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Abstract: Galois fields of characteristic 3, where the number of field elements is a power of 3, have a distinctive 
application in building high-security elliptic curve cryptosystems. However, they are not typically used 
because of their relative inefficiency in computing polynomial operations when compared to conventional 
prime or binary Galois fields. The purpose of this research was to design and implement characteristic 3 
Galois field arithmetic algorithms with greater overall efficiency than those presented in current literature, 
and to evaluate their applicability to elliptic curve cryptography. The algorithms designed were tested in a 
C++ program and using a mapping of field element logarithms, were able to simplify the operations of 
polynomial multiplication, division, cubing, and modular reduction to that of basic integer operations. They 
thus significantly outperformed the best characteristic 3 algorithms presented in literature and showed a 
distinct applicability to elliptic curve cryptosystems. In conclusion, this research presents a novel method of 
optimizing the performance of characteristic 3 Galois fields and has major implications for the field of 
elliptic curve cryptography. 

1 INTRODUCTION 

Galois fields are one of the most important concepts 
in abstract algebra and have a wide variety of 
applications towards public-key cryptography 
algorithms. In essence, a Galois field is an algebraic 
structure with established operations for addition, 
subtraction, multiplication, and division that satisfy 
the requirements for an Abelian group. This means 
that operations follow the five axioms of an Abelian 
group: closure, associativity, commutativity, having 
an identity element and an inverse element. Most 
importantly, Galois fields have a finite number of 
elements in them (Lidl and Niederreiter, 1997). 

The most efficient and secure cryptographic 
system in use today is known as elliptic curve 
cryptography (ECC) and is based on the concept of 
elliptic curves built over Galois fields (Koblitz, 
1987). Our research in particular investigates elliptic 
curves built over Galois fields of characteristic 3. 
This essentially means that the number of elements 
in the field is a power of 3, allowing the Galois field 
to be notated as GF(3k), where k represents the 
degree of the field. In Galois fields of characteristic 
3, elements of the field are represented as 
polynomials modulo a primitive polynomial p(x), 
where coefficients are either 0, 1, or 2 (Lidl and 

Niederreiter, 1994). A primitive polynomial is an 
irreducible polynomial of degree k - 1 that can 
generate all elements of the field.   After the research 
of Galbraith (2001), it is well accepted that 
characteristic 3 curves provide more security and 
bandwidth efficiency than conventional binary or 
prime curves. In addition, they are highly applicable 
towards building pairing-based cryptosystems, an 
attractive option for identity-based cryptographic 
algorithms (Boneh and Franklin, 2001). However, 
according to the canonical research of Harrison, 
Page and Smart (2002), they are not efficient enough 
despite their potential. This is mainly because 
characteristic 3 polynomial arithmetic operations 
rely on base 3 arithmetic (Figure 1) and are much 
slower compared to prime and binary Galois fields, 
which utilize the computer’s inherent hardware 
arithmetic. 
 
 
 
 

Figure 1: Base 3 Arithmetic. 

Elliptic curves are a type of equation of the 
form y2 = x3 + ax + b, where a and b represent 
integer coefficients. When elliptic curves are built 
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over a Galois field, the points on the curve 
themselves form an Abelian group making it 
possible for operations to be done on points on the 
curve such as addition of two points, where the 
result is a third point on the curve, as shown on the 
left of Figure 2 (Hankerson et al.). This form of 
elliptic curve is known as the Weierstrass equation 
and is the most standard form of elliptic curve used 
in number theory (Koblitz, 1994). Another form of 
elliptic curve that is popular is the Edwards equation 
(right side of Figure 2) of the form x2 + y2 = 1 + 
dx2y2, where d represents a coefficient. Our research 
works primarily with the Edwards form of elliptic 
curves due to the lack of characteristic 3 Edwards 
research in the past.  

     

Weierstrasss: y2 = x3 + ax + b        Edwards: x2 + y2 = 1 + dx2y2 

Figure 2: Geometric Representation of Weierstrass 
Addition (“What is Diffie-Hellman”, n.d) and Graphical 
Representation of Multiple Edwards Curves (“Edwards 
Curve”, n.d). 

