
From a Logical Approach to Internal States of Hash Functions
How SAT Problem Can Help to Understand SHA-⋆ and MD⋆

Florian Legendre1, Gilles Dequen2 and Michaël Krajecki1
1UFR Sciences, University of Reims Champagne-Ardennes, Moulin de la Housse, Reims, France

2MIS, University of Picardie Jules Verne, Amiens, France

Keywords: Hash Functions, Logical Cryptanalysis, MD5, SHA-1,Satisfiability.

Abstract: This paper deals with logical cryptanalysis of hash functions. They are commonly used to check data integrity
and to authenticate protocols. These functions compute, from an any-length message, a fixed-length bit string,
usually nameddigest. This work defines an experimental framework, that allows, thanks to the propositional
formalism, to study cryptosystems at the bit level through corresponding instances of theSAT problem. Thus,
we show that some internal words of popular hashing functionsMD⋆ andSHA-⋆ are not as random as expected
and provide some convincing elements to explain this phenomenon by the use of round constants. Because
this presents several weaknesses, we show how to detect and exploit these ones through an application based
on logical cryptanalysis. As a result we show equivalences, and quasi-equivalences between digits and explain
how we inverse reduced-step versions ofMD5 andSHA-1.

1 INTRODUCTION

In the last years, the proliferation of digital systems
has placed cryptology at the heart of our communi-
cations. Within this context, studies about crypto-
graphic functions are a keystone to preserve the sus-
tainability of our systems. More specifically, the field
of Cryptanalysis consists in finding weaknesses that
will facilitate the retrieval of any secret information.
Several general cryptanalysis approaches have been
proposed over the years such as differential (Biham
and Shamir, 1990) or linear (Matsui and Yamagishi,
1992) ones. This paper deals with cryptographic hash
functions that are central elements of modern cryptog-
raphy. A hash function can be defined as a determin-
istic process that generates a fixed-length bit string,
usually nameddigest, from any-length bit string also
named themessage. It is commonly used to check
integrity of files or communications. Moreover, it
usually participate to authentication protocols. One
of their main characteristic is to diffuse and confuse
an input message in a very fast way. Within this
framework, the internal 32-bit words of a hashing pro-
cess need to look as random as possible. So that
making this possible, the compression function of-
ten use round constants, derived from physical con-
stants (Knuth, 1997). In (Legendre et al., 2012), we
encoded theMD5 hash function in aDIMACS format

in order to tackle the preimage thanks toSAT solv-
ing. In this paper we focus on ourSAT modeling in
order to examine the structural behavior of the inter-
nal words of the process by two different ways. The
first one is via an automatic logical reasoning that al-
low to deduce equivalencies and some special rela-
tions between variables. The second one is by us-
ing the formula to generate statistical informations
so that estimating a generic behavior of the process.
From this, we then deduce classical and conditional
probabilities that shed a light on unexpected struc-
tural informations. Indeed we show that just using
round constants leads to belie the idea of a total ran-
domness of the hashing process and can give some
information that could help an attacker. From this, we
present equivalences, quasi-equivalences and quasi-
implications that could be used in other cryptanalytic
approach. This paper is organized as follows: In sec-
tion 2, we give an overview of hash functions more
focused on those that use theMerkle-Damg̊ard con-
struction. We also recall some notations and objects
related to theSAT problem and its solving rules. The
section 3 deals with our probabilistic approach and
give details about specific cases where probabilities
aren’t uniforms. In section 4, we show how to use
these special weaknesses in a practical framework and
particularly by usingSAT solvers and logical reason-
ing. Finally we conclude and open perspectives.

435Legendre F., Dequen G. and Krajecki M..
From a Logical Approach to Internal States of Hash Functions - How SAT Problem Can Help to Understand SHA-* and MD*.
DOI: 10.5220/0004534104350443
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 435-443
ISBN: 978-989-8565-73-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 BACKGROUND AND
PRELIMINARIES

2.1 About Cryptographic Hash
Functions

A cryptographic hash function can be defined as a
deterministic algorithm that maps an any-length bit
string (also named themessage) to a fixed-length bit
string, usually nameddigest or hash. Among the
uses of such a function we can notice for instance
the integrity check of files or communications or dig-
ital signature. It can also contribute to ensure au-
thentication protocols with Message Authentication
Codes (MACs) which are a mean that two users with
a shared secret key can authenticate between each
other. To make these functions secure, they required
to be theoretically or computationally collision and
(second) preimage resistant.

2.2 Notations

In this paper, we mainly focus on the popularMD⋆

and SHA-⋆ hash functions that are built following
the Merkle-Damg̊ard construction (Merkle, 1989;
Damgård, 1989). Each of these functions uses inter-
nal 32-bit words that are described with the following
notations. Let be the process at stepi. We denote each
word as:

• Qi is the internal state obtained at the end of a step.

