
On the Effectiveness of Dynamic Taint Analysis for Protecting against
Private Information Leaks on Android-based Devices∗

Golam Sarwar (Babil),1,2 Olivier Mehani,1 Roksana Boreli,1,2 and Mohamed-Ali Kaafar1,3

1NICTA, Eveleigh, Sydney, NSW, Australia
2UNSW, Kensington, Sydney, NSW, Australia

3Inria, Grenoble, Rhône-Alpes, France

Keywords: Dynamic Taint Analysis, Privacy, Malware, Anti-Taint-Analysis, Anti-TaintDroid, Android.

Abstract: We investigate the limitations of using dynamic taint analysis for tracking privacy-sensitive information on
Android-based mobile devices. Taint tracking keeps track of data as it propagates through variables, inter-
process messages and files, by tagging them with taint marks. A popular taint-tracking system, TaintDroid,
uses this approach in Android mobile applications to mark private information, such as device identifiers or
user’s contacts details, and subsequently issue warnings when this information is misused (e.g., sent to an un-
desired third party). We present a collection of attacks on Android-based taint tracking. Specifically, we apply
generic classes of anti-taint methods in a mobile device environment to circumvent this security technique. We
have implemented the presented techniques in an Android application, ScrubDroid. We successfully tested our
app with the TaintDroid implementations for Android OS versions 2.3 to 4.1.1, both using the emulator and
with real devices. Finally, we evaluate the success rate and time to complete of the presented attacks. We
conclude that, although taint tracking may be a valuable tool for software developers, it will not effectively
protect sensitive data from the black-box code of a motivated attacker applying any of the presented anti-taint
tracking methods.

1 INTRODUCTION

Mobile devices have become an integral part of our
daily lives, with hugely increased usage of various
applications and services in addition to their origi-
nal purpose of enabling mobile communications. The
reliance on such devices has also resulted in an in-
creased amount of personal information which is ei-
ther stored locally, or potentially available through
various peripherals such as built-in GPS or camera.
Lists of contacts, personal or work emails, brows-
ing history and other private data can be accessed
by the software running on such devices and for-
warded to external entities. With their ability to eas-
ily access, install and run applications from various
sources, these mobile devices have, perhaps unsur-
prisingly, become a prime target for private data-
collecting applications bundled with, or sometimes
masquerading as, legitimate software (Egele et al.,
2011; Hornyack et al., 2011). Collecting information
from user’s mobile devices has actually become a line

∗This paper is a shortened version of the technical report
available at http://www.nicta.com.au/pub?id=7091

of business (e.g., 201, 2011). Such data may be used
for a number of purposes, ranging from identity theft
to profiling and tracking for purposes of targeted ad-
vertising (Grace et al., 2012).

The Android mobile operating system includes a
permissions framework whereby, upon installation,
an application has to explicitly request access to spe-
cific resources from the user. However, it is not un-
common that application developers request access to
a greater number of resources than what is needed
for the application to perform the intended function-
ality (Felt et al., 2011), and users are usually unable
to properly evaluate these requests (Felt et al., 2012).
Moreover, users do not have a choice in regards to
specific permissions, as an app can only be installed
if the users agrees to all that is requested. Therefore,
additional methods to protect the privacy of users’
data are required. A number of tools to achieve
this have been developed in recent years.2 Within
the research community, the TaintDroid (Enck et al.,
2012) tool has received a lot of attention and a num-

2For example, PDroid and LBE Privacy Guard, available
from Google Play.

461Sarwar G., Mehani O., Boreli R. and Kaafar M..
On the Effectiveness of Dynamic Taint Analysis for Protecting against Private Information Leaks on Android-based Devices.
DOI: 10.5220/0004535104610468
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 461-468
ISBN: 978-989-8565-73-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ber of extensions have also been proposed and imple-
mented (Hornyack et al., 2011; Russello et al., 2012).
This patch for the Android system uses dynamic taint
analysis (Newsome and Song, 2005; Schwartz et al.,
2010) to track sensitive data as it is used by (un-
trusted) apps. It “taints” sensitive data, and warns the
user when these variables are leaked.

