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Abstract: Audio hashes are compact and robust representations of audio data and allow the efficient identification of
specific recordings and their transformations. Audio hashing for music identification is well established and
similar algorithms can also be used for speech data. A possible application is the identification of replayed
telephone spam. This contribution investigates the security and privacy issues of perceptual hashes and follows
an information-theoretic approach. The entropy of the hash should be large enough to prevent the exposure of
audio content. We propose a privacy-enhanced randomized audio hash and analyze its entropy as well as its
robustness and discrimination power over a large number of hashes.

1 INTRODUCTION

The increasing amount of multimedia data has led to
a growing interest in fast and reliable identification
techniques. Multimedia content can have various rep-
resentations and is subject to transformations which
preserve the perceptual content, but significantly al-
ter the underlying data. It is obvious that crypto-
graphic hash functions can not preserve similar con-
tent because of theavalanche effectof these func-
tions. They are hence of limited use for the identi-
fication of multimedia data. Instead, robustpercep-
tual hashes are required which are locality-sensitive
(Slaney and Casey, 2008) and map similar input data
to similar hashes. The hashes are usually represented
by a sequence of binary vectors. The size of the orig-
inal data is substantially reduced and similarity can
be measured in the hash domain. Different copies (in-
cluding their lossy representations) of the same multi-
media document can then be identified by comparing
their hashes. We note that content recognition (for ex-
ample speech recognition and semantical correspon-
dence) is not intended here and different recordings
with identical or similar content should give different
perceptual hashes.

The problem of audio identification can be consid-
ered as largely solved (Kurth and Müller, 2008) with
commercial solutions available for large music collec-
tions (Wang and Smith III, 2008). But optimizations
of the fingerprint are still sensible (Grutzek et al.,
2012), e.g. for speech recordings, for very large repos-
itories, fast searching, good robustness and a very low

rate of false identifications.
Further aspects concern the security and privacy

of the perceptual hash. Here,securityrefers in partic-
ular to content integrity and multimedia authentica-
tion. A key-dependent perceptual hash can authenti-
cate the multimedia data: an adversary should not be
able to produce perceptually different data with the
same hash value. Different proposals for secure per-
ceptual hashes exist and we refer to Section 2.2 for
more details.

Privacyrequirements for multimedia hashes have
been examined less so far. Privacy is relevant for
personal multimedia data, which is processed by dis-
tributed systems, for example telephone calls. Percep-
tual hashing can be used to identify similar copies,
e.g. replayed spam calls. The main privacy concern
thereby is that the hash may reveal information about
the original content. Since the hash computation in-
volves several reduction steps and the hash size is
usually very small compared to the original data, it
is generally impossible to reconstruct the complete
multimedia content. But even a restricted information
leakage, e.g. single words or characteristic properties
of a speaker, would be critical. Ideally, an adversary
should not be able to distinguish the hash from a ran-
dom sequence.

In this paper, we present a privacy-enhanced per-
ceptual hash for audio data. We are particularly inter-
ested in speech data where privacy is much more im-
portant than for music. The construction of the hash
is based on the well-known work of (Haitsma and
Kalker, 2002) and our contribution (Grutzek et al.,
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2012). The hash consists of a set of subhashes which
are derived from spectral audio features and subse-
quently randomized by a cryptographic hash-based
message authentication code (HMAC). We examine
the capabilities of the hash with respect to different
requirements including their robustness, discrimina-
tion performance and privacy properties.

This work is organized as follows: we review per-
ceptual hashes and in particular the existing work on
secure audio hashes in Section 2. The following Sec-
tion 3 contains the privacy requirements for multime-
dia identification applications. Then we introduce a
privacy-enhanced perceptual audio hash. Section 4
shows the performance of this hash and the conclu-
sion is provided in Section 5.

2 RELATED WORK

2.1 Audio Fingerprinting Frameworks

Acoustic fingerprints, which are also calledaudio
fingerprintsor audio hashes, have been studied for
some time (Cremer et al., 2001), (Clausen and Kurth,
2004), (Haitsma and Kalker, 2002), (Wang, 2003).
There exists a number of different algorithms but usu-
ally the fingerprint is based on time-frequency fea-
tures of the waveform. In a general framework, the
fingerprint is computed in a number of steps (Cano
et al., 2002): audio preprocessing, normalization,
framing with overlap, spectral transformation and fea-
ture extraction, quantization and fingerprint model-
ing.

