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Abstract: The connection between probability and fuzzy sets has been investigated among the community of 
approximate reasoning for decades. A typical viewpoint is that the grade of membership could be 
interpreted as a conditional probability. This note extend this viewpoint a step further by introducing the 
concepts of conditional probability mass function (CPMF) and the likelihood mass function (LMF). We 
draw the conclusion that conditional probability can be used for describing either randomness or fuzziness 
depending on how it is interpreted. If expanded to CPMF, then it can be used for modelling randomness; if 
expanded to LMF, then it can be a useful expression for modelling fuzziness. A fuzzy Bayesian theorem is 
derived based on the fuzziness interpretation of conditional probability. Its successful application to an 
example of target recognition demonstrates that the proposed fuzzy Bayesian theorem provides alternative 
approach for handling uncertainty. 

1 INTRODUCTION 

The operation of air defense is a time critical 
process, which includes a series of automation/semi-
automation steps of information fusion and the final 
step of engagement. The process of information 
fusion may range from target tracking, target 
recognition, through to situation awareness, threat 
evaluation (TE) and weapon assignment. According 
to Paradis (Paradis et al., 2005), TE refers to “the 
part of threat analysis concerned with the ongoing 
process of determining if an entity intends to inflict 
evil, injury, or damage to the defending forces and 
its interests, along with the ranking of such entities 
according to the level of threat they pose.” The 
difficulties of developing a TE system are evident, 
largely due to three factors (Roux and Vuuren, 2007; 
Steinberg, 2005): 1) Weak spatio-temporal 
constraints on relevant evidence. Many TE problems 
may involve evidence that is wide-spread in space 
and time, with no easily defined constraints. 2) 
Weak ontological constraints on relevant evidence. 
Evidence relevant to TE may be very diverse and 
may contribute to inferences in unexpected ways. 3) 
Weakly-modeled causality. TE involves inference of 
human intent and behavior. Models are extremely 
difficult to formulate, since sub-domains (individual 
minds) are unique and attributes may be very 
difficult to measure or even define. 

The fundamental problem involved in 

information fusion of air defense is the need to deal 
with uncertainty. In the words of Von Clausewitz 
(Clausewitz et al., 2004), “war is the realm of 
uncertainty; three quarters of the factors on which 
action in war is based are wrapped in a fog of greater 
or lesser uncertainty. A sensitive and discriminating 
judgment is called for a skilled intelligence to scent 
out the truth.” Up to now, a huge number of 
methods, such as Bayesian inference (Chen and Ho, 
2008; Lane et al., 2010), fuzzy sets (Bailadora and 
Triviño, 2010; Xu et al., 2012), neural networks (Jan, 
2004; Young et al., 1997), and evidential reasoning 
(Delmotte and Smets, 2004; Leung and Wu, 2000), 
have been promoted for handling uncertainty arising 
from applications of information fusion including 
TE. Though there are a variety of approaches as 
listed above for uncertainty inference, in our opinion 
the uncertainty involved in and of itself can be 
broadly categorized into (or interpreted as) two 
types, randomness and fuzziness. Randomness is 
usually measured by probability whereas fuzziness 
is often gauged by membership or possibility. It is 
worth noting that there is ongoing endeavor of 
connecting probability and possibility. Some works 
intend to unify them or interpret one uncertainty by 
another one (Cheeseman, 1988; Coletti and 
Scozzafava, 2004; Dubois et al., 1997), some works 
try to find out the relationship for probability-
possibility transformation (Oussalah, 2000; Dubois 
et al., 2004; Mouchaweh and Billaudel, 2006).  
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This paper discusses the Bayes based TE 
method. Bayesian inference is an approach to 
statistics in which all forms of uncertainty are 
expressed in terms of probability. It has a large body 
of applications and is believed to be the most classic, 
rigorous and popular method for modeling 
uncertainty (Jain et al., 2000). Nevertheless, 
Bayesian method has always been criticized for lack 
of prior probability and being difficult to define the 
conditional probability. From the viewpoint of 
application, e.g. target recognition and TE, it is 
usually very inconvenient to build and maintain the 
knowledge database of the inference rule in form of 
conditional probability. Practitioners complain that 
whenever new inference rule is to be added to the 
knowledge database, all former defined inference 
rules have to be redefined to ensure the sum of 
corresponding conditional probabilities maintains 
one. We in this paper try to eliminate this problem 
by reinterpretation of the Bayes theorem, which can 
handle randomness and fuzziness simultaneously, 
and leads to an open structure of knowledge 
database for uncertainty inference.  