Prior work on taint analysis has already identified
both conceptual and technical limitations (Cavallaro
et al., 2007, 2008; Schwartz et al., 2010), that can be
exploited to avoid detection. Dynamic anti-taint tech-
niques have been classified by Cavallaro et al. (2008).

In this paper, we investigate the level of protec-
tion that dynamic taint tracking delivers to user’s sen-
sitive data in the Android environment. We identify
the evasive attacks on taint tracking that a malicious
code can perform to create taint-free variables from
tainted objects. To the best of our knowledge, this
is the first paper that systematically evaluates the ap-
plicability of dynamic anti-taint tracking techniques
in the mobile device environment. Our focus here is
on dynamic taint analysis and that the use of static
analysis, which is sometimes suggested as a comple-
mentary technique in these contexts (e.g., Graa et al.,
2012), is out of the scope of this paper.

Our contributions are as follows. Weevaluate the
effectiveness of generic anti-taint tracking meth-
odswithin the Android OS architecture (on versions
2.3 to 4.1.1 of the patched OS), by implementing a
series of attacks in a proof-of-concept application,
ScrubDroid. Specifically, we evaluate the effective-
ness against the following classes of attacks:control
dependence, which exploits conditional constructs to
breach the taint propagation mechanism;subversion
of benign code, in which the attacker uses the exist-
ing code trusted by the host, abusing its functionality
to remove taint marks; andside channel, that exploits
the use of media that are not considered as capable of
carrying information (e.g., non-monitored memory) .
We evaluate experimentally the success rates for all
presented attacks. Finally, we characterise the time
to complete the attacks for two types of leaked data:
mobile device’s International Mobile Station Equip-
ment Identity (IMEI) number and a 5 s audio record-
ing from the mobile device’s microphone. We con-
clude thatdynamic anti-taint tracking techniques
arenot sufficient to provide adequate levels of pro-
tectionagainst software that is designed to evade taint
tracking.

The organisation of the rest of this paper is as fol-
lows: in Section 2, we review the background and re-
lated work. In Section 3 we introduce our attacker
model and, in the following Section 4, detail our spe-
cific anti-taint attacks which can be successfully ap-

plied to circumvent taint tracking with TaintDroid.
We provide our experimental evaluation of the at-
tacks, including the success rate and time to complete
in Section 5. In Section 6 we discuss our findings and
conclude this paper in Section 7.

2 BACKGROUND

2.1 Taint Tracking

Taint analysis was originally proposed as a method to
track the lifetime of data in a program (Chow et al.,
2004). It is an information flow analysis technique
which works by keeping track of variables contain-
ing data with some property by tagging them with
taint marks. The taint tracking system follows all the
marked variables and their derivatives until the end
of their life-cycle. Dynamic taint analysis (Newsome
and Song, 2005) is an extension of the technique to
perform this data tracking in real-time, as the pro-
gram is executed. Taint tracking mechanisms have
been implemented in a number of programming lan-
guages (e.g.Thomas and Hunt, 2001; 201, 2012), as
a way to support the developer’s task of writing valid
code.

More recently, the use of the technique has seen
a renewed interest for malware analysis and detec-
tion. Ho et al. (2006) proposed to track input from
the network to untrusted code running locally, to en-
sure it does not get executed (e.g., commands from
a command and control system). The Panorama sys-
tem (Yin et al., 2007), flags potentially malicious code
by identifying how it uses sensitive data it captures.
Similar concepts are applied to prevent Android ap-
plications from accessing private data and silently
leaking it to unwanted third-parties, either in real-time
on the device with TaintDroid (Enck et al., 2012), or
even earlier on in the App markets, with AppInspec-
tor (Gilbert et al., 2011).

A noteworthy property of this second class of ap-
proaches is that they have fundamentally different as-
sumptions in regards to trust in the various elements
involved in the system. While in the initial proposals,
taint analysis was a support tool for the developer, in
the context of malware analysis it is actually a tool
to useagainst the (malware) developer; conversely,
input data, previously untrusted, is now the item to
protect.

