and�Humans�Talk�About�Time

181

T 19 ! ! ! 20
VOX sop a b c d b c d e % c d e f

P art $- .- ()- sim > sim
//yields
// P art - .- ()- - .- ()- > - .- ()-

P ls $f p p sim TERM cont
//yields
// P ls f p p f p p f p p f p p

Figure 5: Pattern Distributor.

tors which parse the text fragments from the param-
eter tracks of the input text into Java collections in-
dexed by Event objects. They correspond to the lex-
ical parsers L j and collectors L j;e from the preceding
section.

Secondly there are transformation algorithms
which apply higher-level transformations on complete
sequences of events. Some of them come from tech-
niques typical for CWN, but most are applicable to
all kinds of data values. Some of them operate on
the sequences of events after parsing and interpreta-
tion, i.e. on user-level data. But most of them operate
like pre-processors on the unparsed input values of
paramText.

The most significant tools from this group are:

Dotted Notation Expander. As known from CWN,
a some kind of “dotted notation” can be very con-
venient for denotating the very frequent duration
sequences like (1� (2�n);2�n) for n� 2.
In tScore this is realized by a transformation
which extracts and deletes the dots from the lexi-
cal representation of an arbitrary main parameter,
and adjusts the proportions of the temporal coor-
dinates a posteriori.

Tendency and Groups Collector. This tool collects
group of events into composite data objects. Fig-
ure 4 shows some examples: All event objects
enclosed by the corresponding parameter denota-
tions are collected to one group, identified accord-
ingly.

Pattern Distributor. Realizes the “simile” construct
from CWN, see Figure 5: A dedicated marker
(defaults to “$”) starts a pattern definition, the
keyword “sim” starts its repetition, and any ex-
plicit value in this parameter track, or the keyword
“TERM” ends it. “cont” resumes execution of the
pattern at the phase position where it has stopped.
Of course all these keywords are configurable, and
the operation is totally independent from the value
range of the track to which it is applied.

Duration Distributor and Placeholder Eraser. As
mentioned above, the basic notion of events is
a duration-less instant in time. In most case the
distance to the subsequent event is meant as the
event’s “duration parameter”. This is realized
by the duration distributor, which calculates this
distance and assigns it to the event as the value
of that parameter. From now on this event may
be freely moved around and does not need any
reference to its successor or voice context any
more! Note that the calculation of this time
distance may be a complicated task, depending
on the chosen time model.
For pauses and prolongations, pseudo-events may
be inserted into the event sequence. These are
removed by the placeholder eraser, for prolonga-
tions typically before and for pauses after the du-
ration calculation has taken place.

Running Octave Collector. Implements the running
octave or interval minimization discipline, well
known from musixTEX, lilypond and many other
input formats. This input feature infers the octave
register of the next note of a melody, if it is not
given explicitly, by choosing the smallest melodic
step from its predecessor, and is applied e.g. in
Figure 6

Metric Distributor. In case the time model is
CWN-like, then there must be a dedicated
(pseudo-)voice which describes metrics, incom-
plete bars, tempo, etc. This processor distributes
the current metric information to all top-level time
points, enabling the subsequent translation of tex-
tual input columns into bar-relative metric posi-
tions.

8 STATE OF THE WORK,
FUTURE WORK

As mentioned above, the theory and implementation
of the combinator library for the second phase of

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

182

// fuga a 3.cwn
PARS p1
T 1 2 3 4
VOX M 2/4
VOX sop (g’2 ,c) (% es d c) ’as as as (f d) g g g (es c)

P nota cl-Vl

T 4 5 6 7
VOX sop f f (f d g f) (es f es d)(c c’)(- b a g)(fis g a -)
VOX alt (c’2 g) (% b a g)’es es es (c a)

P nota cl-g2
 þþ

�

þ þ
�

�

� �
þ� ��� 42

� ��� 42

þ� þ þ þþ þ þ þþ þ

þ þþ þ þ þ

þ �

4

� ���
� ���

�

� �

� þ þ

þ þ

þþ

þ þ

þ

þ� þ

þ

þ
þ
�

þ

þ

� þ þ
þ

þ þ þ

Figure 6: tScore CWN to Lilypond Example.

parsing (translating the generic data into user-defined
data) is still subject of research. The next major step
in the tScore project will be the research on the alge-
braic structure of the combinators� j (see Table 1), on
their relations to the corresponding syntactical combi-
nators of the parsers input side, and the definition of a
library supporting both.

Beside the mathematical questions, in which stan-
dard methodologies from algebra and co-algebra will
be applied, practical issues have to be addressed:
� Error handling must be supported in a user-

friendly way, error recovery and diagnosis have
to distribute over these combinators.

� The intended fully free design of front-end rep-
resentations (see label number 12 in Figure 2 !-),
must be supported by some a priori diagnosis for
detecting possible ambiguities and for automated
selection of adequate parsing techniques.

� A front-end language must be implemented to
make the combinator library accessible without
the need of genuine Java programming.
We are sure that the work invested in the notation

of CWN will also turn out fruitful for information ac-
quisition in totally different areas, where also domain
specific “analog” short-hand notations for temporal
structures are common to the domain experts.

Luckily the framework and our specialized li-
braries up to the current point work fine, and give a
firm grid for further practical experiments and theo-
retical studies.

Our instantiation for CWN supports already some
important kernel features beside mere note sequences,
like metric change, incomplete measures and clef
change. It converts into a semantic user model, and
has a translation into “lilypond” note setting source
text (lilypond, 2011)..

Figure 6 shows a tScore input file and the cor-
responding note print out created by this famous note
setting program. You nearly can play the music prima
vista, from both notations, can’t you?

REFERENCES

Dahlhaus, C. (1965). Notation Neuer Musik. Darmstaedter
Beitraege zur Neuen Musik, 9.

Goodman, N. (1976). Languages of Art. An Approach to a
Theory of Symbols. Hackett Publishing.

lilypond (2011). Lilypond Music Notation. http://
lilypond.org.

musicxml (2011). MusicXML website. http://
www.recordare.com/musicxml.

Taupin, D., Mitchell, R., and Egler, A. (2002). MusixTEX
— Using TEXto write polyphonic or instrumen-
tal music. http://www.ctan.org/tex-archive/musixtex/
taupin/musixdoc.pdf.

tScore:�Makes�Computers�and�Humans�Talk�About�Time

183

