
An Aspect Oriented Framework for Flexible
Design Pattern-based Development

Mario L. Bernardi1, Marta Cimitile2 and Giuseppe A. Di Lucca1

1 Department of Engineering, University of Sannio, Benevento, Italy
2 Unitelma Sapienza University, Rome, Italy

Keywords: Software Engineering, Design Patterns, Aspect Oriented Software Development, Software Metrics.

Abstract: The implementation of a Design Pattern (DP) may be affected by some problems due to typical deficiencies
of Object Oriented languages that may worsen the modularity of a software system, and thus its comprehensi-
bility, maintainability, and testability. Aspect Oriented Programming allows to implement DPs by its powerful
quantification constructs that can handle better modularity and composition, helping to overcome some of
the OO design trade-offs in current DP implementations. In Model Driven Development system models, de-
fined by a Design Specification Language (DSL), are transformed between different levels of abstraction to
get system implementation. In this paper we propose an Aspect Oriented DSL-based framework to specify
and to apply, declaratively, Design Patterns to the system classes. The main aim driving the definition of the
proposed framework is to improve the modularity, the internal code quality, and the flexibility, by allowing
software designers to specify DP models with an extensive modifiability thus reducing the impact of changes
related to DP adoption.

1 INTRODUCTION

The way a DP is usually implemented may heavily
impact the overall system structure, and in particular
it impacts the modularity of the system, thus affecting
its comprehensibility, maintainability, testability too.
This is mainly due to some typical deficiencies of Ob-
ject Oriented languages that may worsen the overall
modularity of a software system. Moreover, the inva-
sive nature of DP implementations may make it hard
to distinguish between the code of DP instances and
the code of the ’base’ system. In (Hannemann and
Kiczales, 2002; Nordberg, 2002) the authors showed
how several DPs from GoF catalog (Gamma et al.,
1995) introduce crosscutting that OO abstractions are
often unable to well modularize.

Aspect Oriented Programming (AOP) and As-
pect Oriented Software development (AOSD) (Han-
nemann and Kiczales, 2001) improves the way soft-
ware is structured, decomposed and implemented by
providing means for modularizing crosscutting con-
cerns (CCCs). CCCs are encapsulated into a new
kind of module, the Aspect, and powerful weav-
ing mechanisms support their subsequent composi-
tion with other software artifacts. The AOP con-
structs can help to overcome some of the OO design

trade-offs and indirection characterizing current DP
implementations. Composition transparency, option-
ality, and unpluggability are example of modularity
properties that can be enforced by AOP implementa-
tion of DPs and that have to be considered when as-
sessing the quality of AO designs (Hannemann and
Kiczales, 2002; Hachani and Bardou, 2003). Model-
Driven Software Development (MDSD) improves the
way software is developed by capturing key features
of a system in models which are developed and re-
fined as the system is developed. During the system’s
life-cycle, models are synchronized, combined, and
transformed between different levels of abstraction.
Thus models have to be formal. Every model is an in-
stance of a meta model. The meta model defines the
Domain Specific Language (DSL) describing the ab-
stract syntax to be used to instantiate the meta model
when generating a model. While AOSD and MDSD
are different in many ways they both help the devel-
oper to reason about one concern at a time. From this
point of view AOSD and MDSD complement each
other and can be used together to improve both the
overall modularity of development of artifacts at de-
sign models down to source code, and the structure
and behaviour of run-time objects .

In this paper we exploit AOSD and MDSD fea-

528 L. Bernardi M., Cimitile M. and A. Di Lucca G..
An Aspect Oriented Framework for Flexible Design Pattern-based Development.
DOI: 10.5220/0004510305280535
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-PT-2013), pages 528-535
ISBN: 978-989-8565-68-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

tures to propose an Aspect Oriented DSL-based
framework used to specify and to implement DPs
declaratively. The main goals behind the framework
design are: (i) modularity, to improve code internal
quality avoiding bad duplicated code, (ii) dynamic be-
haviour, to improve flexibility of adopting different
pattern variants with limited impact on system source
code; and (iii) obliviousness, to increase internal co-
hesion by leaving concrete system classes as much
decoupled as possible from design pattern protocols,
abstract classes and interfaces.