2.2 TaintDroid

TaintDroid (Enck et al., 2012) is an implementation
of dynamic taint analysis for the Android platform.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

462

It is implemented as an extension to the Dalvik vir-
tual machine, and can oversee all activity which runs
above it.

TaintDroid uses the concepts oftaint sources,
from which sensitive information (e.g., IMEI, text
messages, contacts, GPS data or picture from the
mobile device’s camera) is obtained, andtaint sinks,
which are interfaces to the outside world (e.g., us-
ing data networks or sending SMSs) where tainted in-
formation is usually not expected to be sent. When
tainted data reaches a taint sink, TaintDroid issues a
warning to the user. A noteworthy point is that only
system Java Native Interface (JNI) calls to known sys-
tem libraries are allowed, excluding all third-party
ones.

As TaintDroid uses dynamic taint tracking to pro-
tect sensitive user information from untrusted code, it
shares the limitations of dynamic taint analysis (Cav-
allaro et al., 2007, 2008; Schwartz et al., 2010).
Enck et al. (2012) acknowledge that TaintDroid is
vulnerable to control dependence attacks as well as
some side-channel attacks. Nonetheless, user data-
protection solutions like AppFence (Hornyack et al.,
2011) and MOSES (Russello et al., 2012) have been
built based on TaintDroid, with the added functional-
ity of blocking of data leaks, rather than just issuing
warnings. Both the generic anti-taint tracking meth-
ods and the specific attacks we present in Section 4
will also apply to these systems and can be used to
bypass the security they provide.

3 ATTACK MODEL

Our attack model is summarised in Figure 1. The at-
tacker is a developer, who produces an application to
be executed on a third-party system. The goal of the
application is to extract sensitive information from
this system and send it to a collection system they
control. We assume the application is willingly in-
stalled by the user (step 1), and do not consider po-
tential infection vectors. However, we also assume
this user is wary of such applications, and runs them
under a dynamic taint tracking system to ensure none
of the private data is transferred to the network.

Rather than subverting the taint sources (step 2)
or sinks (step 4), our attacker focuses on the taint-
propagation chain (step 3). The attacker’s objective
is therefore to exploit the limitations we identify in
the next section to remove the mark of a tainted vari-
ableXTainted, transforming it intoYUntaintedand silently
leaking it to the network.

Next, we present the algorithms of the attacks that
we have implemented in our PoC application, dis-

Private Data

Attacks against

Taint Analysis

Malicious App

������ !

Taint Tracking System Attacker

Network Access

"#������ !

Networked

Database Server Database Se

rver

12

3
4

Figure 1: Our attack model against dynamic taint analysis
used for detection of malware leaking sensitive information.

cussed in Section 5. While some attacks exploit com-
ponents which are explicitly not protected by Taint-
Droid, others rely on the intrinsic (generic) limitations
of using dynamic taint tracking for malware analysis.

4 ANTI-TAINT-ANALYSIS
TECHNIQUES

In this section we introduce the generic classes of at-
tacks against taint-based data leak protection. In the
following, we assume thatXTainted is a single byte,
however, the attacks presented are applicable to any
type of data.

4.1 Control Dependence

Basic taint propagation is usually limited to direct as-
signments. Assignments such asY← f (XTainted) will
effectively propagate the taint toY. As acknowledged
by many (Newsome and Song, 2005; Enck et al.,
2012), this can be defeated with a trivial, if convo-
luted, construct using the tainted variableXTainted in a
conditional and assigning a known-untainted value to
YUntainted.

4.1.1 Simple Encoding Attack

Array indexing attacks, whereXTaintedis used to index
an array of untainted variables to assign toYUntainted
can be successfully avoided by propagating the taint
of both the array and the index to the assigned vari-
able. However, a taint-free version of the index can be
obtained using control-dependent assignment. This is
shown in Algorithm 1 where a value matchingXTainted
is chosen from an untainted array (e.g., the table of
ASCII characters) when it corresponds toXTainted,
and is assigned toYUntainted. Since there is no direct
assignment nor propagation of data fromXTainted to
YUntainted, variableYUntaintedis never tainted.

