
An Approach for the Development of Portable Applications on PaaS
Clouds

Filippo Giove, Davide Longoni, Majid Shokrolahi Yancheshmeh, Danilo Ardagna
and Elisabetta Di Nitto

Politecnico di Milano, Milan, Italy

Keywords: Cloud Computing, Performance Study, Portability.

Abstract: Cloud computing is becoming important for ICT industry. Despite undoubted advantages in term of scalability
and cost savings, today there are still issues regarding its massive diffusion due to portability of applications.
To address this problem, in this paper we propose a new approach for the development of portable applications
for Platform as a Service (PaaS) systems. This is based on a Java library exposing avendor independentAPI
that provides an abstract intermediation layer for the most important middleware services typically offered by
PaaS systems (e.g., NoSQL services, message queues and memcache).
The current version of our library supports the portability of applications across Java platforms forGoogle
App EngineandWindows Azure. We have conducted some experiments especially focusing on evaluating
the performance degradation introduced by our library when executing an application on both PaaS. The
experiments demonstrate that such degradation is not significant.

1 INTRODUCTION

Cloud computing is new paradigm which provides a
new way of managing and offering IT services. De-
spite undoubted advantages of Cloud systems in term
of scalability and cost saving, today there are some
issues regarding limitation in their massive diffusion.
Ideally, any company should be able to change its
Cloud supplier. The reasons that can push an IT man-
ager to move all or part of the company software from
one supplier to another can be:
• offered SLA not respected;
• costs increase over time;
• competitors start new interesting or cheaper ser-

vices.
Unfortunately, today moving from a Cloud

provider to another is not an easy task. Each Cloud
provider has its own API for deploying and running
software and, most important, if we focus on the PaaS
(Platform as a Service) level, each Cloud provider of-
fers slightly different services, components and con-
tainers. This implies that an applications built for a
certain PaaS and exploiting certain services (or com-
ponents and containers) needs to be reengineered to
be moved to a different Cloud. This is certainly a time
consuming and very expensive operation that leads to
the perception of so-calledLock-inby the Cloud ser-

vice provider.
In this paper, we propose a library called CPIM

(Cloud Provider Independent Model), that offers
to developers PaaS-level services such as message
queues, noSQL services, and caching service, ab-
stracting from the details that are specific of the un-
derlying PaaS provider. By exploiting our services
an application developer is able to implement his ap-
plication in a PaaS independent way. At deployment
time, he/she specifies the actual PaaS to be used for
the operation of the application and configures in the
appropriate way the actual services to be used. At
runtime, the CPIM library is in charge of acting as
a mediator between the application code and the ser-
vices offered by the PaaS that is currently hosting the
application. Should the application owner be willing
to move to a different Cloud, all he/she will have to
do is to re-execute the deployment procedure on the
other Cloud.

By exploiting the current implementation of the
library, the application developer can build advanced
distributed applications that, at the moment, can be
deployed either on Google App Engine or on Win-
dows Azure with no change at the code level. The de-
ployment requires the execution of some specific con-
figuration steps and is supported by an Eclipse plugin
we have developed that guide the deployer through

591Giove F., Longoni D., Shokrolahi Yancheshmeh M., Ardagna D. and Di Nitto E..
An Approach for the Development of Portable Applications on PaaS Clouds.
DOI: 10.5220/0004511605910601
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CI-2013), pages 591-601
ISBN: 978-989-8565-52-5
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



these steps.
The library has been validated by conducting ex-

periments aiming at assessing the overhead it intro-
duces at runtime while it acts as an intermediary be-
tween the application and the native PaaS APIs. The
experiments have shown that such overhead is negli-
gible.

The paper is structured as follows: Section 2
presents related work. Section 3 introduces the ap-
proach we have taken in building the CPIM library.
Section 4 describes the application “Meeting in the
Cloud” (MiC), we have developed and used as a ref-
erence for our experiments. Section 5 discusses the
experimental tests we performed and the results we
have obtained. Finally, Section 6 draws the conclu-
sion and outlines future work.