Given the fact that operations can be performed 
on points on an elliptic curve, it is possible to design 
cryptographic algorithms based on difficult number-
theoretic problems within this group (Silverman, 
2006). For ECC this difficult problem is the Elliptic 
Curve Discrete Logarithm Problem (ECDLP), which 
states that it is difficult to find a point P and integer 
k, given their product Pk. This operation of 
multiplying a point by an integer is referred to as 
scalar multiplication. Scalar multiplication not only 
dominates the execution time of ECC algorithms, 
but is also essential to the security of these systems. 

1.1 Related Work 

The research of Harrison, Page and Smart is 
regarded as the canonical paper on software 
implementation of characteristic 3 Galois fields for 
ECC applications. Their research uses conventional 
algorithms for polynomial arithmetic, and then 
provides software optimization. Research by Iyengar 
has developed efficient scalar multiplication 
algorithms. Three of these algorithms are use 
extensively in this research: the Binary Double-Add 

Algorithm, the Ternary Expansion Algorithm, and 
the Balanced Ternary Expansion Algorithm. 

1.2 Research Goals 

This research has two main goals: 
1. To design and implement characteristic 3 Galois 

field operations with greater overall efficiency than 
conventional state-of-the-art algorithms.  

2. To analyze this new method’s applicability to 
elliptic curve cryptography.  

Overall efficiency is evaluated as a combination 
of a comparison of implementation speeds, and 
time-space tradeoffs. If a new and more efficient 
method for characteristic 3 Galois field operations 
can be developed, it would be a major advancement 
for elliptic curve cryptography and Internet security 
in general. 

2 CONVENTIONAL 
ALGORITHMS 

Algorithms 1 – 6 are the characteristic 3 Galois field 
algorithms as presented in the research of Harrison, 
Page and Smart, 2002. They are widely considered 
the most efficient characteristic 3 algorithms in 
literature. 

Algorithm 1: Characteristic 3 Polynomial 
Addition/Subtraction 
INPUT: Polynomials f(x) = [an…a1, a0] 
and g(x) = [bm…b1, b0] 
OUTPUT: f(x) + g(x) 

1. For i from 0 to n if n > m, 
from 0 to m if m > n 

a. Pi = (ai +/− bi ) % 3 
2. Return P(x) 

 
Algorithm 3: Conventional Characteristic 3 
Polynomial Multiplication 
INPUT: Polynomials f(x) = [an…a1, a0] 
and g(x) = [bm…b1, b0] 
OUTPUT: f(x) *g(x) 

1. For i from 0 to n  
    a. For j from 0 to m 
        i. Pi+j = (ai * bj) % 3 
2. Return P(x) 

 
Algorithm 4: Conventional Characteristic 3 
Polynomial Cubing 
INPUT: Polynomial f(x) = [an…a1, a0] 
OUTPUT: f(x) ^ 3 

1. For i from 0 to n 
a. Pi * 3 = (ai * 3) % 3 
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Conventional characteristic 3 polynomial cubing 
takes the degrees of all terms of f(x), and multiplies 
them by 3. The resulting polynomial is then reduced 
modulo the primitive polynomial of the system. 

Algorithm 5: Conventional Characteristic 3 
Polynomial Division 
INPUT: Polynomials f(x) = [an…a1, a0] 
and g(x) = [bm…b1, b0] 
OUTPUT: f(x) / g(x) 

1. h(x) = Extended Euclidean 
Algorithm Inverse of g(x) 

2. Return h(x) * f(x) 

Conventional characteristic 3 polynomial division is 
a complex operation requiring multiple steps. 
Firstly, the inverse of the divisor is taken using 
Algorithm 6. This is then multiplied by the dividend 
using Algorithm 3. 