On�the�Effectiveness�of�Dynamic�Taint�Analysis�for�Protecting�against�Private�Information�Leaks�on�Android-based
Devices

463

Algorithm 1 : Simple Encoding Attack.

for eachsymbol∈ AsciiTabledo
if symbol= XTainted then

YUntainted← symbol
end if

end for

4.1.2 Count-to-X Attack

Instead of traversing an array in search for the value
related toXTainted, the count-to-X attack recreates the
value one incrementation at a time, untilYUntainted
matchesXTainted.

4.1.3 Deliberate Exception Attack

Another way to alter the control flow depending on
the value of a tainted variable is by deliberately intro-
ducing execution paths which will reliably terminate
with an exception. The exception handler can then be
used to unconditionally set taint-free variables to val-
ues related to the known value ofXTainted leading to
that exception. It can, for example, keep count of how
many times it has been called as the representation of
XTainted.

4.2 Subversion of Benign Code

Rather than writing code to manipulate tainted data
directly, benign code, that is, code trusted by the host,
can be subverted into manipulating and leaking sen-
sitive data. Either data structures or their contents
can be modified, so that the information intended
for transfer to a legitimate peer is instead leaked to
the attacking third-party. In this class of attacks we
leverage unprotected system code to temporarily store
XTainted, and extract it asYUntainted.

4.2.1 System Command Attack

It is possible to leverage system commands to scrub
the mark off the variables. The goal here is to subvert
a system utility to print the value ofXTainted some-
where in its output stream for capture, taint-free, in
YUntainted.

The echo system command is the most straight-
forward, but many other utilities can be used for the
same purpose, as long as their output contains the
value of their input (or command line arguments).
Any shell command that simply produces an error
message containing the input is vulnerable. We have
analysed the Android Linux binaries present in the
/system/bin/ directory of Android Jelly Bean (ver-
sion 4.1.1) and found more than 40 executables to be

vulnerable for this kind of attack. None of these com-
mands requires the Android device to be rooted nor
have super-user permission to execute.

4.2.2 System–File Hybrid Attack

The previous attack can be further extended by sep-
arating the write and read steps needed to obtain a
taint-free variable. A file can be created in some stor-
age area, with the tainted information as its content,
and later be read. If either the read or write step does
not properly propagate taint markings, the resulting
variable is taint-free.

As described by Enck et al. (2012), file tainting
is implemented in a way similar to variable tainting.
Whenever a tainted variable is written to a file, that
file is also marked as tainted. Any subsequent reading
of data from that file into a new variable will mark
that variable as tainted. Using a system command
attack (e.g., cat /path/X_tainted) to read the file
back into the malicious application allows to break
the taint-propagation chain and produceYUntainted.

4.3 Side Channels

Side channel attacks are a generic class covering the
use of any medium that can be abused to represent in-
formation, even if it is not their prime purpose. Such
medium is often overlooked by taint-checking mech-
anisms, and not effectively protected. These attacks
might be the hardest to protect against as they cover
the entire system.

4.3.1 Timing Attack

Timing attacks rely on the specific side channel cre-
ated by the time it takes to perform some task. They
can be performed from within a program actively try-
ing to leak tainted data by using delay loops with a
variable duration depending on the value of a tainted
variable. They are based on the availability of a sys-
tem clock readable without tainting. The difference in
time readings before and after a waiting period, which
duration is based on the value of a tainted variable, is
not itself tainted, and can be assigned to our taint-free
output variable.

Depending on the system, a millisecond resolution
may be sufficient for accurate results. In our PoC, we
observed period inaccuracies of around 3–10 ms, re-
sulting inYUntainted= XTainted+ε whereε ∈ [0,10]ms.
Using a second resolution solved the problem (but ob-
viously made data collection longer). Another option
was to repeat the attack untilYUntainted= XTainted be-
fore continuing; while this solution worked reliably,

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

464

its structure made the attack closer to a control de-
pendence one.

4.3.2 File Length Attack

While a file could be marked due to its contents, its
metadata can be used as an intermediary to evade taint
tracking. In Algorithm 2, random data is written, one
byte at the time, to a file until its size equals the value
of XTainted. The size can then conveniently be read
without resulting in a marked output variable.

Algorithm 2 : File Length Attack.