The framework is centered on a generation step
that, starting from a model written by the proposed
DSL, emits aspects dynamically applying idioms and
DPs on system classes with reduced (and often no)
impact on them. The DSL code is parsed by a
template-language engine that generates Java and As-
pectJ resources to implement flexible and modular
DPs involving concrete classes of the OO base sys-
tem. The overall design is more modular than a pure
Object Oriented one and benefits from interesting dy-
namic properties like optionality, pluggability (the
ability to enable/disable o change DP involvement at
runtime). Moreover the performance hit, due to dy-
namic aspect introspection, is greatly reduced.

To validate the approach, a prototype framework
was built on top of the Eclipse Modeling tools (us-
ing Xpand as Model to Text - M2T - transforma-
tion engine) and AspectJ as AOP language. Quanti-
tative assessment is done comparing the AO versions
of the applied DPs against reference Object Oriented
DPs’ implementations. The comparison is performed
by means of a selected set of AOP-aware internal-
quality metrics. A qualitative discussion highlight-
ing the properties of the generative approach is also
provided. This allows to validate the results of apply-
ing the framework in terms of: (i) DSL effectiveness
and flexibility to express (and change) design choices,
and (ii) internal quality of the resulting system source
code. The remaining of the paper is structured as fol-
lows. Section 2 discusses some related work. Sec-
tions 3 and 4 present and discuss the proposed DSL
for Design Pattern implementation and the architec-
ture of the AspectJ-based framework adopting it. The
section 5 reports a description of the the case study
and discusses the quantitative evalutation of the pro-
posed framework using an adequate set of AOP-aware
source code metrics. Conclusive remarks and future
works are finally presented in section 6.

2 RELATED WORK

In (Hannemann and Kiczales, 2002) authors provide
a study on crosscutting introduced by design patterns
adoption providing AOP-based implementation that
have influenced requirements for our DSL definition
and design goals.

The topic has largely discussed in the last years in
literature and several approaches to represent, trans-
form and apply design patterns were proposed (Alen-
car et al., 1997; Elaasar et al., 2006). These ap-
proaches are mainly interested in applying a code
generation approach to apply design patterns to con-
crete cases using pattern languages or models.

In (El Boussaidi and Mili, 2007) an explicit rep-
resentation of a pattern as well as the transforma-
tion inherent to its application is proposed. (Baca,
2011) shows how intrinsic aspect-oriented design pat-
terns can be used to implement object-oriented de-
sign patterns in order to achieve better composability
compared to both original implementations of object-
oriented design patterns and their aspect-oriented re
implementations. In (Zdun, 2004) a pattern language
is presented for tracing and manipulating software
structures and dependencies, with an explanation of
different, existing aspect composition frameworks as
sequences through this pattern language. Alternative
designs, common design trade-offs, and design de-
cisions for implementing aspect composition frame-
works, are also evaluated. (Soundarajan and Hall-
strom, 2004) discusses the software reuse in the de-
sign and implementation for aspect oriented design
language in general and derives the specific require-
ments for the AOSDDL (Aspect Oriented Software
Development Design Language) design language ar-
chitecture by examining the Aspect J extensions for
a distributed computing environment. All these ap-
proaches, are usually focused to apply DPs to the
existing design (by models transformations) or code
(by applying code generation). Our DSL approach
resulted from the analysis conducted on crosscutting
introduced by DPs in Object Oriented code proposed
in previous works (Arpaia et al., 2010; Bernardi et al.,
2005; Bernardi et al., 2012) . The main difference of
our approach w.r.t. cited approaches is the definition
of a dynamic DSL involving existing source code in
pattern logic in a completely dynamic fashion. Thus
instead of modifying or generating code, our engine
generate aspects that inject pattern logic at run-time,
keeping system classes oblivious. For this reason, the
proposed approach can be more flexible, less inva-
sive and requires less maintenance effort since only
aspects performs interception and run-time bytecode
manipulation to apply pattern logic.