The main differences of the algorithms are due to
the combination of spectral information (Doets and
Lagendijk, 2008). The resulting fingerprint is usu-
ally a sequence of vectors (subhashes) with one vec-
tor for each time frame. Adjacent frames often have
identical or similar subhashes and redundancies can
be reduced by fingerprint modeling. For an efficient
search of a given fingerprint against a large reposi-
tory of hashes, the comparison of individual finger-
prints and the computation of their distances have to
be avoided. Index-basedsearch algorithms (Kurth
and Müller, 2008) are computationally less expensive.

In the following, we consider audio fingerprints
which preserve the time information, e.g. (Haitsma
and Kalker, 2002) or (Wang, 2003). For each au-
dio sampleA and time window (frame)t, a subhash
h(A, t) ∈ V is computed, whereV is a vector space
(e.g.V = {0,1}32) equipped with a distance function
(metric) d : V ×V → R≥0, e.g. the Hamming dis-
tance. The complete audio fingerprint is a collection
of temporal positions and their associated subhashes:

h(A) = {(t1,v1),(t2,v2), . . . ,(tn,vn)}. Two finger-
prints are equivalent if they differ only by a global
time shift. There are different possibilities to extend
the distanced from the vector space of subhashes to
equivalence classes of fingerprints. For example,d
can be defined as reciprocal to themaximum number
of matches. Two subsets{(t1,v1),(t2,v2), . . . ,(tk,vk)}
and {(t ′1,v

′
1),(t

′
2,v

′
2), . . . ,(t

′
k,v

′
k)} with k elements

matchif the temporal positionst1, . . . , tk coincide (af-
ter a possible global time shift) andd(v j ,v′j) ≤ δ (for
exampleδ = 0) for all j = 1, . . . ,k.

Standard requirements are given in (Wang, 2003),
(Cano et al., 2002), (Doets and Lagendijk, 2008):

1. Robustness: perceptually similar audio samples
A ∼ A′ have hash vectors with a small distance
d(h(A),h(A′)) ≤ ε, whereε ≥ 0 is a threshold
which controls the robustness of the algorithm.

2. Discrimination: perceptually different audio
samples A and A′ yield a large distance
d(h(A),h(A′))> ε. The fingerprint must be suffi-
ciently entropic to allow sufficient distinction and
to prevent spurious matches.

3. Localization property and translation invariance:
similar audio excerpts (e.g. only a few seconds
long) can be identified independent of their abso-
lute temporal position.

There exist various fingerprinting systems with
the desired properties; robustness and discrimination
are satisfied statistically (with sufficiently low error
rate) for randomly chosen audio data. Important ex-
amples are the fingerprints defined in (Haitsma and
Kalker, 2002) and (Wang and Smith III, 2008).

2.2 Secure Audio Fingerprinting

The presence of adversaries who deliberately manip-
ulate the audio data or the hash gives rise to further
requirements, compare (Thiemert et al., 2009):

1. Secure Robustness: it is hard to create per-
ceptually similar audio dataA and A′ with
d(h(A),h(A′))> ε.

2. Second Preimage Resistance: for a given au-
dio sampleA and hash valueh(A), it is hard
to find perceptually different audio dataA′ with
d(h(A),h(A′))≤ ε.

3. Collision Resistance: it is hard to create any per-
ceptually different audio documentsA andA′ with
d(h(A),h(A′))≤ ε.

The first requirement prevents adversaries from
generating specifically manipulated versions of the
audio content which can not be identified, e.g. for
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copyright protected music. An example of an at-
tack against the secure robustness of the (Haitsma and
Kalker, 2002) fingerprint is given in (Thiemert et al.,
2009). The quantization properties of the algorithm
are used to flip a number ofweak hash bitswithout
perceptually changing the audio data.

The second and the third requirement prevent that
forged audio content is accepted as authentic. This
is also relevant in connection withwatermarkingof
audio files where a robust hash is used to protect the
content integrity.

Since the relation between time-frequency ampli-
tudes and output hash bits is well localized and per-
mits the computation of preimages, the desired prop-
erties can hardly be achieved without additional ran-
domization. Diffusion operations similar to crypto-
graphic hashes would destroy the required robustness.
It is well known that already the feature extraction al-
gorithm should be key-dependent (Fridrich and Gol-
jan, 2000), (Swaminathan et al., 2006). Indeed, colli-
sions and forged hashes would persist if the random-
ization would be appliedafter the feature extraction.