F ←CreateNewFileHandle()
z← 0
while z< XTainteddo

WriteOneByte(F)
z← z+1

end while
YUntainted←ReadFileLength(F)

Each symbol inXTainted is set to be represented by
the length of an arbitrary file. Its total length is then
obtained from the system, and results in a taint-free
variable containing the desired element, from which
the fullYUntaintedcan be obtained.

If the system provides a clipboard for applications
to store and exchange temporary data, a very similar
technique can be used: theClipboard Length At-
tack.

4.3.3 Bitmap Cache Attack

Systems with graphical output usually rely on a cache
of the currently displayed screen. This makes it pos-
sible to render the value ofXTaintedon the screen, then
access the bitmap cache, and literallyread the value
from there, for example using OCR techniques.

In our PoC, we used the standard Android API for
widget manipulation in order to output the text in a
graphical widget, then retrieve the cached image of
its rendering. OCR was then performed using off-the-
shelf tools. This was done by sending the bitmap data
to a cloud service providing OCR over HTTP ser-
vice. It should however be possible to write a sim-
ple bitmap parser using the Android Java API without
risk of keeping the taint marking as it is already re-
moved when the bitmap is obtained from the cache.

A more subtle technique involving interface wid-
gets and bitmap rendering consists in only changing
one pixel of the image to represent the current value
to untaint, then rereading it into a fresh, taint-free,
YUntainted. This is shown in Algorithm 3, which modi-
fies the arbitrarily chosen pixel at coordinates 10×10.

Algorithm 3 : Bitmap Pixel Attack.

B←CreateNewBitmap()
// set the pixel at coordinate (10, 10) with XTainted
SetPixel([10,10],XTainted→ B)
YUntainted←GetPixel(B, [10,10])

4.3.4 Text Scaling Attack

This side-channel attack represents a combination of
the last two types: using the properties, rather than
the contents, of graphical elements. The method pre-
sented in Algorithm 4 consists in setting an arbitrary
property of a graphical widget, here the scaling, then
retrieving it through the standard API. Note that the
content of the widget is never changed during this at-
tack.

Algorithm 4 : Text Scaling Attack.

T← TextViewWidget()
T← SetTextScalingValue(XTainted)
YUntainted←GetTextScalingValue(T)

4.3.5 Direct Buffer Attack

Pointer indirection attacks target the low level mem-
ory access features of the system. In this particular
attack, shown in Algorithm 5, we first create a mem-
ory buffer. We then write a tainted variable to that
buffer at a specific, known, address. Later the content
address is read back using another direct memory ac-
cess. This is sufficient to obtain a taint-free version of
the data.

Algorithm 5 : Direct Buffer Attack.

D← NewDirectAccessBu f f er()
// write XTaintedat location0×XX of buffer D
DirectMemoryWrite(XTainted,0×XX→ D)
// read from memory location0×XX of buffer D
YUntainted←DirectMemoryRead(D, 0×00)

In ScrubDroid, this attack works due to an im-
plementation limitation of TaintDroid that has been
mentioned by Enck et al. (2012). We include this at-
tack in-line with the classification of Cavallaro et al.
(2008) to demonstrate how easy it is to perform this
type of indirection attacks by manipulating pointers.
In our implementation, we have used Android’s Java
New I/O interface (Google Inc., 2012) to achieve di-
rect memory access. In a more general context, this
attack however remains hard to deflect, save for keep-
ing a taint mark for each byte of memory, which we
consider impractical.

We also believe a new class of anti-taint tracking

On�the�Effectiveness�of�Dynamic�Taint�Analysis�for�Protecting�against�Private�Information�Leaks�on�Android-based
Devices

465

methods is to be watched out for, where code execu-
tion is delegated to another component of the system.
With GPUs becoming more powerful at all-purpose
computation, malware could be envisioned that del-
egates removal of taint marks to the graphical unit,
rather than performing this task directly on the CPU.

5 EVALUATION

We have instrumented ScrubDroid, our proof-of-
concept implementation of the attacks presented in
Section 4,3 in order to evaluate various aspects of the
attacks that target TaintDroid.