2 RELATED WORK

The PaaS market is, in these days, rich of interest-
ing initiatives. The first and most known solutions
are those offered by Google App Engine (Euphro-
sine, 2013) and Windows Azure (Meier, 2013), but
others are being launched and are gaining interest in
the practitioners and scientific communities. Among
the others, we can mention so calledopen platform
as a servicewhich allow to develop, test, and de-
ploy applications implemented in any programming
language, see for instance OpenShift (Red-Hat, 2012)
and Cloud Foundry (CloudFoundry, 2013).

Currently each Cloud provider exposes services
that, even when they are classified as similar, offer
a different semantic and can be accessed through dif-
ferent APIs. This leads to serious problems of inter-
operability and portability of applications and of data
residing on Cloud platforms.

There are some general approaches that could
be taken to facilitate the portability across platforms
(Petcu, 2011):
• Adoption of globally recognized and accepted

standard APIs.
• Use of Wrapper/Adapter, i.e., a mediation layer

that can decouple applications from the character-
istics of Cloud platforms.
Among the standardization initiatives, IEEE

P2301 (Ortiz, 2011) is a working group aiming to
draw directives for the definition of Cloud services
APIs. The goal is to define concepts, formats and
conventions that, if widely adopted, would facili-
tate the portability and interoperability of different
Clouds, allowing further growth and effective use of
Cloud computing. Another example in this area is the
partnership between Google and VMware (VMware

and Google, 2012). The two companies, leaders of
the Cloud market, through this alliance are trying to
answer to portability issues by leveraging VMware
vCloud technologies, Spring-Source, Google Web
Toolkit and Google App Engine, to facilitate the de-
velopment and implementation of business applica-
tions. Using the development environment based on
Eclipse Spring Source Tool Suite, developers can cre-
ate their own applications and later have the oppor-
tunity to carry out the deployment on a VMWare
vSphere private environment, on a VMware vCloud
partner or directly on Google AppEngine. OCCI,
Open Cloud Computing Interface (OCCI, 2012) is an-
other standardization activity that has been initially
focusing on the creation of OCCI API for remote
management of low level Clouds called IaaS (Infras-
tructure as a Service) and that now is trying to cover
the PaaS model as well.

Among the mediation approaches, CSAL, Cloud
Storage Abstraction Layer (Hill and Humphrey,
2010), provides an abstraction of typical storage ser-
vices offered by most of PaaS, i.e., blobs and tables.
The challenge of this project is related to the map-
ping of abstract operations in specific calls to such
services.

SimpleCloud (Zend et al., 2013) is a open source
project created by Zend Technologies in collabora-
tion with IBM, Microsoft, Rackspace, Nirvanix and
GoGrid, having the objective of improving the porta-
bility of PHP applications. With SimpleCloud, the
developer can use a provider specific API or use a me-
diation layer that allows to write portable code among
the supported set of vendors.

Among the current European-funded projects,
mOSAIC (Open-Source API and Platform for Mul-
tiple Clouds) (mOSAIC, 2013) has the aim of de-
veloping an open-source PaaS as a mean of com-
munication between Cloud applications and IaaS ser-
vices. A mOSAIC application is able to postpone
the choice of the underlying infrastructure. In other
words, application developers and Cloud operators
have the potential to defer decisions about which IaaS
provider to use when the applications will actually
run. The Cloud4SOA(Nikos Loutas, 2011) consor-
tium seeks to consolidate three computing paradigms,
namely Cloud computing, the service-oriented archi-
tecture (SOA) and lightweight semantics. The overall
objective is to propose a reference architecture that
allows interoperability between different Cloud ven-
dors, facilitating the development, deployment and
migration of applications among different Cloud PaaS
providers. Specifically, Cloud4SOA adopts a seman-
tic approach to allow developers and PaaS providers
to express their technology-specific concepts with a

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

592



standardized vocabulary and common relationships.
Compared to the approaches presented above,

CPIM library belongs to the category of mediation
approaches. It differs from CSAL, since we provide
an abstraction layer not only for services related to
storage, but also for NoSQL, SQL, Queue, and Mem-
cache services.