It was observed by (Swaminathan et al., 2006) that
there is a trade-off between security and robustness.
They analyzed several image hash functions and used
theconditional entropyof the hash values for a given
image and an unknown key. The entropy was surpris-
ingly low with values between 6 and 16 bits.

Furthermore, an adversary could try to reveal the
key from the given hashes. (Koval et al., 2008) and
(Koval et al., 2009) analyzed the security of algo-
rithms based on block random projections (Fridrich
and Goljan, 2000) and used the conditional entropy
of the key for a given media file and hash value. They
discovered that information on the key is leaked, but
the amount of information decreases with the input
block size for the subhash computation.

(Weng and Preneel, 2011) proposed a secure im-
age hash which provides block level protection and
avoids collisions for malicious minor modifications.
Their hash shows good robustness and discrimination
properties but they did not analyze the security of the
key.

(Zmudzinski and Steinebach, 2009) defined a so-
calledrMAC for audio data based on the (Haitsma and
Kalker, 2002) fingerprint. The rMAC can be embed-
ded as a watermark in the audio data. In their ex-
periments, a 128-bit rMAC for audio samples of 7s
length showed sufficient robustness and discrimina-
tion power. Possible open issues are the shift invari-
ance, the entropy of the fingerprint and information
leakage on the key.

In summary, there has been some work on secure
robust hashing, but there exist relevant open issues on

the security of various proposed algorithms. There are
also indications that the required robustness impedes
a high level of resistance against attacks.

3 PRIVACY-ENHANCED HASHES

3.1 Privacy Requirements

The use of fingerprinting techniques for multimedia
identification can raiseprivacy concerns if personal
information is processed. One of the main questions
is whether the fingerprint leaks information on the
original content. It is well known that the properties
of cryptographic hash functionsprevent any informa-
tion gain other than the identification of exact copies.
But robust hashesmay leak partial information about
the original data. For example, audio hashes usu-
ally contain quantized time-frequency features of the
waveform. The compactness of most fingerprints pre-
vents a complete reconstruction but it seems feasi-
ble to refine the probability distribution of the pos-
sible content and therefore gain partial information.
A systematic analysis of the equivocation of finger-
prints with respect to the multimedia data is still ow-
ing. In this situation, telecommunication privacy laws
in many countries would not permit the use of finger-
prints for telephone data.

We have the following information-theoretic re-
quirements:

1. The entropyH(h(A)) of all hashes should be large
enough to protect against frequency analysis and
dictionary attacks. More specifically, the entropy
of the subhashes shall be high enough to prevent
the exposure of local audio content.

2. The conditional entropyH(A |h(A)) of audio data
for a given audio hashh(A) shall be large enough
to protect against information leakage. Further-
more, the conditional entropy oflocal audio data
for a given subhash shall be high enough to pre-
vent the exposure of local audio information.

Ideally, it should not be possible to distinguish the
hash from random data but this can hardly be achieved
with the current algorithms. In particular, the robust-
ness and the shift invariance requires a large overlap
of the audio frames. Hence the subhashes change only
slowly with time and adjacent subhashes are clearly
correlated.

Even a high entropy of the hash would not pre-
vent a partial exposure of audio content if the relation
between the input audio data and the output hash is
easily traceable. It is well known that robust hashes
require a secret key which obscures this relation. We
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remarked above that the current methods, which are
based on a randomization of the feature extraction
process, may leak information on the key. We there-
fore propose to randomize the subhashes by applying
a hash-based message authentication code(HMAC)
which can be used as apseudorandom function prfK ,
see (Bellare et al., 1996), but also (Bellare, 2006).
This has several advantages compared to the random-
ization of features as discussed in Section 2.2 above:
the values ofprfK do not leak information on the key
and the original subhashes can not be reconstructed,
even when the key is disclosed (only dictionary at-
tacks). Furthermore, the entropy of the subhashes is
preserved byprfK and the application ofprfK does not
generate new collisions.

Since collisions of the original subhashes are pre-
served by theprfK-function, this construction isnot
suitable for audio authentication. In particular, an
adversary may produce perceptually different multi-
media data with the same hash value. But theprivacy
is preservedsince theprfK function is one-way. The
overall protection depends on the distribution of sub-
hashes and the number of known subhashes, i.e. infor-
mation can only be gained if the entropy is low and the
adversary has access to a large number of subhashes
or is capable to generate a large number of them for
given audio data.