5.1 Methodology

For the evaluation of a specific attack, the attacker
attempts to obtain tainted data, then performs a se-
ries of untainting steps specific to the the attack be-
fore finally sending it over the network to a collec-
tion server. We evaluate two aspects of the attacks:
whether they are successful (including the potential
for false positives and negatives), and the time it takes
for an attacker to leak a certain amount of data. We
consider an attack successful if the data has reached
the server without triggering an alert.

Our experimental framework is as follows. For
each attack, we first query non-sensitive (untainted)
information. We then query for specific sensitive in-
formation, which should be tainted and generate a
warning upon reaching a taint sink; this allows us to
identify false negatives, where our attacks succeed.
The script finally asks the system for a second non-
sensitive piece of information, through the same at-
tack; if it is tainted due to the previous, sensitive, data
which was passed through the particular method, this
is a false positive. Finally, we evaluate how practical
it is for the attacker to conduct the various proposed
attacks by measuring the time it takes to obtain the
leaked variables.

In the experiments, for sensitive data we use the
mobile device’s IMEI number or a 5 s audio recording
acquired a from the device’s internal microphone.

5.2 Experimental Results

We report, in Table 1(a), the results of our experi-
ments evaluating success rates of representative at-
tacks from Section 4 when the attacker is attempt-
ing to obtain IMEI. As a reference, we first tested

3The code for this application is available at http://
nicta.info/scrubdroid

two naive approaches, which do not try to remove
taint marks: sending the variable directly from a taint
source to a taint sink (Tainted Variable), and writing
it to a file prior to reading it into the taint sink (File
R/W); we consider two cases for the latter where we
either overwrite the contents of the file with subse-
quent calls, or append new data (tainted or otherwise).

We can verify that TaintDroid correctly identifies
the naive approaches, but fails to flag any of our spe-
cific attacks. We note however that the effective-
ness of the Direct Buffer attack differs in experiments
with the two versions of TaintDroid, the 2012-10-
06 release for Android 4.1.1r6, and a later revision,
17d49f89 in Git. The earlier version is vulnerable
to the attack, while the later Git revision properly
flags the Direct Buffer attack, however at the cost of a
false positive on the subsequent non-sensitive variable
passed in the same way. This behaviour is similar to
the naive File R/W technique where data is appended
to a file rather than overwritten: once some element of
the system has been identified as potentially tainted,
all variables transiting through it get tainted too, re-
gardless of their sensitivity. All other attacks behaved
similarly with both versions.

For timing measurements, we report results for
both IMEI, a 15-byte identifier for GSM devices and
a captured 5 s of audio from the internal microphone,
with an average size of 11 kB (a variable bitrate codec
is used). Table 1(b), shows the results for selected at-
tacks (some attacks have a prohibitively long time for
the 11 kB of the audio sample and were consequently
not run). All measurements have been run multiple
times to ensure the standard error was less than 5% of
the mean (resulting in 50–200 runs).

The Simple Encoding attack is clearly the most
efficient way to obtain large amounts of private data
(with a speed of 13.82 kBps for audio) while the Di-
rect Buffer technique would have been the fastest
attack for smaller variables (with a fairly constant
3.72 kBps).

6 POTENTIAL COUNTER
MEASURES AND DISCUSSION

Clause et al. (2007); Kang et al. (2011) have pro-
posed techniques to fightcontrol dependence at-
tacks by over-marking all the variables involved in
conditional statements. This, while reducing the num-
ber of false negatives, increases the number of false
positives, where variables that convey no informa-
tion about tainted data are marked. Implicit control
dependence attacks (or implicit flow attacks, as re-
ferred to in Clause et al., 2007; Kang et al., 2011) are

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

466

Table 1: Experimental results: (a) Success rates and potential for errors. Checks indicate TaintDroid warnings, while“FP”
and “FN” indentify false positives or negatives. (b) Time toleak information of different sizes using various techniques.