It also differs from all other approaches as it is
the only one able to support both Windows Azure and
Google App Engine which are very heterogeneous
and can be considered the PaaS platforms market
leaders. Among the other features, CPIM reconciles
the strong difference in the semantics of the queue
services offered by Azure and App Engine and imple-
ments two different services calledtask queue, adopt-
ing the App Engine semantics andmessage queue
adopting the Azure semantics.

3 A LIBRARY FOR THE
DEVELOPMENT OF
PORTABLE PaaS
APPLICATIONS

The most interesting characteristic of PaaSs is the
set of abstractions they make available to applica-
tion developers. Typical abstractions concern the con-
cept of queue, which enables a reliable and asyn-
chronous communication among distributed applica-
tion components, and various different storage mech-
anisms ranging from a pure distributed file system to
SQL and noSQL databases. All these abstractions
are made available as services that can be invoked
through well defined interfaces.

While the abstractions can be considered indepen-
dent of each specific PaaS, the corresponding actual
services are PaaS-specific and differ from PaaS to
PaaS. The differences can either concern the interface
they offer to programmers or their actual behavior. In
both cases, these differences have a significant impact
on the applications under development. In the follow-
ing we present our solution to overcome these differ-
ences.

3.1 Solution Overview

The CPIM library aims at offering to application de-
velopers a homogeneous set of abstract PaaS services,
that at runtime it adapts to the actual PaaS services
being used. The services supported currently are the
following:
• SQL serviceoffers all capabilities of a traditional

relational database and offers a SQL interface for

interaction with its users.
• Blob serviceoffers the possibility of storing sim-

ple bulk of data by relying on large storage re-
sources offered by the Cloud.

• NoSQL serviceoffers the capabilities of storing
large quantities of data. Differently from SQL
databases, these systems do not support com-
pletely the linguistic power of relational algebra
as they do not offer the join operation, but they
offer mechanisms to support high scalability and
reliability.

• TaskQueue serviceoffers the possibility to queue
tasks to be executed and provides the logic layer
that extracts tasks from the queue and executes
them.

• Message Queue serviceoffers the possibility to
queue messages so that the sender and the recip-
ient components can interact in a decoupled and
asynchronous way.

• Memcache serviceoffers the possibility to build
an in-memory database up to a size of about 32
GB.

• Mailing serviceprovides the operations to send an
email message to some address specified by the
user.
Figure 1 positions CPIM between an application

and the two currently supported PaaS, Google Ap-
pEngine and Microsoft Azure). These last ones are
relevant cases to study for two main reasons: first,
they are the two market leaders at the moment, sec-
ond, they offer quite specific and diversified services.
Because of this second reason, we argue that demon-
strating the feasibility of creating an abstraction layer
on top of them allows us to show that the CPIM phi-
losophy has the potential to work in general.

The left handside of Figure 1 highlights the pres-
ence of a configuration file through which the ap-
plication developers provides information concerning
the cloud to be adopted for deploying the application.
This configuration file is not to be provided during the
development of the application, which remains com-
pletely cloud agnostic, but should be available at the
moment of deployment. Its specific content is de-
scribed in detail in Section 3.5.

The design pattern used for implementing the li-

Figure 1: Overview of the CPIM library approach.

An�Approach�for�the�Development�of�Portable�Applications�on�PaaS�Clouds

593



Figure 2: Usage of CPIM to initialize the NoSQL and Mem-
cache services, GAE case.

brary is theAbstractFactorypattern (Metsker and
Wake, 2006). More precisely, the developer of an ap-
plication exploiting the library is supposed to exploit
the primitives of a factory class to use all services of-
fered by the library. Such a factory at runtime reads
from the configuration file the information concerning
the cloud provider to be used and instantiates the cor-
responding concrete factory that in turn, on request,
instantiates the factory handling the specific service
that the application is going to use. The sequence di-
agram shown in Figure 3 describes this interaction in
the case the application has been deployed on Google
App Engine where the NoSQL service is used.

For the sake of space we cannot provide details
on all implemented services. In the following sub-
sections we describe the NoSQL and Task Queue ser-
vices as they have been the most challenging for the
implementation of the library.