The rest of this paper is organized as follows. 
Section 2 presents two interpretations of conditional 
probability, which are suitable for describing 
randomness and fuzziness, respectively. Section 3 
revisits the well known Bayesian theorem by 
applying these two interpretations of conditional 
probability and derives two forms of Bayesian 
theorem, the usual one and the fuzzy Bayesian 
theorem. Section 4 proposes a probability-possibility 
conversion method through the bridge of Bayesian 
theorem but with specific interpretations of 
conditional probability. Section 5 introduce the 
application of the fuzzy Bayesian theorem to the 
problem of TE. Section 6 concludes the paper. 

2 TWO INTERPRETATIONS 
OF CONDITIONAL 
PROBABILITY  

The Bayesian theorem is a well-known mechanism 
for relating two conditional probabilities. This 
section gives two interpretations of conditional 
probability, based on which the Bayesian theorem 
can be reinterpreted as in the next section. 
Probability originally comes with randomness while 
possibility comes with fuzziness. Randomness is the 
uncertainty whether an event occurs, or the possible 
outcomes an event variable may take. Sometimes, 
the event itself is certain and you may be uncertain 

about it because of your lack of information of it. 
Fuzziness is the uncertainty whether a concept holds 
given its attribute values.  

The chief similarity between probability and 
possibility is that both methods describe uncertainty 
with numbers in the unit interval [0, 1]. The key 
distinction concerns how they deal simultaneously 
with the outcome and its opposite of an event 
variable. Probability demands the sum of all possible 
outcomes of an event variable is one. Possibility has 
no additivity constraint as probability. 
Mathematically, a possibility on the finite set A is a 
mapping to [0, 1] such that 

( ) 0    (1)

( ) Max( ( )) 1, 1, 2,...,iA A a i n      (2)

where A is called event variable, and iA a  is one 

of n possible outcomes of event variable A (in short, 
event). Without lose of generality, this work only 
considers the case of discrete event to simplify the 
discussion. As we can see, possibility is similar to 
probability, but it relies on an axiom which only 
involves the operation “maximality” as shown in (2). 
In contrast, probability is additive which requires 
that probability sum of all possible outcomes of 
event variable is one. Though probability origins 
from randomness or frequency, it has been widely 
used in various applications for modeling different 
uncertainty that satisfies the additively constraint of 
probability. Likewise, possibility has been 
extensively used for formulating any uncertainty that 
satisfies (1, 2) besides fuzziness. 

Conditional probability ( | )i jp A a B b   is the 

occurrence probability of a conditional event 
|i jA a B b  , which equals to the probability of 

iA a  given 
jB b . In order to completely 

formulate the randomness of the conditional event 
|i jA a B b  , we need to use conditional 

probability mass function (CPMF), { ( ip A a  

| ),jB b 1, 2,..., }i m  (in short, ( | )jp A B b ). 

Here event variable B is fixed at 
jb  and m is the 

number of possible outcomes ia s of event variable 

A. Now we see CPMF provides a complete 
description of the stochastics of the event variable A 
given conditioning event 

jB b . According to the 

property of probability, the sum of ( | )jp A B b  

across ia  is one. The randomness formulated by 

CPMF is here called probabilistic randomness. 
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If event variable A is fixed at ia  and let B take 

value from n possible outcomes 
jb s, we then get the 

likelihood mass function (LMF), { ( ip A a  

| ),jB b 1,2,..., }j n  (in short, ( | )ip A a B ), 

which is the likelihoods of the fixed ia  stemming 

from different 
jb . Note that though ( ip A a  

| )jB b  is a probability, there is no need that the 

sum of ( | )ip A a B  across 
jb  should be one since 

it is actually not a probability mass function. Let 
A  ia  be a fuzzy concept, then ( | )ip A a B  

naturally defines a membership function  

( ) ( | )
iA a iB p A a B     (3)

As we can see from (3), LMF is a natural form of 
membership function for describing fuzziness. The 
only constraints on ( | )ip A a B  is that its sum over 

ia  should be one for every 
jB b . The fuzziness 

formulated by (3) is here called probabilistic 
fuzziness since it is derived from a conditional 
probability, and ( )

iA a B   is called probabilistic 

membership function. If we let ( )
iA a B    

0 ( | )ip A a B  , where scale factor 0  is applied 

so that the maximum value of ( )
iA a B   over B is 

one, then ( )
iA a B   is a standard membership 

function derived from conditional probability. 