• fi is a non-linear function. It can be named{F, G,
H, I}, depending on the step considered.

• Si is a sum resulting of a 4 operands addition. This
represents the main operation of a round.

• Within the propositional context, an addition of 4
operands could generate 2 levels of carry.fCi is
the first level.sCi is the second level of carry.

• tCi is the first (and unique) level carry resulting of
a 2 operands addition

• Csti is a round constant

Note also:

• W[j] is the j th bit of a 32-bit word,j ∈ {0, ...31}

• Mk is thekth 32-bit word from the input message,
k∈ {0, ...15}

2.3 About MD5

MD5 was designed in 1991 by Ron Rivest as an evo-
lution of MD4, strengthening its security by adding
some improvements. The operating principle of this

function consists in the repetition of 64 steps, defined
with three sub-steps as follows:

a) Qi ←Qi−4+ f (Qi−1,Qi−2,Qi−3)+Mk+Csti

b) Qi ← Qi ≪ sn

c) Qi ← Qi +Qi−1

where :

• i is the current step,∈ { 1, ...,64}

• Q−3,Q−2,Q−1,Q0 are the Initial Values (I.V.).

• ≪ sn the circular shifting to the left(rotating) by
n bits position, depends oni.

• fi ∈ { F, G, H, I}, where:

F(X,Y,Z) = (X ∧ Y) ∨ (X ∧ Z)
G(X,Y,Z) = F(Z,X,Y)
H(X,Y,Z) = X ⊕ Y ⊕ Z
I(X,Y,Z) = Y ⊕ (X ∨ Z)

2.4 About SHA-1

SHA-1 was designed in 1995 by theNSA as an im-
proved version ofSHA-0 in order to prevent some
weaknesses. The operating principle is the same as
the MD⋆ family and consists in a hashing process
where five states of 32-bit words are initialized and
then modified at each of the 80 steps. A step can be
defined with the following sub-steps:

a) Qi ← (Qi−1 ≪ 5)

b) Qi ←Qi + f (Qi−2,(Qi−3 ≪ 30),Qi−4)

c) Qi ←Qi−5+W[i]+Csti
where :

• i is the current step,∈ { 0,1, ...,79}.

• Qi−1,Qi−2,Qi−3,Qi−4,Qi−5 are the I.V

• Csti is defined among four predefined constants.

• ≪ r, the circular shifting to the left(rotating) by
r bits position.

• fi ∈ { F, G, H, I}, where:

F(X,Y,Z) = (X ∧ Y) ∨ (X ∧ Z)
G(X,Y,Z) = X ⊕ Y ⊕ Z
H(X,Y,Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)
I(X,Y,Z) = G(X,Y,Z)

• W[i] is the ith word of 32 bits. These words are
built from the input message, as follows:

– if i < 16
W[i] is theith 32-bit word from the message

– if 16≤ i ≤ 79
W[i] ← (W[i−3] ⊕ W[i−8] ⊕ W[i−14]
⊕W[i−16]) ≪ 1

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

436

Note SHA-1 differs from SHA-0 by the shifting of
W[i]. Finally, note in the following of this paper, 1
round for aMD⋆ (resp. SHA-⋆) function corresponds
to 16 (resp. 20) steps.

2.5 Notation about SAT Solving

Since our approach is based on the logical cryptanaly-
sis principles, this work is closely related toSAT solv-
ing techniques. ThebooleanSATisfiablilty problem
(short for SAT) is a well-known NP-Complete prob-
lem (Biere et al., 2009; Cook, 1971). Its interest has
grown significantly these past few years because of its
simplicity and its ability to express a wide set of var-
ious problems. Moreover, the last progresses about
solving techniques have ledSAT to be a great and
competitive approach to tackle a wide range of indus-
trial and academic problems. Among them, logical
cryptanalysis is a very recent use ofSAT formalism
and already have produced some new results.SAT is
of determining if a boolean expressionF has at least
one assignment of truth value (also named aninter-
pretation) {TRUE, FALSE} to its variable so that it
is TRUE. In this paper,F is considered as aCNF-
formula (Conjunctive Normal Form) which can be de-
fined as a set of clauses (interpreted as a conjunction)
where a clause is a set (interpreted as a disjunction) of
literals.

More precisely,let V = { v1, ..., vn } be a set
of n boolean variables. A signed boolean variable
is named aliteral. We denote,vi and vi the posi-
tive and negative literals referring to the variablevi
respectively. The literalvi (resp. vi) is TRUE (also
saidsatisfied) if the corresponding variablevi is as-
signed toTRUE (resp. FALSE). Literals are com-
monly associated with logicalAND andOR operators
respectively denoted∧ and∨. As mentioned above,
a clause is a disjunction of literals, that is for in-
stancev1 ∨ v2 ∨ v3 ∨ v4. Hence, a clause is sat-
isfied if at least one of its literals is satisfied.As aSAT

formula F is considered underCNF, it is satisfied if
all its clauses are satisfied. Finally, if its exists an as-
signment ofV on {TRUE, FALSE} such as to make
the formulaF TRUE, F is saidSAT andUNSAT oth-
erwise.