3.2 NoSQL Service

NoSQL services are provided natively by both App
Engine, with its Datastore service, and Azure, with
the Table Service. As discussed in (Hecht and Jablon-
ski, 2011) (Han et al., 2011), a large number of
NoSQL databases are available and support a variety
of data models.

In order to cope with such variety, we have chosen
to access such databases through a JPA (Java Persis-
tence API) interface. JPA (Apache, 2012) (Hibernate,
) is a specification defining a way to manage the per-
sistency of objects on a database. As such, it allows
us to abstract from the low-level APIs offered by the
specific storage service, at the expenses of a reduced
efficiency in the way queries and update operations
are performed.

In case of Google App Engine, the interface and
its implementation, are supplied directly by the SDK
for Java Google App Engine. Vice versa, Microsoft
does not offer an official JPA implementation for the

Azure Table Service.
To compensate this limitation, we have adopted

an open source library (jpa4azure Library, ), and ex-
tended it by implementing the main methods for sup-
porting the execution of queries. Thank to this exten-
sion, we standardize the invocation of queries written
in SQL-like language.

The types of attributes remappable in properties
supported by both platforms are: byte, date, Boolean,
integer, String, Double. If the developer needs to in-
sert an attribute of a type different from those sup-
ported, as long as serializable, this attribute should be
defined as@Embedded. This annotation allows the
JPA to convert the attribute into a byte array at the
time of serialization. Vice versa, when the value of
an attribute annotated with@Embeddedis returned,
the JPA converts the corresponding array in the object
type declared in Java class.

3.3 Task Queue

A queue is a service frequently used by Web appli-
cations deployed in the Cloud. It allows to decou-
ple the application tiers (e.g., the front-end and back-
end) in a way that application containers supporting
the runtime can scale in and scale out independently.
Usually, queues are used to store messages that are
transferred from the application front-end to the back-
end or vice versa. Task queues offered by Google
(Queue, 2013), instead, store tasks (or links to task
code) that have to be activated as soon as the corre-
sponding record is extracted from the queue. A task
queue not only includes the mechanisms for storing
information about the tasks, but also the mechanism
that, typically adopting a FIFO ordering, gets from the
queue a task and triggers its execution. This mecha-
nism is particularly useful to support the execution of
background operations.

Task queues appear to be useful in a variety of ap-
plications where it is possible to execute some compu-
tational intensive operations in the background. Thus,
we have decided to offer them as part of the CPIM li-
brary and we have developed a software layer on top
of theAzure Queue Service(AzureDOC, 2013) to im-
plement them according to the schema in Figure 5.

In the CPIM library a task is represented as a
Cloud-independentobject. This object is represented
by theCloudTaskclass, which encapsulates the fol-
lowing information (see Figure4):
• HTTP method used for the invocation of the task.
• Parameters passed to the task. These are repre-

sented by typical key-value pairs.
• Path of the task.
• Unique identifier of the task.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

594



Figure 3: Sequence Diagram for MF and NoSQL.

Figure 4: Class CloudTask.

In the case of Google, this information is extracted
to populate theTaskOptionobject, which is then in-
serted into the App EnginePush Queue. Instead,
for Azure, this information is extracted, properly for-
matted in a text message, and inserted in aMessage
Queue.

Azure requires also the implementation of an ad-
hoc consumer executed in a dedicated Role to guar-
antee the separation between the presentation layer of
the application from its back-end. In particular, in our
implementation we instantiate a different consumer
thread (exploiting the AzureInternalWorkerclass) for
each task queue to monitor. This thread reads the
messages from the queue and creates asub-consumer
dedicated to each read message (see Figure 5). Each
sub-consumer:
• Extracts the information contained in the mes-

sage.
• Invokes the task through the path included in the

message.
• Deletes the message from the queue.

The consumer thread executes its operations periodi-
cally. The duration of such period can be customized
by the user.

In the case of incorrect execution of a task, App
Engine offers the possibility to automatically retry the
execution of the same task. In Azure we rely on the
fault tolerant features of Azure queues. Queues ex-
pect to obtain a feedback from the consumer of a mes-
sage within aVisibility Timeoutthat by default is set
to 10 minutes (AzureDOC, 2013) and put the message
back into the queue in case this timeout has elapsed.
Thanks to this mechanism, in case of failure of any
component involved in the execution of the task, the

Figure 5: Implementation of Task Queue for Azure.

message providing information about the task will be
read again and the task will be re-executed.