An�Aspect�Oriented�Framework�for�Flexible�Design�Pattern-based�Development

529

3 THE PATTERNS
SPECIFICATION LANGUAGE

The framework is based on a meta-model used to de-
fine a DSL suitable to map design patterns (along with
their roles, variants and default implementations) onto
system classes. A DSL instance is structured as an
(ordered) sequence of named Concern elements. Each
Concern has in turn an inner structure specifying its
contributions to the base system:

• provided roles (i.e. interfaces along with a con-
crete implementation)

• injection of built-in roles (in particular DP roles)
into existing types (including hierarchies)

• aggregation/composition rules among existing
classes or interfaces

• injection of behaviour into (and interception at
run-time of) existing classes

The DSL is made up of two main parts: (i) a
language part (Java in the current prototype) allow-
ing the representation of code elements (including
generic types, blocks, statements, expressions and ex-
ceptions); (ii) a second part introducing the main con-
cepts of the DSL language (concern, role definition
and role implementation) and the constructs to per-
form dynamic interception of a wide range of events
(used to involve concrete classes in DP collaboration
at run-time). The complete Java metamodel contains
113 meta-classes representing the elements, and the
relationships among them, of a Java software system
according to the abstract syntax of the Java language
specification as specified in (Gosling et al., 1996) The
description of this part of the model is out of the scope
of this paper; it has however a key role since it is used
whenever referencing or introducing new source code
elements.

The Figure 1 shows the core excerpt of the second
part of the DSL meta-model. This part describes the
overall structure of the DSL and focuses on the main
concepts used to implement idioms and design pat-
terns (leaving base system classes oblivious and de-
coupled from pattern logic). For each idiom or DP,
the framework performs a mix of injection, alterations
and introductions of the system classes. We describe
the most important ones in the remaining of the sec-
tion by means of small code examples written in the
proposed DSL.

3.1 The Concern Element

The crosscutting model represented by the proposed
DSL can be seen as the weaving of an ordered se-
quence of Concerns: each Concern can be seen as a

layer containing only the logic that is related to its
goals and responsibilities. Concerns are merged with
the base system (and to other layers) using AOP injec-
tion and interception features. The ModelRoot (that
is the root element of any DSL instance) contains an
ordered list of Concerns: this order can be changed
using the composition order statement like in:

order I d e n t i f i c a t i o n ,∗

concern F i g u r e s L i s t e n i n g { . . .

concern I d e n t i f i c a t i o n { . . .

In this case two concerns (FiguresListening and Iden-
tification) are defined; the ordering is fixed so that
Identification is always merged before any other con-
cerns. This is important when some alteration to
the base system are not optional: injected members
needed by all other concerns (or even by the base sys-
tem itself).

3.2 Define, Assign and Implement
Role(s) statements

These statements are the groundings for all other con-
structs that follows. They allow developer to intro-
duce a role in the system (usingdefine role) and to as-
sign them to existing interfaces and classes (usingas-
sign roles). Let us consider the followingdefine role
statements:

concern I d e n t i f i c a t i o n {

d e f i n e r o l e I d e n t i f i a b l e {

vo id setUUID (UUID u) ;

UUID getUUID () ;

}

d e f i n e r o l e Named {

vo id setName (S t r i n g u) ;

S t r i n g getName () ;

}

assign r o l e s I d e n t i f i a b l e , Namedto Figure , View ;

. . .

This fragment introduces the roles Identifiable and
Named into two existing roles (Figure and View). As
a consequence all the classes inheriting or implement-
ing them will be forced to provide this additional be-
haviour (the UUIDs and Name fields along with get-
ters/setters in the example). This is useful only if we
have a means to inject (or not) such behaviour in a
modular way: i.e. providing Identification concern
default implementation for classes of the base system
but having the flexibility to specify different imple-
mentations for different classes. This is exactly what
the implement rolestatement does. It allows to spec-
ify the implementation of a role that must be sup-
plied for a set of existing classes. The syntax is based
upon the InjectionRule nested element that must be

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

530

DSL Core Language

MethodDeclaration

BodyDeclaration ReferenceType

Interface Class

CrosscuttingDeclaration

CompositionOrder

CompositionImplementRole

InjectionRule

FactoryMethodSharedMethod

Memento

SharedField

ObjectProxy

ClassProxy

Singleton

ImplementRolesAssignRoles

-srcPath
-genPath
-uri
-lastGenereation
-ModelUUID
-SystemName

ModelRoot

DefineRole

-SimpleName

Concern

containment

+contained

+container
inheritance

1

1

0..*

assignedRoles

0..* 0..*

targetRoles

0..*

0..*

0..*

Figure 1: The DSL Core Meta-Model : an excerpt of the main stucture and elements.