2.6 Our Approach

The cryptanalysis of a hash function can bedone
thanks to an algebraic approach. Generally, two ways
are helpful to improve efficiently the solving method:
Gröbner basis (Faugère and Joux, 2003; Bettale et al.,
2012) andSAT solvers (Bard et al., 2007; Mironov and
Zhang, 2006). Among these, the best way to study the

function with a bitwise reasoning,i.e.in F2, seems to
be the one using aSAT formalism becauseSAT tools
propose an easy way to examine the problem mod-
eled in its finest granularity. In our knowledge,no
work existsabout howanalyzing and measuringthe
security of hash functionthanks tothis approach. In
(De et al., 2007) and then in our previous work (Leg-
endre et al., 2012), the method used consists in en-
code theMD5 hash functionunder its corresponding
CNF expression so thatpractically tackling the (sec-
ond)preimage. In these works, some hash functions
are represented with a bitwise reasoning only by us-
ing boolean equations. Thus, the whole process is
described with the tiniestmodelling, then simplified
thanks to logical simplifications and finally inverted
reduced-step versions thanks to agenericSAT solver.
In this paper, wechoose toreuse ourSAT represen-
tation of MD⋆ andSHA-⋆ with aim to identify some
practical weaknesses that will allow future works on
collision and (second) preimage inversion.In prac-
tice, we consider theCNF as a tool to examine the
structural behavior of the internal words of the pro-
cess by two different ways.First, we searched to
outline the fact there are some special relations be-
tween variables as implications or equivalences.This
can be done thanks toan automatic logical reasoning.
Second, we use theCNF to estimate, thanks to statis-
tics andwithin a generic framework,how behave each
variable (correlated to each digit of the Hashing Pro-
cess) in relation toall others. From this, we deduced
classical and conditional probabilities. As a result,
we presented equivalences, quasi-equivalences and
quasi-implications that could be used in any cryptan-
alytic approach. In this sense, we finally talked about
logical cryptanalysis and presented a practical inver-
sion of a 23 stepsSHA-1’s process.

3 LOGICAL REASONING

In (Legendre et al., 2012) we showed that using logi-
cal simplificationsapplied ona SAT formuladescrib-
ing a process of hashinghelps to tackle the second
preimage ofMD5 up to 28 steps which is still, in our
knowledge, the bestpracticalinversion.Since thisap-
pears to bea promising way to break more steps, we
enriched theoriginal simplification process.In the
following, we describe logical simplifications we pro-
cess to learn information that could be helpful within
a reduced-step inversion ofMD5 or SHA-1.

3.1 Detection of Equivalences

The existence of a logical equivalency, from a point

From�a�Logical�Approach�to�Internal�States�of�Hash�Functions�-�How�SAT�Problem�Can�Help�to�Understand�SHA-*�and
MD*

437

of view of a valid process of hashing, means that
at least two digits (it could be more) are linked by
their respective value in every model. Practically
and informally, this can be seen as a digit that has
always the same (or opposite) value as another one.
If such a case occurs, both digits represent the same
information and only one of them should be con-
sidered into the process. Such a relation is denoted
with the operator :⇔. As an example,consider the
CNF formula F having the following clauses,the
detection of equivalenciescan be computed as:

c1 = (a ∨ b) c2 = (a∨ f)
c3 = (b∨c) c4 = (c∨d)
c5 = (f ∨g) c6 = (g∨h)
c7 = (a∨d∨e) c8 = (a∨h∨e)

• If a is set toFALSE then you can directly deduce
that b, c, d and e must be set toFALSE, unless
to falsify F , thanks to the clausesc1, c3, c4 and
c7 respectively. Hence, we notice thata equals
to FALSE implies e equals toFALSE. We denote
this implicationa⇒ e. The correspondingCNF

expression ise∨a. As a remark, this clause also
represents the implicatione⇒ a.

• In the same way, ifa is set toTRUE then you can
imply that f , g, h are set toFALSE ande to TRUE

respectively.

• Consequently, sincee⇒ a anda⇒ e, this means
that whatever could be the solution,a ande have
the same value. This is denoteda⇔ e. There-
fore, you can substitute everye in the formula bya
(and vice versa). From this, may result a cascade
of new simplifications. For instance, proceeding
that substitution inF leads c7 and c8 to become
obsolete,a∨a being tautological and so useless.

From applying this type of treatmentson our SAT

formulas results several equivalences. Some of them
are trivial. In spite of this, others are not so. In the
following, we mention some examples.