(a) Success rates

Technique YUntaintedXTaintedY′Untainted

Tainted Variable – X –
File R/W (ovrwr.) – X –
File R/W (app.) – X X (FP)

Simple Encoding – – (FN) –
Count-to-X – – (FN) –
Exception-Error – – (FN) –
Shell Command – – (FN) –
File-Shell Hybrid – – (FN) –
Timekeeper – – (FN) –
File Length – – (FN) –
Clipboard Length – – (FN) –
Bitmap Cache – – (FN) –
Bitmap Pixel – – (FN) –
Text Scaling – – (FN) –
Direct Buf. (Rel.) – – (FN) –
Direct Buf. (Git) – X X (FP)

(b) Timing measurements

Technique
IMEI 5 s audio
(15 B) (11.00 kB,σ = 50.8 B)

avg. [ms] σ avg. [ms] σ

Tainted Variable 3.48 4.07 364.97 67.31
File R/W 47.62 19.56 386.01 49.85

Simple Encoding 9.55 4.55 795.72 49.12
Count-to-X 10.14 5.41 8278.64 84.20
Exception-Error 53.22 22.09 —
Shell Command 72.22 12.69 —
File-Shell Hybrid 78.10 25.80 —
Timekeeper 1037.66 82.60 —
File Length 72.37 21.78 —
Clipboard Length 84.89 18.61 —
Bitmap Cache 312.27 24.45 —
Bitmap Pixel 35.95 12.35 2899.80 172.56
Text Scaling 12.92 5.91 3022.58 84.12
Direct Buffer 4.00 3.67 2988.70 87.69

more difficult to detect than explicit attacks, as the
untainted variable is not actively manipulated in the
control path it is relevant to. These can be mitigated
by techniques similar to Perl’sis_tainted() func-
tion, which marksall enclosed variables (201, 2012).
This, however, requires that the developer explicitly
marks the parts of their code potentially susceptible
to such attacks, and is also prone to false positives.
Without such developer cooperation, and to the best
of our knowledge, there is no mitigation technique for
taint evasion using implicit flows. It should also be
noted that most of the presented control dependence
attacks rely on replacing direct assignment with com-
parisons between the tainted and untainted variables.
Propagating taint on comparison might therefore be
an interesting improvement to consider. Finally, al-
though the higher false positive rate may impact the
accuracy of TaintDroid, which only issues warnings,
related systems that actively block data leaks (such as
AppFence Hornyack et al., 2011 or MOSES Russello
et al., 2012), would see an unacceptable reduction of
functionality.

Protection againstbenign code-subversionat-
tacks is also prone to false positives, however, imple-
menting this protection may not even be a viable op-
tion. Attacks involving subversion of system utilities
would be effectively blocked by preventing the appli-
cations from using them; once again, the consequence
for many applications would be that they would not
be able to function as designed. Another option, in
the case of TaintDroid, would be to instrument not
only the Dalvik VM, but the entire system for taint-
tracking, so low level utilities are also watched. This,
however, would require a large development effort

with a set of additional challenges yet to be explored
(e.g., patching the system libraries and/or the kernel
itself). Additionally, as noted in Section 4.3.5, effec-
tively preventing pointer indirection attacks would re-
quire being able to mark each memory address, which
is likely impractical.

The side channel attackscan be mitigated by
techniques similar to those used against control de-
pendence attacks,i.e., by tainting a larger scope of
variables, however with similar consequences of in-
creasing the number of false positives. The evolu-
tion of TaintDroid’s code shows us a nice example
of this problem: the Direct Buffer attack was initially
successful, but later additions to the TaintDroid code
rendered it ineffective. Yet, the same additions also
increased the rate of false positives when using Direct
Buffers.

We note that most of the presented attacks (save
for the specific details of the side channel attacks) are
more generally applicable to dynamic taint tracking
systems at large, rather than only to Android based
systems. On a more generic note, and as already al-
luded to by Kang et al. (2011), a number of issues are
inherent to using taint analysisagainstthe developer
and can therefore not be easily side-stepped. There-
fore, dynamic taint analysis is likely not to be effec-
tive in this context when used alone, as a single breach
in the security is where the malware developer, aware
of such protection, is most likely to attack.