followed by the source code of the role implementa-
tion. This can be an existing concrete type (in this
case partial override of the concrete type is allowed)
or a definition from scratch. In both cases the pro-
vided members should create no conflict with target
types members (including the ones that are weaved
from other concern elements). For instance the exam-
ple:

implement r o l e I d e n t i f i a b l e

on A b s t r a c t F i g u r e , Defau l tV iew{

i n j e c t {

UUID uu id ;

pub l i c UUID getUUID () {

re turn uu id ;

}

pub l i c vo id setUUID (UUID u) {

uu id =u ;

}

}

}

uses theinject statement to provide an implementa-
tion (defined from scratch) for the Identifiable role
seen before and apply it to the AbstractFigure and
DefaultView (existing) system classes. These classes
are by no means aware that they are “Identifiable”

by UUID and have no imperative dependencies on
Identifiable interface (since in this trivial example
the Identification concern is completely orthogonal).
This however is not the “real world” common case.
Studies that tries to quantify the crosscutting present
in real systems reveal that most of the concerns are
crosscutting and hence they depend on each other.
To express such interleaving theimplement rolestate-
ment allows the definition of shared fields and meth-
ods.

3.3 Shared Fields and Methods

When implementing a role for a set of concrete
classes one or more methods could be provided in
order to link, in a modular way, the concrete classes
logic to the new provided behaviour. An example will
make this more clear. Referring to the previous DSL
snippet, the UUID could be used to build the Abstract-
Figure name. In this case a shared method (the same
concept applies to shared fields) can be used. It should
be nested in the role implementation statement as fol-
lows:

implement r o l e I d e n t i f i a b l e

An�Aspect�Oriented�Framework�for�Flexible�Design�Pattern-based�Development

531

on A b s t r a c t F i g u r e + {

i n j e c t {

UUID uu id ;

pub l i c UUID getUUID () . . .

pub l i c vo id setUUID (UUID u) . . .

}

S t r i n g getName () {

re turn super . getName () +

” w i t h UUID : ” + uu id . t o S t r i n g () ;

}

}

This excerpt injects the getName(void) method in the
complete hierarchy rooted in the AbstractFigure class
as a part of Identifiable concern. This means that
Identifiable role depends on Named role. They are
both provided (in this simple case) by the same Iden-
tification concern but this is not required. Moreover
different method can be specified for different sub-
classes of AbstractFigure thus reusing the same be-
haviour as much as possible without loosing flexibil-
ity.

3.4 Composite Example

Using the statements seen so far, we could easily im-
plement a modular and pluggable Composite imple-
mentation. Consider the following excerpts in which
a Composite DP is applied to all subclasses of Figure:

\ renewcommand{\ b a s e l i n e s t r e t c h}{0.96}

concern FigureCompos i t e {

assign r o l e Component to F igu re ;

assign r o l e F igu re to sys tem c l a s s A b s t r a c t F i g u r e ;

implement r o l e Component on F igu re + {

i n j e c t ConcreteComponent ;

}

implement r o l e Component on

A l t e r n a t i v e F i g u r e{

i n j e c t A l te rna t i ve C onc re te C ompone n t ;

}

assign r o l e Composi te to Pa ne lF igu re , GroupFigure ,

ZOrderedGroupFigure ;

implement r o l e Composi te on Pa ne lF igu re , GroupFigure ,

ZOrderedGroupFigure{

i n j e c t Concre teCompos i te{

@Override

boolean h a s C h i l d r e n (vo id) {

re turn t r u e ;

}

}

Image (Pa ne l| Group) F igu re . g e t R a s t e r (){

Image i = Image . b u i l d () ;

f o r (Component c : g e t C h i l d r e n ()){

i . merge ((F igu re) c) . g e t R a s t e r ()) ;

}

re turn i ;