• A Trivial Case:
F1[29]⇔ Q1[29]. This equivalence isquite easy
to detect becauseF1 = (Q1 ∧Q0) ∨ (Q1 ∧Q−1)
andQ0 andQ−1 are I.V. and hence areconstant.
This means that ifQ0[i] differs from Q−1[i] (i ∈
{0. . .31}), then F1 dependsexclusivelyon Q1.
There is a relation of equivalence which appears
betweenF1 andQ1 which appears once on four
on average.

• Non Trivial Case:
This is the most interesting case. It seldom oc-
curs within a general framework, but it gives a
pertinent information to cryptanalysts. We name

special casea non-trivial case which occurs in a
specific formula. For instance, if we apply our
treatmenton a CNF describinga preimage attack
of MD5, weexhibit equivalences that are notre-
latedto the entireMD5 process but to the specific
instance.Thanks to that, if we consider a preim-
age attack on the 29 first steps ofMD5 where the
reduced-step digest is set to 0, we then deduce
M8[2]⇔ Q24[2], whereM8 is the 9th bloc of the
input messageM.

• Direct Implication:
If two implications of the forma⇒ b anda⇒ b
occur then for all value ofa, b equals toTRUE.
Consequently,b must not be set toFALSE unless
to falsify F . As an illustration, we deduce that
sC39[0] must be set toFALSE on our reduced-step
preimage attack ofMD5.

3.2 Static Look-ahead and More

We apply a classic local treatment inSAT solv-
ing namedLook-Ahead(Li and Anbulagan, 1997)
which consists in foreseeing the effects of choosing a
branching variable to evaluate one of its values. From
this evaluation,it can infer an assignment or some in-
formations among equivalences (see section 3), fixed
literals and new binary clauses. Hereafter, some de-
tails.

• Fixed literals:

i) if a⇒ f alsethena must be set toTRUE

• New binary clauses:

ii) if a⇒ b then the clause(a∨ b) can be added
to F . This will be same if(a∧ b))⇒ f alse
occurs.

iii) if a ⇒ (x1 ∧ x2 ∧ . . .∧ xn) and a ⇒ (y1 ∧
y2∧ . . .∧ ym) then clauses (xi ∨ y j),∀(1 ≤ i ≤
n) and (1≤ j ≤m) can be added toF .

• Subsuming Look-Ahead

By enhancing the principle of look-ahead, you
check multiple implications in order to produce
subsuming clause.Let be C a clause of the
form: x1∨x2∨ . . .∨xi ∨ . . .∨xk.

iv) if x1∧ x2∧ . . .∧ xi ⇒ f alse then C should be
replace by the clause (is subsumed by) x1∨x2∨
. . .∨xi in F .

v) if (x1 ∧ x2 ∧ . . . ∧ xi) ⇒ f alse then C is sub-
sumed byx2∨ . . .∨xi

4 SPECIFIC PROBABILITIES

In this section, we define an experimental framework

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

438

that allows to study at the bit-level the behavior of a
hashing process. This framework uses aSAT formula
modeling a cryptosystem that has been previously de-
fined in (Legendre et al., 2012).

4.1 From aSAT Formula to get Statistics

TheSAT formulaF can be used as a tool. The assign-
ment of variables corresponding to the input message
leads theSAT engine to fix all the unassigned vari-
ables ofF thanks to a linear and deterministic pro-
cess namedunit propagation. This corresponds to the
hashing process and the complete assignmentA of
variables ofF is a solution. Actually,A gives useful
information on how a variable is set but also how two
variables are set in pairs (and more). This last remark
is interesting. Thus, memorizing each pair of vari-
ables allows us to appreciate the behavior of a vari-
able with respect to another. For instance, letv andw
be two boolean variables. FromA , looking atv andw
at the same time lets to know which of the following
subsets ofS appears:

{v= f alse∧w= f alse} ; {v= f alse∧w= true}

{v= true∧w= f alse} ; {v= true∧w= true}

respectivelydenoted(v∧w), (v∧w), (v∧w), (v∧w).
We establish a protocol to compute statistics from a
SAT formulaF :

i) Create a random input message

ii) Assign this message and infers fromF . It gener-
atesA .

iii) From A , for each pairs of variables,memorizethe
subset which appears inS

iv) goto i) (This loop should be iteratedn times)

v) Group and overlay all the subsets and divide byn.

From this, we obtain the probability to be 1 for each
couple of variables (v,w), denoted p(v∧w).

