
Policy-based Security Assessment of Mobile End-user Devices
An Alternative to Mobile Device Management Solutions for Android Smartphones

Thomas Zefferer and Peter Teufl
Institute for Applied Information Processing and Communications, Graz University of Technology,

Inffeldgasse 16a, 8010 Graz, Austria

Keywords: Smartphone, Security, Policy, Assessment, Android.

Abstract: For security-critical applications, the integrity and security of end-user devices is of particular importance.
This especially applies to mobile applications that use smartphones to process security-critical data. Unfortu-
nately, users often compromise the security of smartphones by disabling security features for convenience rea-
sons or by unintentionally installing malware from untrusted application sources. Mobile device management
(MDM) solutions overcome this problem by providing means to centrally manage and configure smartphones.
However, MDM is mainly suitable for corporate environments but often cannot be applied in non-corporate
fields of application such as m-banking or m-government. To address this problem, we propose an alternative
approach to assure the security and integrity of smartphones. Our approach relies on a device assessor that
evaluates the current state of a smartphone according to a security policy. Integration of this device assessor
allows smartphone applications to condition the processing of security-critical data on the smartphone’s com-
pliance with a defined security policy. We have shown the practicability of the proposed approach by means
of a concrete implementation for the Android platform. We have evaluated this implementation on different
Android devices. Obtained results show that our approach constitutes an appropriate alternative for scenarios,
in which MDM cannot be applied.

1 INTRODUCTION

Smartphones have emancipated from classical end-
user devices and are nowadays frequently used to
access services from various fields of application.
This includes security-critical fields such as mo-
bile banking (m-banking) or mobile government (m-
government). In many cases, applications from
these fields of application involve the processing of
security-critical data on the user’s smartphone.

The confidentiality of data being stored and pro-
cessed on the user’s smartphone heavily depends on
the security of this device. The security of the de-
vice, in turn, mainly depends on the device config-
uration and on the smartphone’s robustness against
malware. Both aspects have recently turned out to
be especially problematic on smartphones running the
mobile operating system Google Android. Android
provides users various ways to configure their smart-
phones. For instance, Android users are free to en-
able or disable access-protection or encryption mech-
anisms. Hence, the security of data being stored on
smartphones heavily depends on settings chosen by

the user.
At the same time, recent reports (Lookout Mo-

bile Security, 2011) and malware indices (Hack-
mageddon, 2011) indicate that Android seems to be
more prone to malware than other smartphone plat-
forms. A recent incident that substantiates this ob-
servation has become known under the name Eu-
rograbber (Schwartz, 2012). In 2012, Eurograbber
stole $47.000.000 from private and corporate bank ac-
counts by implementing a combined attack on Web
browsers and Android smartphones to compromise
SMS-based authentication schemes of European e-
banking portals. Main reasons for the vulnerability of
Android against malware such as Eurograbber are the
availability of powerful system APIs for third-party
applications, and Android’s support for alternative ap-
plication sources that do not enforce quality checks
on distributed software. While these properties facil-
itate the development and easy distribution of power-
ful third-party applications, they also ease the spread
of malware.

Weak device configurations and malware nowa-
days represent the main threats for security-critical

347Zefferer T. and Teufl P..
Policy-based Security Assessment of Mobile End-user Devices - An Alternative to Mobile Device Management Solutions for Android Smartphones.
DOI: 10.5220/0004509903470354
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 347-354
ISBN: 978-989-8565-73-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

mobile applications. To dispel these threats, several
vendors such as AirWatch1 or Zenprise2 have started
to offer mobile device management (MDM) solutions
for Android. These solutions allow for a central con-
figuration of smartphones and can be used to enforce
security policies on Android devices. Additionally,
MDM solutions can be used to restrict the set of in-
stalled applications using black- or whitelists. With-
out doubt, MDM solutions have the potential to im-
prove the overall security of smartphones. Unfortu-
nately, MDM is mainly applicable in corporate envi-
ronments, in which employers provide their employ-
ees with smartphones. In such scenarios, the em-
ployer has the right and the organizational feasibility
to enforce policies on issued devices and to restrict
their functionality. In scenarios such as m-banking or
m-government, in which users typically use their pri-
vate smartphones to access a service, MDM is usually
not an option.

Due to the non-applicability of MDM solutions,
non-corporate smartphone applications cannot make
valid assumptions on the current state, configuration,
and security of the mobile end-user device, on which
these applications are executed. This is a major prob-
lem, as applications from security-critical fields might
prefer to refuse execution of security-critical opera-
tions on insecure smartphones. As a solution to this
problem, we propose adevice assessorthat assesses
the current state and security of an Android device at
runtime. By integrating the proposed device assessor,
security-critical applications are able to condition the
execution of security-critical operations on the smart-
phone’s current state and configuration. In this paper,
we discuss the general idea of using a device asses-
sor to assure the security of processed data in appli-
cation scenarios, in which MDM is not an option. We
show the practicability of this approach by means of
a concrete implementation for the Android platform
and present first evaluation results.