}

}

}

Some figures are leafs and hence Component
role is assigned to them. Conversely to figures that
may have internal sub-figures (like GroupFigure or
ZOrderedGroupFigure) a Composite role is assigned.
Referring to the Component role, it’s interesting to
observe that the class ConcreteComponent is used as
the default Component implementation on all Figure
hierarchy (using the plus notation). However for Al-
terativeFigure, that needs a different kind of imple-
mentation, the Component role is provided by another
class (namely AlternativeConcreteComponent). This
kind of flexibility allows to inject a reasonable de-
fault implementation for a complete hierarchy and to
change default behaviour when requested. The Com-
posite case uses both shared methods and override in-
jection. The method hasChildren(. . .) is overridden
to return always true whereas the method getRaster()
(defined on Figure interface) is implemented by wrap-
ping the default one. Since no @Runtime annotation
is provided such wrapping is static (the method are
injected at compile time by the generated aspects).
When using @Runtime the generated aspects uses in-
terception to obtain the same results. There is a trade-
off between time and space since the dynamic ver-
sion produces smaller objects but there are less opti-
mization chances and it is, usually, slower. The in-
jected getRaster() uses the getChildren() method (of
the ConcreteComposite just injected) to obtain all the
sub images returning an image containing all of them.

3.5 Other Statements

Using the statements already discussed all DPs have
been implemented and included, as built-in in the
framework (and as additional DSL statements in some
cases). Patterns requiring collaborations between sev-
eral roles (like the Observer, Builder etc.) can be
easily constructed using the statements and the prede-
fined (but extensible) interfaces/classes provided with
the framework.

Interesting cases are patterns based on single role
(like Singleton, Memento, or Factory Method) for
which a concise DSL statement is implemented. For
instance consider the following excerpt:

concern FigureMemento{

memento on F igu re +

f o r { t i t l e , c e n t e r} ;

memento on C i r c l e F i g u r e

f o r { t i t l e , ra d ius , c e n t e r} ;

}

This example injects the logic that saves/restores
the Figure state into an opaque object. The frame-
work, when the getMemento() is called, dinami-
cally serializes the listed fields of the target object

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

532

Figure 2: Transactional Commands: Cloned LOC Ratio comparison.

and write them into a memento object. When set-
Memento(Memento m) is called the state fields are
restored. This statements uses static role definition
and implementation to inject memento interface into
target classes.

4 THE DESIGN PATTERNS
MODELING FRAMEWORK
(DPMF)

In our prototype framework, aspects are generated
in order to inject members implementing the pattern
logic into marker interfaces nested in the aspect it-
self. The pattern roles are often associated to concrete
classes by means of the declare parent construct using
such marker interfaces. Each Concern element can be
seen as the intermediate mapping layer of a three lay-
ers structure in which concrete system classes are in-
volved in pattern relationships by an aspect that acts
as “concern mapper”. This aspect layer is responsi-
ble of implementing a modular mapping of DPs and
idioms to concrete classes intercepting object creation
and enforcing the observer/observable protocol for in-
stances that need it. Concrete classes, belonging to
the ”base system” layer, are oblivious of being in-
volved in a pattern and the pattern relationships can be
removed simply acting on the mapping layer. Com-
monalities among different pattern instances can be
factorized in the pattern logic concern while multiple
relationships can be easily resolved in the mapping
layer concern by associating two pattern aspects to the
same concrete class.

5 CASE STUDY OVERVIEW

To validate and assess the approach, the same sys-
tem was designed and developed by two different ex-
pert groups; one group adopted the proposed frame-
work whereas the other used a classic design patterns
based development. The system, a high performance
REST server providing dynamic content for a fam-
ily of mobile applications, is written in Java and is
comprised of 24824 LOC , 364 classes and 28 inter-
faces. The original Java system was pattern-based.
The core component is a Command-based executor
initialized by means of a Command Factory. Execu-
tors are mapped to different endpoints into industrial
application servers (Jetty in this case). The Server is
a Singleton and is responsible of managing an execu-
tor for each endpoint. We performed a metric-based
comparison between the old pure-java system and
the re-engineered version using the proposed frame-
work. The restructuring was performed by removing
patterns adoption from all system classes using the
declarative DSL to implement them.