4.2 Preliminary Remarks

The probability of a variablev to be 1 in a general
framework is determined by p(v) = p(v∧ v). More-
over, the conditional probability of a variablev given
w is determined by:

p(v|w) =
p(v∧w)

p(w)

4.3 General Behavior ofMD5

In one hand, we computed for each variable the theo-

Figure 1: Probability of a variable from theMD5 process,
to be 1, from step 0 to 63, sorted by type of 32-bit word on
big endian.

retical probabilities we should have in a general pro-
cess. In an other hand, we use ourSAT formula rep-
resenting theMD5 hash function in order to com-
pute classical and conditional probabilities. Then, we
compared these two type of probabilities.Within this
way, we drew a PGM1 image representing this com-
parison, vertically sort by step and horizontally sort
by type of words (see fig 1). The used notation is the
one defined in 2.2. If the pixel is black, the probabil-
ity derived from theSAT formula differs by the theo-
retical probability by tending to 0, and if the pixel is
white, the probability differs by tending to 1. Conse-
quently, the more the pixel is white or black, the more
the practical probability is far from the theory.

In the columns representing the internal states (Q),
the non-linear functions (f), the carries of the two
operands addition (tC) and the four operands sum (S),
the gray is uniform and corresponds to the theoreti-
cal probability which is≃ 1

2. This means, the words
are totally random for each bit, as expected. How-
ever, this is not the case for the columns representing
the carries of the four operands addition (fC andsC).
Hereafter, some details and explanations.

4.3.1 About Carries

The theoretical probabilities to be 1 for the first carry2

turns around 0.58. Focus on step 17, we get for in-

1Portable GrayMap file format
2Except the five first least significant bit where the prob-

abilities are slightly higher.

From�a�Logical�Approach�to�Internal�States�of�Hash�Functions�-�How�SAT�Problem�Can�Help�to�Understand�SHA-*�and
MD*

439

Figure 2: Comparison between theoretical probabilities with (Th+Cst) and without (Theory) a fixed round constant, and com-
puted probabilities in our benchmark (Practice). Here we can observe that the curve representing the theoryby considering a
constant and the curve extracted from our statistical database are grouped. This means, they have the same behavior, which
differs from the theory.

stance p(fC17[5]) = 0.67 and p(fC17[23]) = 0.49. The
gap with the theory is approximately 15%. However,
the gaps are widening even more so if we look at the
second carries.
The figure 3 is a zoom in the second carries, step 17.
We can observe two things: probabilities are not uni-
forms (because there are several gray tones) and some
go far away of the theoretical probability by tending
to 0, for instance the bit 7, and others to 1, for instance
the bit 22.

Figure 3: Second carries step 17, on big endian.

Our explanation is this phenomena is due to round
constants. Our idea is the fixing of a round constant
consists in assigning an operand in the general struc-
ture of the addition and has for consequence to create
a new structure totally defined by the round constant.
To confirmthis point, we computed theoretical prob-
abilities of the variables which are involved inthis
addition by considering one operand fixed. Contin-
uing with the step 17, we concretely fix an operand to
the value0xc040b340 and observe how the structure
behaves. The result is unequivocal: the experience
confirms the practice because the observed probabil-
ities in practice are very closed to the ones observed
when we fixed a round constant (see fig 2 to com-
pare probabilities). This means, in our point of view,
round constants weaken the hashing process because
several probabilities become very far from their the-
oreticalvalues. This implies that theMD5 process is
not entirely random.As an illustration, the bit 7, step
17 has a probability of 0.10 instead of 0.31 in theory
and the bit 22 has a probability of 0.41.

4.4 Gather Probabilistic and Judicious
Information from MD5

Once we built this statistical database, we can apply
some specific treatments to detect factual relations as
for instance fixed variables and equivalences but also
probabilistic relations as quasi-fixed variables, quasi-
implications or quasi-equivalences.

4.4.1 Factual Relations

We can identify statistics which represent a fixed vari-
able just by extracting probabilities such as p(v) = 0
or p(v) = 1. For instance, in theMD5 process, the vari-
able corresponding tosC1[26] is always assigned to 0.
It’s also possible to detect equivalences. Let bev and
w two boolean variables. We have:

1) i f p(v) = p(v∧w), then v⇒ w
In others words,i f p(w|v) = 1, then v⇒ w

2) i f p(v|w) = p(w|v) = 1, then v⇔ w

4.4.2 Probabilistic Relations

Let be t a threshold such ast ≤ p(v) < 1. We call
quasi-fixed variablea variable such as whatever the
instance, the variable has a probability p(v) to be 1
higher thant. This means, the variablev (respv) is set
to 1 (resp 0) in (p(v)*100) % of cases. We callquasi-
implicationa relation between two variables such as:

p(w|v) ≥ t and note this relationv; w

Finally, we callquasi-equivalencea relation between
two variables such as:

p(w|v)≥ t, p(v|w) ≥ t and note this relationv< w

In this paper, we also talked aboutquasi-relation
to mentioned a probabilistic relation.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

440

Table 1: Some of Equivalences, Quasi-Equivalences and Quasi-implications detected from theMD5 and theSHA-1 processes
with a thresholdt = 0.99. The used notation is the one presented in 2.2. MoreoverHx andcHx are variables about the hash.