Algorithm 6: Extended Euclidean Algorithm 
INPUT: Polynomial f(x) = [an…a1, a0], 
Primitive Polynomial p(x)  
OUTPUT: f-1(x)  

1. remainder[1] = p(x); 
remainder[2] = f(x)  

2. inverse[1] = 0; inverse[2] = 1  
3. i = 2  
4. while remainder[i] > 2      
   a. i = i + 1      
   b. remainder[i] = remainder[i-2]  
  mod remainder[i-1]      
   c. quotient[i] = remainder[i-2] / 
  remainder[i-1]      
   d. If(inverse[i] == 2) inverse[i] 
  = 2(-quotient[i] *    
 inverse[i-1] + inverse[i-2]) 
   e. Else (inverse[i] = -   
 quotient[i] * inverse[i-1] +  
 inverse[i-2])  
   f. Return inverse[i] 

3 KEY RESEARCH CONCEPTS 

The key idea of this research was to map the 
polynomials to a simpler representation more 
conducive to efficient arithmetic. The algorithms 
designed were inspired by the concept of Zech’s 
logarithms presented in the work of Lidl and 
Neiderreiter, 1997. The algorithms designed include 
the following: logarithm table generation, 
polynomial multiplication, polynomial division, and 
polynomial cubing. 

3.1 Our Novel Contributions 

This research designed and developed a new and 
highly efficient way of doing characteristic 3  Galois 

 field operations using a logarithm-table approach. 
Furthermore, this research explored and analyzed 
Edwards curves over characteristic 3 fields. Finally, 
scalar multiplication was implemented using binary, 
ternary, and balanced-ternary algorithms. 

Algorithm 7: Logarithm Table Generation 
INPUT: Primitive Polynomial P(x) 
OUTPUT: Mapped table of field elements 
and logarithms 

 1. LogTable[0] = x 
 2. For i from 1 to field size do 
  a. LogTable[i] =    

 LogTable[i-1] * x 
        b. if degree of LogTable[i]= 

  degree of P(x) do    
 LogTable[i] modulo P(x)or   
 substitution reduction 

 3. Return LogTable 
 
The logarithm table generation algorithm aims to 
create a table of field element logarithms, mapped 
from a power representation. This is done by 
repeatedly multiplying successive terms in the table 
by the value x, and then reducing these values 
modulo the primitive polynomial of the system. This 
algorithm also utilizes the concept of substitution 
reduction to simplify polynomial modular reduction. 
Substitution reduction basically substitutes, during 
the computation phase, an identity previously 
computed in the table, in order to simplify modular 
reduction. To better illustrate this concept, we have 
created a small example of logarithm table 
generation as shown in Figure 3. 
 
Figure 3: Example of Logarithm Table 
Generation and Use 
The following example shows the creation of a log 
table for the Galois Field 33 over the primitive 
polynomial P(x) = x2 + 2x + 2 
 

Power 
Rep 

Galois Field 
Rep 

Operation Done
 

1 1  

x x 1  x 

x2 x + 1 x2 mod x2 + 2x + 2 

x3 2x + 1 x2 + x = 2x + 1 

x4 2 2x2 + x = 2

x5 2x 2  x 

x6 2x + 2 2x2 = 2x + 2 

x7 x + 2 2x2 + 2x = x + 2 

x8 1 x2 + 2x = 1
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This example computes the table in 8 multiplications 
by x, and just 1 modular reduction using repeated 
substitution with the identity x2 = x + 1. 

Once created, the logarithm table can then be 
used to perform the following operations very 
efficiently: 
 
Polynomial multiplication and modular 
reduction: Addition of power representation 
exponents – EX: (x + 1)  (2x + 1) = x2  x3 = x5 = 
2x 
 
Polynomial division and modular reduction: 
Subtraction of power representation exponents – 
EX: (2x + 2) / 2 = x6 / x4 = x2 = x + 1 
 
Polynomial exponentiation and modular 
reduction: Multiplication of power representation 
exponent by the desired exponent – EX: (2x + 1)2  = 
(x3)2 = x32 = x6 = 2x + 2 

3.2 Implementation  

The main instrument used in this research was a 
Windows 7 computer with a 2.10 GHz Intel Core i3 
processor installed with a Microsoft Visual Studio 
compiler. The main program was written in C++. An 
open source implementation for a Galois Field of 
characteristic 2 (Partow, 2006) was used as the 
starting point for the programming part of the 
research. The algorithms for the Galois Field of 
characteristic 3 were designed independently and 
then implemented into the program for testing. 
Primitive polynomials were generated for each 
Galois field size using the open source software 
Primpoly (O’Connor, 2013).  