The restructuring of the Command hierarchy was
the largest and most difficult one. The command pat-
tern was implemented using a role assignment and
implementation. This generated a marker interface
inside an abstract aspect to remove indirection intro-
duced by the ”Command” role. Looking at the sys-
tem code, we found that the original design failed to
effectively modularize several concerns. Command
and Composite pattern were tangled in an explicit
way, making difficult to change one aspect without
impacting the other ones. The refactored system en-
forces a clean separation between the two providing a
default role implementation for the all simple Com-
mands and a MacroCommand role implementation
that, transparently, aggregates sequence of plain com-
mands with no impact on the Command pattern struc-

An�Aspect�Oriented�Framework�for�Flexible�Design�Pattern-based�Development

533

Figure 3: Transactional Commands: DOF comparison.

ture itself. Using shared methods the composite op-
erations were, in some cases, overridden to provide
custom behaviour (like in the case of Transactional-
MacroCommand that needed a @Runtime intercep-
tion to wrap the sequence execution in a transactional
context). This was a big improvement over the orig-
inal design in which transactions were not modular-
ized. Moreover in each command there were authen-
tication, logging, tracing and business logic concerns
with high level of scattering and tangling.

5.1 Quantitative Assessment

The software quality attribute of modularity was as-
sessed for both the AOP and OOP versions by evalu-
ating (i) the percentage of lines of source code related
to fault detection logic present in each module with
respect to the total Lines of Code (LOC) of the same
module, and (ii) the Degree of Scattering (DOS) and
Degree of Focus (DOF) metrics (Eaddy et al., 2007),
for each module and concern. This analysis provides
quantitative information about (i) size and dimension
; (ii) cohesion and coupling and (iii) crosscutting con-
cerns presence and distribution. The DPMF-based
software quality was evaluated in comparison with the
corresponding OOP version.

5.2 AOP Metrics Results

Results are highlighted in Figures 2 and 3. In partic-
ular, in Figure 2 the percentage LOC (%LOC) of the
Transactional concern all over the Command are com-
pared for both AOP and OOP versions. In the figure,
the ratio of the cloned LOCs in the OOP implemen-
tation, completely removed in the AOP version, is re-
ported. Of course, the cloned code makes worst the
maintainability and increases the probability of intro-
ducing bugs in the code.

In Figure 4, the level of DOS (a) and DOF (b) for
each Command module with respect to Base System

Figure 4: Transactional Commands: DOS comparison.

and Transactional concerns is reported. The results
show a radically increased modularity for the AOP
version, because each Command module is much
more focused with respect to the OOP version. More-
over, the Transactional concern is highly scattered in
the OOP version (high values of DOS), while it is very
focused in the AOP implementation (this is verified by
the low values obtained for DOS).

5.3 Performance Evaluation

The case study was aimed also at verifying experi-
mentally that the AOP-based generative architecture
would not have a negative impact on run-time perfor-
mance of the overall system (due to aspect runtime in-
terception overhead). With this aim, the AOP system
was instrumented in order to gather execution times
of the aspect overheads. The main attention was paid
to evaluate the overheads added by AOP interception
mechanism to the injected pattern logic time in or-
der to assess the effectiveness of the AOP architec-
ture, i.e. that the AOP response times are not worst
than the OOP version. The above described analy-
sis was carried out by running the two versions of
the software in the same conditions. The worst av-
erage times in several different categories of pointcut
expressions related to Transactional Macro command
and that were automatically generated by DSL state-
ments (i.e. object creation/destruction, interception of
pattern operations) were selected, and the time spent

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

534

in the aspect runtime to jump to pattern logic routines
were collected.

Times needed to handle creation/destruction of
object are usually greater than those required to in-
tercept operations. Command Factories must be set
up for Command executors to being created and op-
erative. This requires more time than the other kind
of pointcuts expressions, that have only to capture
the context of an operation, issuing error or execut-
ing business logic if necessary.

In pointcut expressions related to Command de-
sign pattern operations the worst overheads due to
aspect interception mechanism are always less than
1.5% of the pattern collaboration times. Therefore,
the suitability of performance overhead was assessed,
where all the timing constraints were satisfied flatly.

6 CONCLUSIONS AND FUTURE
WORKS

An Aspect Oriented DSL-based framework to spec-
ify and to apply, declaratively, Design Patterns to
the system classes has been proposed in this paper.
AOSD and MDSD features are exploited to improve
the modularity, the internal code quality, and the flexi-
bility of DPs. The framework allows software design-
ers to specify DP models with a more extensive modi-
fiability thus limiting the impact of changes, related to
DP adoption, on the code of the base system. DPs are
specified by a DSL based on a meta-model where a
DP is seen and structured as an (ordered) sequence of
named Concern elements. A prototype of the frame-
work was used in a case study to assess its effective-
ness and efficiency. The results from the case study
showed that the AOP version of DPs dramatically im-
proved the modularity of the system with respect to
the ’traditional’ OO version. Future work will con-
sider improvements of the prototype framework and
DSL.