Relation FromMD5

Equivalences tC0[0]⇔Q1[0] , S0[25]⇔Q1[0] , S0[0]⇔ fC0[0] , M0[0]⇔ fC0[0]
Hb[0]⇔ cHb[0] , Ha[0]⇔ cHa[0] , cHd[1]⇔Hd[1]
Q62[1]⇔ Hd[1] , cHc[1]⇔Hc[1] , Q63[1]⇔Hc[1]

Q64[0]⇔ Hb[0] , Q61[0]⇔Ha[0] , Hd[0]⇔Q62[0] , Hc[0]⇔Q63[0]
f1[j]⇔Q1[j] f or j ∈ { 0,8,9,13,18,22,24,25,26,29,30}
f1[j]⇔Q1[j] f or j ∈ { 1,2,4,5,6,10,12,14,17,20,21,28}

Quasi-Equivalences Q1[21]< M0[14] , Q61[8]< Ha[8] , Q61[8]< cHa[8]
Ha[8]< Q61[8] , Ha[8]< cHa[8] , cHa[8]< Q61[8] , M0[14]< f1[21]

cHa[8]< Ha[8] , f1[21]< M0[14] , M0[14]< Q1[21]

Quasi-Implications M0[14]; Q1[21] , Q1[21]; M0[14] , Ha[8]; Q16[8] , Hb[28]; cHb[30]
Q61[8]; Ha[8] , cHa[8]; Q61[8] , Q64[28]; cHb[30] , cHa[8]; Q61[8]

Q61[8]; Ha[8] , Ha[8]; Q61[8] , cHa[8]; Ha[8] , Ha[8]; cHa[8]

Relation FromSHA-1

Equivalences sC0[28]⇔ fC0[28] , sC0[27]⇔ fC0[27] , sC0[25]⇔ fC0[25] , sC0[24]⇔ sC0[17]
sC0[21]⇔ fC0[21] , sC0[20]⇔ fC0[20] , sC0[19]⇔ fC0[19]

sC0[15]⇔ fC0[15] , sC0[12]⇔ fC0[12]

Quasi-Equivalences sC0[28]< sC0[17] , sC0[27]< fC0[28] , sC0[24]< cHc[7] , sC0[24]< fC0[28]
sC0[17]< cHc[7] , sC0[17]< fC0[28] , fC1[16]< sC1[16] , sC1[16]< fC1[16]

Quasi-Implications M0[8]; sC1[14] , M1[13]; sC1[14] , M1[10]; sC1[14]
M2[25]; sC2[27] , M3[27]; sC3[27]

4.4.3 Application to MD5 and SHA-1

In this part, we just focus on the detection of proba-
bilistic relations, because detecting factual relations is
already done by the logical preprocessing (section 3).
In practice, we applied a specific treatment which
extract all the specific probabilities that correspond
to logical simplifications. For instance, by defining
t = 0.99, we found p(M0[14] | f2[21]) = 0.9969
from the MD5 process. This means we have
f2[21] ; M0[14] and this can be added to the for-
mula by the new clause (f2[21] ∨ M0[14]).

We concretely illustrate our experimentations
aboutMD5 andSHA-1 by giving a portion of differ-
ent relations we detected in the table 1. We can ob-
serve for instance a lot of relations in the first steps
facilitating the prediction of the behavior of the vari-

Table 2: Detection of quasi-fixed variables (q-Fixed) and
quasi-equivalences (q-Equi) in theMD5 and SHA-1 pro-
cesses according to a threshold.

MD5 SHA-1
Treshold q-Fixed q-Equi q-Fixed q-Equi

0.995 2 10 1 8
0.99 5 29 5 44
0.985 9 79 8 88
0.98 12 105 13 169

ables. Furthermore, we have relations between carries
but also others involving states, the input message or
non-linear functions. In our knowledge, this is the
only approach where computed probabilities are con-
cretely put together in order to emerge new relations
that could be exploit in practice. To put the stress on
the interest of our experimentations, we referenced in
the table 2 the number of quasi-fixed variables and
quasi-equivalences found from theMD5 andSHA-1

From�a�Logical�Approach�to�Internal�States�of�Hash�Functions�-�How�SAT�Problem�Can�Help�to�Understand�SHA-*�and
MD*

441

hashing processes, according to a thresholdt. We can
see that more the threshold is low, more we get infor-
mation about special relations between variables.