The sequence diagram in Figure 6 shows how our
Azure task queue works. The diagram highlights the
organization of software in two different parts, back-
end and front-end that interact through the queue and,
being decoupled, can be managed and scaled indepen-
dently from each other depending on the actual load
of each application part.

Figure 6: Sequence Diagram for the Amazon Task Queue

On the library side, the queue instantiation re-
quires the configuration of various parameters, by us-
ing thequeue.xmlconfiguration file. This configura-
tion file is read by theCloudTaskQueueFactoryobject
that is then able to instantiate theCloudTaskQueue
object (see Figure 7), the Cloud-independent wrap-
per used to communicate with the queues of the two
providers. Once this object is obtained, it is possible
to invoke the following methods for interacting with
it:

An�Approach�for�the�Development�of�Portable�Applications�on�PaaS�Clouds

595



Figure 7: Class Diagram CloudTaskQueue.

• add(CloudTask): allows to add a CloudTask to the
queue

• delete(CloudTask): allows to delete a CloudTask
from the queue

• purge(): deletes all CloudTask
• getQueueName(): returns the name of the queue

3.4 Summary of CPIM Supported
Services

Table 1 summarizes the characteristics and limits of
the two PaaS and the extensions implemented in our
library. The first column contains the abstract Cloud
services, the second and the third columns are the
Google App Engine and Azure solutions for each ser-
vice, and the last column is the approach provided by
our library. As it can be seen, the two platforms in
some cases offer several solutions. When needed and
in particular for the task queues, SQL and NoSQL ser-
vices, we have built an extensive software layer to of-
fer to the library users the richest possible semantics
for the corresponding service.

3.5 Application Deployment

As discussed before, using the CPIM library applica-
tion developers are able to build a Cloud-independent
code even when they use PaaS level services. The
next step is then to deploy the application on the se-
lected PaaS. This, in general, is not a trivial task as
each PaaS has its own procedure and configuration
parameters to be set. For this reason, we have care-
fully defined the deployment steps for a CPIM-based
application on the two supported PaaS and we have
developed an Eclipse plugin to support this task.

Such plugin supports the deployer in the following
tasks:
1. Specify the configuration files needed to identify

the selected cloud and properly configure it.
2. Create an ad-hoc project including:(i) the pack-

age (typically jar files) of the vendor specific
APIs,(ii) the package (war file) containing the ap-
plication code and(iii) the CPIM library package
(jar file).

3. In case task queues are used in Azure, prepare
a separated deployment package (war) containing

the implementation of the queue consumer.
The configuration file is a XML file which contains
information such as choice of Cloud Provider and
configuration for each services. For example, the
<vendor> tag allows to set the Cloud platform to be
used, while the<sql> tag contains the configuration
of the SQL service that will be used for configuring
JDBC. In Figure 8 a screenshot of the plugin is shown.
The user can choose GAE and Azure and how he can
enable the services required by his application.

Figure 8: CPIM Plug in for eclipse.

If, for any reason, the need to change the Cloud
provider arises, no re-engineering or modification of
the code is required. Only simple changes in the con-
figuration file are needed.

4 MEETING IN THE CLOUD
APPLICATION

MiC (Meeting in the Cloud) is a social networking
web application. It allows a user to register and to
choose his/her topics of interest providing a grade in
the range 1-5. At the end of the registration process,
MiC identifies the most similar users in the social net-
work according to the registered user’s preferences,
in particular, similarity is computed through thePear-
son coefficient(Pearson, 2010). After registration, the
user can enter into the MiC portal and can interact
with his “Best Contacts” writing and reading posts on
the selected topics.

Figure 9 shows the registration and user similarity
computation processes by highlighting the application
components that are involved in their execution.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

596



Table 1: Summary of the services offered by App Engine, Azureand CPIM.