It would be desirable to extend the randomization
operation beyond the subhashes, to add dependen-
cies between the blocks or to use salt values, but the
required shift-invariance and the localization proper-
ties impede this. But we obtain an additional ran-
domization by dropping the time position of the sub-
hashes, removing repeated entries and finally permut-
ing them. We remark that this method could also be
combined with a randomization during the feature ex-
traction as described in Section 2.2.

3.2 Implementation

The proposed construction is based on (Haitsma and
Kalker, 2002), our work (Grutzek et al., 2012) and
several privacy-related enhancements.

For identification purposes, audio samples of sev-
eral seconds suffice. The audio data is extracted ev-
ery 11.8 ms with overlapping frames of length 370
ms. Silent sections are skipped and only the first
100 frames with sufficient energy are processed. A
Fourier transform is applied to the frames and the
spectral coefficients are filtered by a mel filter bank
in order to determine the energy in each sub-band.
The bands are equally distributed on a logarithmic
frequency axis between 300 Hz and 1800 Hz. For
the privacy-enhanced hash, we extract for each frame
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Figure 1: Binary hash matrix of three speech samples. The
left and central sample are similar, while the right is dissim-
ilar to both other samples. The upper 40 bit correspond to
spectral and the lower 20 bits to cepstral coefficients.

41 spectral and 21 cepstral coefficients (so-called
MFCCs). The spectral coefficients are differentiated
in time and frequency direction, and the cepstral co-
efficients only in frequency direction. This informa-
tion is quantized by only considering the sign while
disregarding magnitudes (compare (Grutzek et al.,
2012)). This yields a binary subhash vector of length
40+20= 60 bits for each frame. Other common al-
gorithms use bit-lengths of approximately 32 bits, but
we can show (Section 4) that 60 bits provide addi-
tional entropy while still ensuring sufficient robust-
ness. The hash has the following structure:

h(A) = {(t1,vt1),(t2,vt2), . . . ,(t100,vt100)}

The subhashes are vectorsvi ∈ {0,1}60 and the com-
plete hash can be represented by a binary matrix of
size 60×100 (see Figure 1).

Then a key-dependent pseudorandom function
functionprfK is applied to the vectorsvi , the time po-
sitions are dropped and the resulting randomized hash
hK(A) is asetof binary vectors:

hK(A) = {prfK(vt1), prfK(vt2), . . . ,prfK(vt100)}

Hence duplicates are removed and the ordering is
not relevant. The size of the hashhK(A) is only ap-
proximately 2 kBytes, depending on the keyed hash
function used as pseudorandom function.

We assume that the randomized hashesprfK(vi)
are computationally indistinguishablefrom random
output and do not leak information on the key. Then
the security of our hash depends solely on the dis-
tribution of subhashesvi . If they have sufficient en-
tropy, then an adversary obtains few information from
observingprfK(vi). Ideally, thevi ’s would be long
enough (say more than 100 bits) and uniformly dis-
tributed. In practice, it is hard to constructrobustau-
dio hashes with such a large binary length and their
distribution is biased.

4 ANALYSIS

4.1 Entropy

We analyzed our hash with 5,530 real audio samples
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Figure 2: Frequency distribution of 450,000 randomized
speech data subhashes (left) and estimated information rate
for different block lengths (right).

(see Section 4.2) and 450,000 randomized subhashes.
Figure 2 shows the approximate distribution and the
information rate (entropy per bit-symbol). The en-
tropy is estimated by counting the number of occur-
rences for blocks of length between 2 and 20 bits, and
the frequency distribution is computed for words of
length 16 bits. There may be dependencies between
the blocks, but for computational reasons it is not
possible to estimate the entropy for the given block-
length of 60, since this would require a multiple of
260 subhashes. Our computations show an informa-
tion rate of approximately 0.65 for the given audio
data. Additionally, the concatenated file of binary
subhashes was compressed with different algorithms
and parameters; the file size could be reduced by at
most 43%. We conclude that the subhashes provide at
least 34 bits of entropy. We therefore expect that any
information gain from the frequency of the random-
ized subhashes requires at least several million sub-
hashes. Changing the keyK prevents such an attack,
but only fingerprints which were randomized with the
same key can be identified.