5 EXPORT WEAKNESSES IN A
PRACTICAL FRAMEWORK

Logical cryptanalysis (Massacci and Marraro, 2000;
Mironov and Zhang, 2006) offers a perfect framework
to exploit concrete weaknesses. Generally, it consists
in tackle a crypto-system thanks to a two phases pro-
cess where in a first part the problem is defined un-
der aSAT formalism and in a second part it is solved
thanks to the use ofSAT solvers. In this manner,
weaknesses can be used to help to reduce the practical
complexity of a preimage problem during the boolean
encoding or directly during the solving phase.

5.1 Reduction of the Practical
Complexity

As we find fixed and quasi-fixed variables, we can
reduce the practical complexity of a problem by as-
signing these variables. Indeed, for instance if a vari-
ablev is fixed to 1 then all the clauses which contains
the corresponding positive literalv areSAT and all the
clauses which contains the corresponding negative lit-
eralv are reduced. Moreover, as we find equivalences
and quasi-equivalences, we can replace a variable by
an other. This can provoke many simplifications as
for instance the ones presented in this paper in 3.
Concretely, we alternatively preprocessed ourSAT

formulas and injected information uprooted from our
detection method. In this way, we reduced theSHA-
1 andMD5 formulas according to the statistics in ta-
ble 3. The formulas’s sizes are directly affected by the
number of variables (Nb Var), the number of literals
(Nb Lit) and the number of clauses (Nb Cl) used to
represent the problem. In addition, we also counted
the number of binary clauses (Bin cl) in the formu-
las since these clauses are very interesting to increase
the efficiency ofSAT solving3. In this manner, we can
observe that applying our treatments (pp) allows to
decrease the sizes of ourSAT formulas and enrich the
practical complexity of theirSAT solving thanks to an
importing of binary clauses for bothSHA-1 andMD5.

5.2 Improve Heuristic in SAT Solvers

A good way to solve algebraic systems, especially

3Solving aSAT problem is polynomial if it is composed
only of binary clauses.

Table 3: Reduction of theSAT formulas sizes forMD5 and
SHA-1 with an enrichment of information.

MD5
Nb Var Nb Lit Nb Cl Bin cl

Before pp 12749 ≈1.23M 224653 381
After pp 12677 ≈ 0.98M 206807 2252

SHA-1
Nb Var Nb Lit Nb Cl Bin cl

Before pp 12771 ≈ 2.21M 375195 908
After pp 12732 ≈ 2.18M 374541 1454

boolean systems is the use ofcompleteSAT solvers.
These ones are mainly based on theDPLL (Davis
et al., 1962) or theCDCL (Zhang et al., 2001) algo-
rithms which consist in a systematic enumeration of
truth assignments thanks to a binary search-tree4 At
each node, their is a policy choice made to decide the
next variable to be assign.

Our probabilities can be a good mean to improve
the splitting choice policy of a dedicatedSAT solver.
In practice, the heuristic branching compute with a
very precise evaluation the new node of the binary
tree, but this choice is often difficult. In these cases,
probabilities can help to enrich the evaluation, in par-
ticular when a variable has a very high probabil-
ity to be 0 or 1.

5.3 Tackle the Preimage of Hash
Functions

In order to tackle the preimage of a hash function,
we can instantiate the variables corresponding to a
chosen hash in aCNF representing a reduced-step
process of the function. Then, thanks to the logical
simplifications presented in this paper, both factual
and probabilistic (section 3), the formula is then
preprocessed to decrease its practical complexity. Fi-
nally we apply aSAT engine to search for a solution.
If the formula is solved, necessarily all the variables
are assigned, even those from the input message.
In practice, our best result in tackling the preimage
of MD5 is about 1 round and 12 steps. About
SHA-0 andSHA-1 we inverted 1 round 3 steps. The
formula for SHA-1 is composed of 75,974 clauses
and 3,321 variables. In our knowledge, this is not
the best practical result about the inversion ofSHA-
⋆ (Cannière and Rechberger, 2008)(Christian, 2010).
Nevertheless, our work has an original approach and
is hopeful to conclude in better results. Hereafter, an
instance of aSHA-1 hash and its corresponding input,
obtained at the end of the hash function and not by
the compression function.

4The reader should refer to (Biere et al., 2009)

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

442

1 round 3 steps onSHA-1 (23 steps)
Fixed Hash:
0x00000000 0x00000000 0x00000000 0x00000000
Input found:
0x35691c1a 0xead7eb26 0xcac76b0e 0x00000000
0x51e43c45 0xaa8bc12a 0xdb8fa47c 0x00000000
0x637c1517 0x80abea2e 0x9339f44e 0x00000000
0x6367caee 0xbc8920ec 0x1084c8d7 0x45075a9e