7 CONCLUSIONS

We have argued that dynamic taint tracking is unlikely

On�the�Effectiveness�of�Dynamic�Taint�Analysis�for�Protecting�against�Private�Information�Leaks�on�Android-based
Devices

467

to be effective in detecting privacy leaks in malicious
applications written with the expectation of such close
scrutiny in the context of Android architecture. In-
deed, the malware developer can use easy program-
matic constructs in the code, enabling the removal of
taint marks without losing the information.

We have provided the algorithms for a number
of different attacks, and evaluated their performance
on the Android platform with the TaintDroid patch.
Though only a few lines of code each, they were
shown to be sufficient to completely bypass Taint-
Droid, and allow silent leaking of sensitive informa-
tion. While some of the attacks were targeting self-
reported limitations of TaintDroid, which can be cor-
rected by new versions, others have highlighted an
essential problem of using taint analysisagainstthe
developer of the code under study.

REFERENCES

(2011). Understanding Carrier IQ technology. White paper,
Carrier IQ.

(2012).perlsec - Perl security.

Cavallaro, L., Saxena, P., and Sekar, R. (2007). Anti-taint-
analysis: Practical evasion techniques against infor-
mation flow based malware defense. Technical report,
Stony Brook University.

Cavallaro, L., Saxena, P., and Sekar, R. (2008). On the lim-
its of information flow techniques for malware analy-
sis and containment detection of intrusions and mal-
ware, and vulnerability assessment. InDIMVA 2008,
chapter 8.

Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., and
Rosenblum, M. (2004). Understanding data lifetime
via whole system simulation. InSecurity 2004.

Clause, J., Li, W., and Orso, A. (2007). Dytan: a generic
dynamic taint analysis framework. InISTA 2007.

Egele, M., Kruegel, C., Kirda, E., and Vigna, G. (2011).
PiOS: Detecting privacy leaks in iOS applications. In
NDSS 2011.

Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., Mc-
Daniel, P., and Sheth, A. N. (2012). TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. InOSDI 2010.

Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D.
(2011). Android permissions demystified. InCCS
2011.

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., and
Wagner, D. (2012). Android permissions: User atten-
tion, comprehension, and behavior. InSOUPS 2012.

Gilbert, P., Chun, B. G., Cox, L. P., and Jung, J. (2011).
Vision: Automated security validation of mobile apps
at app markets. InMCS 2011.

Google Inc. (2012). Android Java New I/O interface. An-
droid 4.2 r1.

Graa, M., Cuppens-Boulahia, N., Cuppens, F., and Cav-
alli, A. (2012). Detecting control flow in smarphones:
Combining static and dynamic analyses. InCCS 2012.

Grace, M. C., Zhou, W., Jiang, X., and Sadeghi, A.-R.
(2012). Unsafe exposure analysis of mobile in-app
advertisements. InWiSec 2012.

Ho, A., Fetterman, M., Clark, C., Warfield, A., and Hand, S.
(2006). Practical taint-based protection using demand
emulation. InEuroSys 2006.

Hornyack, P., Han, S., Jung, J., Schechter, S., and Wether-
all, D. (2011). “These aren’t the droids you’re looking
for:” retrofitting Android to protect data from imperi-
ous applications. InCCS 2011.

Kang, M. G., McCamant, S., Poosankam, P., and Ong, D.
(2011). DTA++: Dynamic taint analysis with targeted
control-flow propagation. InNDSS 2011.

Newsome, J. and Song, D. (2005). Dynamic taint analysis
for automatic detection, analysis, and signature gen-
eration of exploits on commodity software. InNDSS
2005.

Russello, G., Conti, M., Crispo, B., and Fernandes, E.
(2012). MOSES: Supporting operation modes on
smartphones. InSACMAT 2012.

Schwartz, E. J., Avgerinos, T., and Brumley, D. (2010). All
you ever wanted to know about dynamic taint analysis
and forward symbolic execution (but might have been
afraid to ask). InSP 2010.

Thomas, D. and Hunt, A. (2001).Locking Ruby in the Safe,
chapter 20.

Yin, H., Song, D., Egele, M., Kruegel, C., and Kirda, E.
(2007). Panorama: Capturing system-wide informa-
tion flow for malware detection and analysis. InCCS
2007.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

468