3 REITERPRETAION 
OF BAYESIAN THEOREM 

The well-known Bayesian theorem is as follow: 

1

( ) ( | )
( | )

( )

( ) ( | )

i j i
i j

j

i j i

p A a p B b A a
p A a B b

p B b

p A a p B b A a

  
  



   

 
(4)

where ( | )i jp A a B b  , the posterior, is the 

probability in A  ia  after 
jB b is observed; 

( )ip A a  is prior probability; conditional 

probability ( | )j ip B b A a  , is called the likelihood; 

and 1  is a normalizing factor such that the sum of 

( | )i jp A a B b   over ia  is one. 

In applications, the likelihood ( jp B b | )iA a  is 

usually defined among the space of CPMF, 
( | )ip B A a , which means ( | )j ip B b A a   

represents randomness. Following the interpretation 
of conditional probability in Section 2, ( jp B b  

| )iA a  can also be used to model fuzziness, only 

if it is defined among the space of LMF, 
( | )jp B b A . Let 

0( ) ( | )
jB b jA p B b A    , we 

then have 

2( | ) ( ) ( )
jj B bp A B b p A A     (5)

Note that (5) holds for any ( )
jB b A   proportional to 

( | )jp B b A  considering the effect of the 

normalization constant 2 . Eq. (5) provides a 

mechanism to fusion randomness and fuzziness to 
arrive at a conclusion with uncertainty of 
randomness, and is called a fuzzy Bayesian theorem. 
Recall that probability and possibility can be used 
for modelling any uncertainty only if their specific 
constraints are satisfied. Mathematically, Eq. (5) 
could be used to fusion probability and possibility 
no matter fuzziness is involved or not, but the name 
of fuzzy Bayesian theorem always holds. The 
choosing of (4) and (5) for a certain application 
depends on our interpretation of ( jp B b | )iA a . 

4 PROBABILITY-POSSIBILITY 
TRANSFORMATIONS 

Similarly, following different interpretations of 
conditional probability, we can derive 
transformations from possibility to probability and 
conversely. Let ( jp B b | )iA a  in (4) be 

expanded to LMF and represent possibility, i.e., 

0( ) ( | )
jB b jA p B b A    , we get  

3( | ) ( ) ( )
jj B bp A B b p A A     (6)

where 3  is a normalizing factor. Eq. (6) can be 

used for transformation from possibility to 
probability and is similar to Klir’s normalized 
transformation from possibility to probability 
(Mouchaweh and Billaudel, 2006). The difference 
lies that in order to convert a possibility to a more 
specific probability, (6) suggests that the prior 
probability ( )ip A a  should be used. Let 

( )ip A a   be  a  uniform distribution, then we have 
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( | )jp A B b  4 ( )
jB b A    (7)

where 4  is a normalizing factor. Eq. (7) is exactly 

the same as Klir’s normalized transformation from 
possibility to probability. 

Let ( | )j ip B b A a   in (4) be expanded to 

CPMF ( | )ip B A a  and represent probability, we 

get 

5 ( | )
( )

( )i

i
A a

p B A a
B

p B

 


  (8)

where 
0( ) ( | )

iA a iB p A a B     is expanded to 

LMF and represents possibility; scale factor 5  is 

such that the maximum value of ( )
iA a jB b    over 

jb  is one. Note that ( )ip A a  is removed from (8), 

which is a constant as A  is fixed at ia , considering 

the effect of the factor 5 . Eq. (8) can be used for 

transformation from probability to possibility and is 
also similar to Klir’s normalized transformation 
from probability to possibility (Mouchaweh and 
Billaudel, 2006). 

5 APPLICATION TO THREAT 
EVALUATION  

Factors considered in assessing target threat under 
the background of air defense may include target 
type, heading, velocity, altitude, distance with 
respect to the related high value defended assets, the 
detection of emissions from its fire control radar, 
and the estimation of its possible courses of attack 
action (Roux and Vuuren, 2007). In addition, peer 
supplied TE report may be used for own-ship TE 
update. The TE example introduced in this section 
considers two factors, i.e., target type and target 
distance.  

Assume a missile approaching the defended 
assets belongs to two possible types of target, 
combat aircraft and missile denoted by 1 2{ , }C c c . 

Target distance is supposed to be classified as three 
levels, close (<20km), medium (<100km & >20km), 
far (e.g., >100km), denoted by 1 2 3{ , , }D d d d . Let 

target threat be three levels, low, medium and high, 
denoted by 1 2 3{ , , }T t t t . At consequent times 1k , 

2k , 3k , the TE system receives target type 

probability ( | )ip c e  (e is the raw observation) given 

in Table 1 from a classifier, and target distance data 
given in Table 2 from a tracker. Note that in Table 2, 
e.g., at time 1k , p(d2|e) = 1 while p(d1|e) = p(d3|e) = 

0, which is due to the fact that current target distance 
is medium (d2). 