Service Google App Engine Windows Azure Our Approach Library

Proprietary API Proprietary API JPA interface

NoSQL JPA interface JPA interface(third-party) Support serializable objects

JDO interface (@Embedded)

MySQL-like SQL Server-like

SQL Maximum 10GB for instance sharing java.sql

JDBC Driver JDBC Driver

Dedicated/Co-located

Memcache Synchronous/Asynchronous Memcache supported by the Synchronous

Caching service(third-party)

Two typologies to manage Two blob typologies Flat organization

Blob Flat organization Hierarchical organization 32MB maximum blob size

32MB maximum blob size Max 200GB/1TB for Block/Page blob

Two typologies to manage code Message code Message code

Queue Task code Limits to 64KB for message Task Code

Limits 64KB for message

Internal SMTP External SMTP

Mail Direct API support java.mail support java.mail

support java.mail

Figure 9: Registration and User Similarity computation of
MiC.

More precisely, the application is composed of a
front-end developed as JSPs and Servlets and a back-
end developed as a CPIMCloudTask. The front-end
and back-end are decoupled by a task queue and share
user profiles through the SQL Service. This same ser-
vice also stores messages, and best contacts that are
accessed by the front-end. The Blob Service is used
to store pictures while the NoSQL Service stores user
interests and preferences. Both are accessed by the
front-end. Finally, the Memcache Service is used to
temporarily store the last retrieved user profiles and
best contacts messages with the aim of improving the
response time of the whole application.

Figures 10 and 11 show the component diagrams
describing the deployment on Google App Engine
and Microsoft Azure. In the case of Google App En-
gine, the components of the MiC software are:
• Web Application Project which contains:

– MiC Component that includes the specific
application-dependent Servlet classes and JSP
pages as well as the CPIM API library and its
configuration files

– Google App Engine SDK for Java: SDK for
the development of Java applications for GAE.
It includes the Java API for accessing services
offered by platform

– Java SQL API: APIs to access and use rela-
tional DB

• GAE Services: services offered by Google
In the case of Microsoft Azure, Apache Tomcat

has been deployed in each WorkerRole in order to use
Java Servlet technology and the Component Diagram
includes the following components:
• the same MiC Component as in the GAE case
• Internal Worker war: war containing the code for

the queue manager we have developed for Azure.
• jpa4Azure API: API for accessing services

Queue, Blob and Table (through the JPA inter-
face)

• Java SQL API: API to access and use of relational
databases

• SpyMemcache client: client component of the
Memcache service

• Azure Services: Azure platform services

5 EXPERIMENTAL RESULTS

The objective of the evaluation has been to assess the
overhead introduced by the adoption of our vendor in-
dependent. To do this, for each PaaS we deployed two
implementations of the MiC application, one using
our library and one using directly the vendor-specific
API.

An�Approach�for�the�Development�of�Portable�Applications�on�PaaS�Clouds

597



Figure 10: Component Diagram: deploy on Google App
Engine.

Figure 11: Component Diagram: deploy on Azure.

Experimental Setting. The metrics we have
adopted for comparison are:
• The latency
• The computational overhead, in terms of CPU re-

source utilization
We used JMeter (Apache, 2013) as workload injector
and we considered the following two workload sce-
narios as they cover all actions a user can perform on
MiC:

Test Plan 1. The user session registration as de-
scribed in Figure 9.

Test Plan 2. A session where the user performs the
following actions:
• Login
• Update profile
• Write a message
• Logout

The content of the storage system was the same for all
tests:
• SQL Database:

– Number of Tuples in table Message: 3,000
– Number of Tuples in table User Profile: 4,300
– Number of Tuples in table User Similarity:

14,800
• NoSQL Table Service:

– Number of entities for User Ratings: 14,800
– Number of entities for Topic: 7
On Azure the tests were carried out deploying

MiC on two Worker Roles (one for the front-end and
one for the back-end) by using Small instances, while
for GAE the tests were carried out deploying MiC on
two instances with F1 size. Tables 2 and 3 show, for
each request, the cloud services that have been used,
the concerned tier and the think time introduced to
make realistic behavior of a user in the session. More
specifically, we assume that the think time follows a
Gaussian distribution for which we provide in the ta-
ble the average (parameter K) and the standard devia-
tion (parameter D).

Table 2: Summary Table Test Plan 1.