6 CONCLUSIONS

In this paper5, we propose a based logical approach
to bring out some cryptographic weaknesses in hash
functions. Indeed, we noticed that model the function
in a binary field (F2), allows to point out several vari-
ables which have not a random behavior, as expected
in a hashing process. In this context, certain internal
words, especially carries, are weak and the function
may be tackled by these partially open doors to get
new information.
We confirmed this point through an experimentation
where we found equivalences, quasi-equivalences and
quasi-implication by two different ways: an auto-
matic logical reasoning and a probabilistic approach.
Thanks to the first technique, we show factual rela-
tions that could be used in a general case. More-
over, the probabilistic method allow to outline an
overview of quasi-relation. This attests that the vari-
ables are strongly correlated and their relations can
be exploited to gather new information. As a re-
sult, we presented a set of equivalences and quasi-
equivalences and explain why they exist through an
observation of the influence of round constants. Fi-
nally, we talked about logical cryptanalysis by im-
porting these weaknesses inSAT formulas. In this
sense, we show how to improve an heuristic inSAT

solvers and show practical preimage attacks against
SHA-1.
In our knowledge, this is the only approach where
logical and probabilistic deductions highlights weak-
nesses in hash functions. Moreover, our method is
generic and so we can also export our method on
others cryptographic schemes and underline bitwise
weaknesses that could be exploited. Interestingly, im-
proving heuristic inSAT solvers seems to be a very
hopeful way to improve practical preimage attacks as,
nowadays, it does not exist any dedicated solver to
logical cryptanalysis.

5This work is supported by the Direction Générale de
l’Armement : http://www.defense.gouv.fr/dga

REFERENCES

Bard, G. V., Courtois, N. T., and Jefferson., C. (2007). Ef-
ficient methods for conversion and solution of sparse
systems of low-degree multivariate polynomials over
gf(2) via sat-solvers. Cryptology ePrint Archive, Re-
port 2007/024.

Bettale, L., Faugère, J.-C., and Perret, L. (2012). Solving
polynomial systems over finite fields: improved anal-
ysis of the hybrid approach. InISSAC, pages 67–74.

Biere, A., Heule, M. J. H., Maaren, H. V., and Walsh, T.,
editors (2009). Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Appli-
cations. IOS Press.

Biham, E. and Shamir, A. (1990). Differential cryptanalysis
of des-like cryptosystems. InCRYPTO, pages 2–21.

Cannière, C. D. and Rechberger, C. (2008). Preimages for
reduced sha-0 and sha-1. InCRYPTO, pages 179–202.

Christian, R. (2010). Second-preimage analysis of reduced
sha-1. InProceedings of the Australasian conference
on Information security and privacy, pages 104–116.

Cook, S. A. (1971). The Complexity of Theorem Proving
Procedures.In 3rd ACM Symp. on Theory of Comput-
ing, Ohio, pages 151–158.

Damgård, I. (1989). A design principle for hash functions.
In CRYPTO, pages 416–427.

Davis, M., Logemann, G., and Loveland, D. (1962). A Ma-
chine Program for Theorem-Proving.Journal Associ-
ation for Computing Machine, (5):394–397.

De, D., Kumarasubramanian, A., and Venkatesan, R.
(2007). Inversion attacks on secure hash functions us-
ing satsolvers. InSAT, pages 377–382.

Faugère, J.-C. and Joux, A. (2003). Algebraic Cryptanalysis
of Hidden Field Equation (HFE) Cryptosystems Using
Gröbner Bases. InAdvances in Cryptology - CRYPTO
2003, volume 2729, pages 44–60.

Knuth, D. E. (1997). The art of computer program-
ming, volume 2 (3rd ed.): seminumerical algorithms.
Addison-Wesley Longman Publishing Co., Inc.

Legendre, F., Dequen, G., and Krajecki, M. (2012). Invert-
ing thanks to sat solving - an application on reduced-
step md*. InSECRYPT, pages 339–344.

Li, C.-M. and Anbulagan (1997). Heuristics based on unit
propagation for satisfiability problems. Inthe Fif-
teenth International Joint Conference on Artificial In-
telligence (IJCAI97), Nagoya (JAPAN), page 366371.

Massacci, F. and Marraro, L. (2000). Logical cryptanalysis
as a sat problem.J.Autom.Reasoning, pages 165–203.

Matsui, M. and Yamagishi, A. (1992). A new method
for known plaintext attack of feal cipher. InEURO-
CRYPT, pages 81–91.

Merkle, R. (1989). One way hash functions and des. In
CRYPTO, pages 428–446.

Mironov, I. and Zhang, L. (2006). Applications of sat
solvers to cryptanalysis of hash functions. InSAT,
pages 102–115.

Zhang, L., Madigan, C., Moskewicz, M., and Malik, S.
(2001). Efficient conflict driven learning in a boolean
satisfiability solver. InICCAD.

From�a�Logical�Approach�to�Internal�States�of�Hash�Functions�-�How�SAT�Problem�Can�Help�to�Understand�SHA-*�and
MD*

443