4.2 Hypothesis Testing

The performance of the hash is analyzed with respect
to its capability to identify resp. to discriminate audio
samples. We assume a repository with a large number
of hashes when a new hash arrives. There are two
possible decisions:

• H0: The audio sample is perceptually different
from all the given ones.

• H1: The audio sample is perceptually similar to
one or more samples in the database.

This can be considered as an hypothesis testing
problem where the decision depends on the distance
d(hK(A),hK(A′)) of hashes. In our case, the distance
is reciprocal to the numberm of matching subhashes.
If none of the subhashes match, i.e.hK(A)∩hK(A′) =
∅, then the decision is clearlyH0. Otherwise, the de-
cision for eitherH0 or H1 depends on a thresholdT. A
low threshold provides good robustness but less dis-
criminative power. Higher thresholds deteriorate the
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Figure 3: True positive ratePd (left) and false positive rate
Pf (right) for different thresholds.

robustness but also decrease the number of false iden-
tifications.

We analyzed 5,330 different audio samples from
Verbmobil II corpus of German telephone dialogs
(Bavarian Archive for Speech Signals, 1998) and 200
additional telephone spam files with perceptual simi-
lar copies. These files are based on 20 real telephone
spam recordings which were intentionally altered by
noise, audio- and telephone codecs. The following
types of alterations and distortions were considered
(compare (Grutzek et al., 2012)): MP3-codec at 32
and 96 kbps, GSM fullrate, G.726 codec at 16 and 32
kbps, 5% and 10% packet loss, white and pink noise
with 20dB SNR.

The performance can be characterized by thetrue
positive rate Pd = P(m≥ T | H1) and thefalse posi-
tive ratePf = P(m≥ T | H0) wherem is the number
of matching subhashes andT a threshold. For the true
positive rate, the hashes of all telephone spam record-
ings and their distorted versions are compared.Pd is
the quotient of the number of positive identifications
and the number of expected identifications. With sub-
hashes of length 60 bits, the recognition rate is rela-
tively low (≈ 73% forT = 1) compared to the com-
mon 32-bit hashes. But the identification mainly fails
for audio samples which are encoded with low bit rate
codecs (G.726 at 16 kBit/s and GSM fullrate at 13
kBit/s). We observe that the hit rate is much higher
(≈ 97% forT = 1) if these two codecs are not incor-
porated. The true positive rate for various thresholds
is depicted in Figure 3.

The false positive ratePf is computed relative to
a given repository of audio hashes. HencePf de-
pends on the number of hashes in the repository, but
this reflects theerror of first kindin an identification
scenario. We usedN = 5,330 perceptually different
audio samples from the above corpus and performed
N(N − 1)/2 pairwise hash comparisons. A hash is
considered a false positive if it has at leastT common
subhashes with any of the otherN−1 hashes. We ob-
served only 12 false positives forT = 1 and even not
a single false positive forT ≥ 2 (see Figure 3). This
advantageous property is mainly due to the large bit-
length and the entropy of our subhashes. For the usual
32-bit subhashes, random collisions occur much more
often. On the other hand, shorter subhashes provide
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more robustness and better true positive rates.
For the identification of telephone spam, a signif-

icant rate of false negatives can be accepted since the
audio data will be replayed a number of times. But
false positive identifications of telephone spam should
be avoided, even for large hash repositories.

5 CONCLUSIONS

We studied the security and privacy requirements
of audio fingerprints and analyzed the existing ap-
proaches and algorithms. There exist various pow-
erful fingerprinting frameworks which permit an effi-
cient identification of audio samples. Some work has
been done on the security of audio hashes, but open
issues remain if the hash is used for multimedia au-
thentication and watermarking. This contribution an-
alyzes the privacy issues which are relevant for speech
data, for example to identify replayed telephone data
(spam calls). The fingerprint should not leak informa-
tion on the original audio data.

By modifying well known audio fingerprinting al-
gorithms and combining them with a cryptographic
message authentication code, we defined a random-
ized audio hash which consists of a set of binary vec-
tors. We estimated the entropy of the subhash values
which is important for the security properties of the
proposed method. Furthermore, we analyzed the per-
formance in terms of robustness and discrimination
power. We showed that the hash has adequate robust-
ness, at least if the audio samples have sufficient audio
quality, and excellent discrimination capabilities. The
hash permits an efficient identification of speech sig-
nals in large databases and prevents the exposure of
audio content.

Future work will incorporate additional audio ma-
terial and extend the study of the security properties
of robust keyed hash functions.
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