HTTP REQUEST Used cloud services Think Time(sec)

REGISTER Blob, SQL (K=10;D=2)

SELECT TOPICS - (K=5;D=1)

SAVE ANSWER NoSQL, TaskQueue (K=20;) (D=5)

Table 3: Summary Table Test Plan 2.

HTTP REQUEST Used cloud services Think Time(sec)

LOGIN SQL,Memcache,NoSQL,Blob (K=5;)(D=1)

EDIT PROFILE - (K=2;) (D=0.1)

SELECT TOPICS NoSQL,SQL,Memcache (K=5;) (D=1)

SAVE ANSWER NoSQL,TaskQueue (K=20;)(D=5)

REFRESH NoSQL,SQL,Memcache (K=2;)(D=0.5)

WRITE POST SQL (K=10;)(D=3)

LOGOUT Memcache -

Latency measures have been collected directly
through JMeter while to capture data regarding the
CPU utilization of the Azure and Google App Engine
containers we had to use some platform specific tools.

Azure offers the ability to remotely access the
VMhost of the application deployment (using Remote
Desktop Protocol). Thanks to this, we collected data
directly from the monitoring tool of Azure for the
CPU utilization. App Engine does not offer the possi-
bility to access to virtual machine-level information.
Thus, we had to exploit the Quota service API by in-
strumenting the code of MiC. In this way, through the
Java SDK, we were able to get for specific blocks of
code, the number of CPU cycles consumed by execut-
ing the block within the sandbox App Engine.

The unit of measure used by the API ismachine
megacycles. If all instructions are performed sequen-
tially on a reference machine 1.2 GHz 64-bit x86
CPU, 1200 megacycles are equivalent to one CPU
second devoted for a block execution.

Using the obtained data, we can estimate the per-
centage of use of the CPU, through the following for-
mula:

∑N
k=1(Mk)

1200∗T

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

598



whereMk indicates the number of megacycles con-
sumed by the k-th request within a test,N denotes the
total number of requests made during a test, whileT
indicates the duration in seconds of the whole test.

Results on Azure. Figure 12 reports the latency
time results for Azure in the two test scenarios when
the number of users grows from 1 to 50. In this way
we were able to vary the VM role utilization between
2 and 70 %, analysising the behaviour of the system
both in light and medium/heavy load conditions. As
it appears from the graphs, no significant difference
between the use of our library and the native Azure
APIs can be observed.

Figure 12: Latency Time Evaluation Test: CPIM results vs
Azure Native results for Test 1 and 2.

A careful analysis was done for the results ob-
tained in the second test plan with 10 users, where
a higher average latency for the native version has
been observed. Specifically, the results of the queries
LOGIN, SELECT TOPICS and SAVE ANSWERS
presented some differences greater than 300 millisec-
onds. The Response time graph in Figure 13 shows
that requests with large latency times (around 30 sec-
onds) occurred during three time intervals. We guess
that these large delays have been caused by the mi-
gration of the VM which hosts the application on a
different machine. This caused a temporary block in
requests execution. This problem, as shown in the
graph of Figure 14, has not occurred in the test case
using our library where the maximum registered re-
sponse time has been below 7 seconds.

Figure 13: Response Time - 10 users version Native.

Figure 14: Response Time - 10 users version by CPIM.

Figure 15: CPU utilization Test: CPIM results vs Azure
Native results.

Figure 15 reports the CPU utilization gathered
during the tests. The computational overhead intro-
duced by our library both for the front-end and back-
end is almost negligible, even under heavy load (the
green line representing the front-end CPU utilization
in the CPIM case is completely hidden by the line rep-
resenting the utilization in the native case). This result
confirms that our implementation of the Task Queue
service, which resides in the back-end, has good per-
formance.

Results on Google App Engine. Similar results
have been obtained for the Google platform. These
are reported in Figure 16 for latency time and in
Figure17 for CPU utilization.

An�Approach�for�the�Development�of�Portable�Applications�on�PaaS�Clouds

599



Figure 16: Latency Time Evaluation Test: CPIM results vs
GAE Native results for Test 1 and 2.