4 RESULTS AND DISCUSSION 

4.1 Galois Field Operations 

The first goal of this research was to design and 
implement characteristic 3 Galois field operations 
more efficient than conventional algorithms. These 
algorithms were tested by performing operations on 
a wide range of values within Galois fields of six 
different sizes: 35, 37, 39, 311, 313, 315. These 
operations were measured in terms of processor 
cycle counts, and finally averaged out as an 
indication of the algorithms’ overall efficiencies. 
Table 1 compares the average speed of these 
operations using both the logarithm table method 
designed in this research and the conventional 
methods. 

Table 1: Comparison of Performance of Galois Field 
Operations (Processor Clock Cycles). 

Degree of Galois Field 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in Table 1, the logarithm table 

methods of doing basic characteristic 3 Galois field 
operations were orders of magnitude faster than their 
conventional counterparts. To conclude, research 
goal 1 was met. 

4.2 Elliptic Curve Analysis 

Research goal 2 was to evaluate the applicability of 
the logarithm table method towards elliptic curve 
cryptography. The underlying Galois Field was thus 
implemented, tested, and verified over Edwards 
elliptic curves. This basically involved timing scalar 
multiplication operations using the Binary Double-
Add, the Ternary Expansion, and the Balanced 
Ternary Expansion algorithms for Edwards curves 
using six different Galois field sizes: 35, 37, 39, 311, 
313, 315. This procedure was first done using the 
conventional polynomial arithmetic operations.  
 
 
 

47X to 136X faster 

38X to 81X faster 

244X to 786X faster 
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Figure 4: Elliptic Curve Scalar Multiplication - 
Conventional Polynomial. 

Figure 4 shows the average performance of 
scalar multiplication algorithms over 6 Galois field 
sizes using the conventional characteristic 3 
arithmetic algorithms. The Balanced Ternary 
Expansion algorithm is the most efficient for all 
Galois field sizes except 35. Furthermore, as the size 
of the underlying Galois field increases, the 
efficiency decreases in a linear manner. 

This same scalar multiplication testing procedure 
was applied with the logarithm table method for 
polynomial arithmetic. 

 

Figure 5: Elliptic Curve Scalar Multiplication – Logarithm 
Table. 

Figure 5 shows the average time for scalar 
multiplication operations over the 6 different Galois 
fields with the 3 different scalar multiplication 
algorithms using logarithm table polynomial 
operations. It is clear that the Balanced-Ternary 

algorithm is generally the fastest, and as the size of 
the field increases, the speed of all algorithms 
remains constant. Most importantly, these operations 
are significantly faster in comparison to their 
conventional counterparts shown in Figure 4. 
Specifically, the logarithm table method for scalar 
multiplication ranges from ~5X faster for a field of 
degree 5, to ~30X faster for a field of degree 15. 

4.3 Next Steps 

A very attractive option for future research is 
developing a hybrid method that utilizes both 
logarithm table and conventional arithmetic, 
reducing the cost upfront and the storage needed, 
while also taking advantage of the speed provided 
by logarithm table-based arithmetic. This could be 
done by using a logarithm table method for a small 
subfield, and then extending this field to a larger 
power. Also, next steps include testing larger 
numbers such as NIST (National Institute for 
Standards in Technology) size elliptic curves in 
order to evaluate the scalability of these algorithms. 

5 CONCLUSIONS 

In this paper, we present a novel and efficient 
method for characteristic 3 Galois field operations 
and analyze this method’s distinctive applications to 
elliptic curve cryptography. We thus meet both 
research goals. The findings of this research have a 
wide significance towards the findings of other 
researchers such as Harrison et al. and those at NIST 
who have disregarded characteristic 3 Galois fields 
for elliptic curve cryptographic applications. This 
research shows that in fact characteristic 3 can be a 
feasible option for some ECC applications.  
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 Legend for Figures 4 and 5 
 Binary Double-Add  
 Ternary Expansion  
 Balanced Ternary Expansion  
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