REFERENCES

Gamma, E., Helm, R., Johnson, R., Vlissides, J., ’Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware’, Addison-Wesley (1995).

Hannemann, J., Kiczales, G., ’Design Patterns Implementa-
tion in Java and AspectJ’, Proc. of Object Oriented
Programming Systems Languages and Applications
2002 (OOPSLA ’02).

Hachani, O. , Bardou D., ’On Aspect-Oriented Technology
and Object-Oriented Design Patterns’ , Proc. of Eu-
ropean Conference on Object Oriented Programming
2003 (ECOOP 2003).

Nordberg Martin E., ’Aspect Oriented Indirection - Beyond
Object Oriented Design Patterns’ , Proc. of Workshop.
Beyond Design: Patterns (mis)used, Proc. of Object
Oriented Programming Systems Languages and Ap-
plications 2002 (OOPSLA ’02).

AspectJ web site - http://www.eclipse.org/aspectj
Hannemann, J., Kiczales, G.,’Overcoming the Prevalent

Decomposition of Legacy Code’, Workshop on Ad-
vanced Separation of Concerns at the International
Conference on Software Engineering 2001 (ICSE’01).

Eaddy, M., Aho,A , Gail C. Murphy., ’Identifying, Assign-
ing, and Quantifying Crosscutting Concerns’, Proc.
of the First International Workshop on Assessment
of Contemporary Modularization Techniques (ACoM
’07), IEEE Computer Society, Washington, 2007.

Arpaia, P., Bernardi, M.L., Di Lucca, G., Inglese, V.,
Spiezia, G.,‘An Aspect-Oriented Programming-based
approach to software development for fault detection
in measurement systems’, Comput. Stand. Interfaces
32, 2010.

El Boussaidi, G., Mili, H. , ‘A model-driven framework
for representing and applying design patterns’, Proc.
of the 31st Annual International Computer Software
and Applications Conference (COMPSAC ’07), Vol.
1. IEEE Computer Society, Washington, DC, USA,
2007.

Alencar, P.S.C., Cowan, D.D., Dong, J., Lucena, C.J.P.,
‘A transformational Process-Based Formal Approach
to Object-Oriented Design’, Formal Methods Europe,
1997

Elaasar, M., Briand, L.C., Labiche, Y., ‘A metamodeling
approach to pattern specification’, In Proc. of the 9th
international conference on Model Driven Engineer-
ing Languages and Systems (MoDELS’06), Springer-
Verlag, Berlin, Heidelberg, 484-498, 2006.

Baca, P. Vranic, V., ‘Replacing Object-Oriented Design Pat-
terns with Intrinsic Aspect-Oriented Design Patterns’,
Proc. of the 2nd Eastern European Regional Confer-
ence on theEngineering of Computer Based Systems
(ECBS-EERC), pp.19,26, 5-6 Sept. 2011.

Zdun, U., ‘Pattern language for the design of aspect lan-
guages and aspect composition frameworks’, Soft-
ware, IEE Proc. , vol.151, no.2, pp.67,83, 5 April
2004.

Soundarajan, N., Hallstrom, J.O., ‘Responsibilities and re-
wards: specifying design patterns’, Proc. of 26th In-
ternational Conference on Software Engineering 2004
(ICSE 2004).

Gosling, J., Joy, B., Steele, G.L., ‘The Java Language Spec-
ification (1st ed.)’, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1996.

Bernardi, M.L., Di Lucca, G.A., ‘Improving Design Pattern
Quality Using Aspect Orientation’, Proc. of the 13th
IEEE International Workshop on Software Technol-
ogy and Engineering Practice, 2005.

Bernardi, M.L., Cimitile, M., Maggi, F. M., ‘Model Driven
Development of Process-centric Web Applications’,
Proc. of the 7th International Conference on Software
Paradigm Trends 2012 (ICSOFT 2012).

An�Aspect�Oriented�Framework�for�Flexible�Design�Pattern-based�Development

535