Figure 17: CPU utilization Test: CPIM results vs GAE Na-
tive results.

6 CONCLUSIONS AND FUTURE
WORK

Avoiding vendor lock-in is an important issue that be-
comes quite difficult to achieve when exploiting PaaS.

In this paper we have proposed the development of
an abstraction layer exposing a “vendor-independent”
API, which allows developers to use the most impor-
tant and common services offered by PaaS systems.
The approach is oriented to the Java language and the
platforms currently supported are Google App Engine

and Windows Azure. Using a social networking ap-
plication as a test case, we have carried out tests to
evaluate the overhead introduced by the use of the ab-
straction layer with respect to the direct use of the
proprietary APIs provided by the two vendors. The
results have shown that the overhead introduced by
the library, both for the latency and CPU utilization,
is negligible.

Future work will consider the integration of addi-
tional services offered by the two platforms. Further-
more, additional Cloud systems both at the PaaS and
IaaS layers will be supported.

ACKNOWLEDGEMENTS

This research has been partially supported by the
European Commission, Grant no. FP7-ICT-2011-8-
318484 MODAClouds project (MODAClouds, 2013).

REFERENCES

Apache (2012). Java Data Objects (JDO API 3.0 ). http://
db.apache.org/jdo/jdov jpa.html.

Apache (2013).Jmeter USer Manual Document. Apache.
AzureDOC (2013). http://msdn.microsoft.com/en-us/

library/windowsazure/hh767287.aspx.
CloudFoundry (2013). CloudFoundy. http://

www.cloudfoundry.com/about.
Euphrosine, J. (2013).Getting Started with Google Tasks

API on Google App Engine.
Han, J., Haihong, E., Le, G., and Du, J. (2011). Survey on

nosql database. InPervasive Computing and Applica-
tions (ICPCA), 2011 6th International Conference on,
pages 363 –366.

Hecht, R. and Jablonski, S. (2011). Nosql evaluation: A use
case oriented survey. InCloud and Service Computing
(CSC), 2011 International Conference on, pages 336
–341.

Hibernate.Hibernate Developer Guide. Hibernate.
Hill, Z. and Humphrey, M. (2010). CSAL: A Cloud Storage

Abstraction Layer to Enable Portable Cloud Applica-
tions. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Con-
ference on, pages 504 –511.

jpa4azure Library. JAR jpa4azure.jar (version 0.7). http://
jpa4azure.codeplex.com/.

Meier, J. (2013).Windows Azure Developer Guidance Map.
Metsker, S. J. and Wake, W. C. (2006).Design Patterns in

Java, chapter 17. Addison-Wesley Professional.
MODAClouds (2013). http://www.modaclouds.eu/.
mOSAIC (2013). http://www.mosaic-cloud.eu/.
Nikos Loutas, C. (2011).Cloud4SOA Reference Architec-

ture.
OCCI (2012). http://occi-wg.org/.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

600



Ortiz, S. (2011). The problem with cloud-computing stan-
dardization.Computer, 44(7):14 –15.

Pearson, K. (2010). Similarity Metrics: Pearson Correlation
Coefficient. http://mines.humanoriented.com/classes/
2010/fall/csci568/portfolioexports/sphilip/ pear.html.

Petcu, D. (2011). Portability and interoperability between
clouds: Challenges and case study. In Abramow-
icz, W., Llorente, I., Surridge, M., Zisman, A., and
Vayssire, J., editors,Towards a Service-Based Inter-
net, volume 6994 ofLecture Notes in Computer Sci-
ence, pages 62–74. Springer Berlin Heidelberg.

Queue, G. T. (2013). Task Queue Java API Overview.
https://developers.google.com/appengine/docs/java/
taskqueue/overview?hl=en.

Red-Hat (2012).OpenShift - User Guide : Using OpenShift
to manage your applications in the cloud, edition 2.0
edition.

VMware and Google (2012). www.vmware.com/
cloudportability.

Zend, IBM, Microsoft, Rackspace, Nirvanix, and
GoGrid (2013). SimpleCloud API. http://
www.simplecloud.org/.

An�Approach�for�the�Development�of�Portable�Applications�on�PaaS�Clouds

601