Table 1: Target type probability. 

 k1 k2 k3 

p(c1|e) 0.5 0.2 0.2 

p(c2|e) 0.5 0.8 0.8 

Table 2: Target distance. 

 k1 k2 k3 

Distance 90km (medium) 50km (medium) 18km (close)

p(d1|e) 0 0 1 

p(d2|e) 1 1 0 

p(d3|e) 0 0 0 
 

The threat level of the approaching missile is 
evaluated by using a classifier based on the Bayesian 
theorem or the fuzzy Bayesian theorem. The 
posterior probability of target threat could be 
calculated as follows: 

( | ) ( | , ) ( | ) ( | )
j s

i i j s j s
c d

p t e p t c d p c e p d e  
(9)

( | , ) ( ) ( | ) ( | )i j s i j i s ip t c d p t p c t p d t  (10)

where ( )ip t  is the prior probability of target threat 

with assumed uniform distribution; conditional 
probabilities ( | )j ip c t , ( | )s ip d t  define the 

uncertain mapping between the threat category space 
and the threat factor space; and   is a normalization 
constant such that values of ( | , )i j sp t c d  over it  

sum to one. Traditionally, ( | )j ip c t , ( | )s ip d t  are 

usually defined from the threat category space to the 
threat factor space as in Table 3, meantime Eqs. (9, 
10) is called the Bayesian classifier. Always, 
practitioners are hesitated in assigning an 
appropriate value for ( | )j ip c t  or ( | )s ip d t . It 

looks somewhat strange, e.g., that a certain level of 
threat will produce a certain type of target with a 
certain probability. In contrast, it is more reasonable 
to say that a certain type of target will exhibit a 
certain level of threat with a certain possibility. 
Therefore ( | )j ip c t , ( | )s ip d t  need to be defined 

from the threat factor space to the threat category 
space as in Table 4, meantime a fuzzy Bayesian 
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classifier (9, 11) can be applied with (11) given 
bellow, where ( | )j ip c t , ( | )s ip d t  are rewritten as 

( )
jc it , ( )

sd it .  

( | , ) ( ) ( ) ( )
j si j s i c i d ip t c d p t t t    (11)

Table 3: ( | )j ip c t , ( | )s ip d t  For Bayesian method. 

 t1 t2 t3 

( | )j ip c t  c1 0.70 0.50 0.10 

c2 0.30 0.50 0.90 

( | )s ip d t  
d1 0.10 0.20 0.80 

d2 0.10 0.50 0.10 

d3 0.80 0.30 0.10 

Table 4: ( )
jc it , ( )

sd it  For fuzzy Bayesian method. 

 t1 t2 t3 

( )
jc it  c1 0.10 1.00 0.50 

c2 0.10 0.50 1.00 

( )
sd it  

d1 0.00 0.50 1.00 

d2 0.10 1.00 0.50 

d3 1.00 0.50 0.00 

The results of TE are given in Table 5. As we can 
see, e.g., at k1, the TE results of the Bayesian 
classifier is (0.15, 0.72, 0.13), which means 

1( | )p t e =0.15, 
2( | )p t e =0.72, 

3( | )p t e = 0.13. It is 

shown to the user in a simpler and more intuitive 
form as medium (0.7), which means the current 
threat level is medium with a confidence of 0.7. The 
overall performances of the two methods are 
competing, though the fuzzy Bayesian classifier is 
easier to implement due to the easiness of defining 

( )
jc it , ( )

sd it . For example, we need not to make 

sure the sum of ( )
jc it  over it  is one when using 

fuzzy Bayesian classifier, but we need to make sure 

values of ( | )j ip c t  over jc  sum to one when using 

the conventional Bayesian classifier. 

Table 5: Threat Evaluation Results. 

( | )ip t e  k1 k2 k3 

Classifier 1a 
(0.15, 0.72, 0.13) 

medium (0.7) 
(0.11, 0.69, 0.20) 

medium (0.7) 
(0.09, 0.17, 0.74)

high (0.7) 

Classifier 2a 
(0.01, 0.64, 0.35) 

medium (0.6) 
(0.01, 0.56, 0.43) 

medium (0.6) 
(0.00, 0.26, 0.74)

high (0.7) 
a. Classifier 1: Bayesian classifier, Classifier 2: fuzzy Bayesian 

classifier 

6 CONCLUSIONS 

It is more natural and convenient to model the 
uncertainty involved in threat evaluation using the so 
called fuzzy Bayes’ Theorem, which has competitive 
performance with the conventional Bayesian method 
and the merit of an open structure of rule database.  
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