2 ANDROID SECURITY

The security of Android has been a frequently dis-
cussed topic during the past years. Reports on smart-
phone malware frequently show that Android devices
are more vulnerable to malware and related security
threats than mobile devices from other smartphone
platforms (Lookout Mobile Security, 2011). The top-
icality of security vulnerabilities on Android is also
emphasized by a growing number of scientific publi-
cations dealing with different aspects of security on

1http://www.airwatch.com/solutions/android
2http://www.zenprise.com/solutions/MDM

Android smartphones. Comprehensive analyses of
Android’s security model have for instance been pro-
vided in (Enck et al., 2009) and (Enck et al., 2011).
Security mechanisms implemented on Android have
been assessed in detail in (Shabtai et al., 2009). In-
depth analyses of Android’s integrated security sys-
tems and their capabilities to protect applications run-
ning on Android devices have also been provided in
(Bing, 2012) and (Pacatilu, 2011).

From the results of published scientific work on
Android security and from own experience gained
during several projects dealing with design, imple-
mentation, and assessment of security-critical mobile
applications, the following reasons for Android’s se-
curity vulnerabilities can be derived.

• Support for Alternative Application Sources.
Android users can install smartphone applications
from arbitrary sources such as alternative appli-
cation stores, memory cards, or Web resources.
While applications offered through official appli-
cation stores typically undergo a review process,
this is often not the case for alternative application
sources.

• Optional Security Features. Android provides
a set of integrated security features that are suit-
able to protect data being stored and processed on
smartphones. However, these security features are
optional and often deactivated by default. In many
cases, security features would be available but re-
main deactivated by the user for convenience rea-
sons.

• Inefficient Permission System. During the in-
stallation of an application on an Android device,
the user has to confirm a set of permissions that
are requested by the application to be installed and
that define its access rights and capabilities. How-
ever, users often do not understand or care for the
implications of confirming arbitrary permissions
requested by applications (Felt, 2012).

• Rich API. Compared to other smartphone plat-
forms, Android offers application developers a
much richer API3 to access system functionality.
While this allows for more powerful applications,
it also increases the capabilities of malware. On
Android, malware has – given the required per-
missions – access to resources of the smartphone
(e.g. SMS functionality, file system, etc.) that
would require root access to the operating system
on other platforms.

• Rich Runtime Capabilities. Android offers a
high degree of flexibility and a rich set of mecha-

3http://developer.android.com/reference/packages.html

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

348

nisms for inter-process and inter-application com-
munication (Chin et al., 2011). Furthermore, An-
droid supports – in contrast to other platforms –
the execution of arbitrary background services.
Again, these features improve the capabilities of
third-party applications, but also allow for more
powerful malware.

In summary, it can be stated that various properties
of Android make this platform especially vulnerable
to different security threats. Possible enhancements
of Android’s security system have been an emerging
topic in scientific research for the past years. For in-
stance, the use of SELinux on Android devices has
been discussed in (Shabtai et al., 2010). Tang et al.
proposed an extension to Android’s security enforce-
ment using a security distance model (Tang et al.,
2011). Enhancing and replacing Android’s encryp-
tion systems has recently also been a common topic
of scientific work, which has for instance been dis-
cussed in detail in (Shurui et al., 2010), (Chen and Ku,
2009), and (Gasti and Chen, 2010). Although most of
the proposed concepts and solutions seem promising
at a first glance, few of them have actually made their
way to current end-user devices.

From the various reasons for Android’s vulnera-
bility against security threats discussed in this section,
two basic problems can be derived. First, Android’s
architecture obviously eases the development of pow-
erful malware. Second, the user often turns out to
be the weakest link in the line of defense and unin-
tentionally compromises the security of the end-user
device by disabling important security features, in-
stalling applications from untrusted sources, or con-
firming permissions that allow applications to com-
promise the smartphone’s security. Android’s basic
architecture is usually beyond the sphere of influence
and cannot be adapted or customized to prevent mal-
ware based attacks. Hence, solutions to improve the
security of Android devices typically focus on the pre-
vention of weak device configurations caused by the
user.

The approach to prevent users from making bad
decisions (e.g. disabling of security features, instal-
lation of malware) in order to improve the security
of end-user devices is actually not a new idea. Espe-
cially in corporate environments, mobile device man-
agement (MDM) solutions are increasingly used to
centrally control and manage end-user devices. MDM
solutions are typically based on a server component
(MDM server) that is used to define security poli-
cies and to transmit these policies to smartphones.
On the smartphone, an MDM client enforces ob-
tained policies by appropriately configuring the mo-
bile device. MDM works well in corporate envi-

ronments, in which companies supply their employ-
ees with smartphones and hence have the legal and
organizational power to manage these devices and
to restrict their functionality according to the com-
pany’s security policies. In non-corporate environ-
ments, MDM is usually not an option. For instance,
a bank has neither the legal nor the organizational
power to limit or reconfigure a customer’s smartphone
before allowing it to access an m-banking application.
For the same reasons, MDM can even be problematic
in corporate environments, when employees are al-
lowed to use their own private smartphones to access
company data. This trend has recently become known
under the term bring-your-own-device (BYOD) and is
increasingly gaining relevance (Woods, 2013).

For scenarios, in which MDM solution cannot be
deployed due to legal and organizational reasons, al-
ternative approaches to assure the security of end-user
devices need to be followed. We propose the use of
a device assessor that can be easily integrated into ar-
bitrary third-party applications. In contrast to MDM
solutions, the device assessor does not reconfigure the
user’s device. Instead, it assesses if a given secu-
rity policy is fulfilled by the smartphone, on which
an application is about to be executed. Based on the
results of this assessment, applications that integrate
the device assessor can decide whether or not to ex-
ecute security-critical operations on the given device.
Details of this approach and the chosen architectural
design of the proposed device assessor are presented
and discussed in the next section.

3 ARCHITECTURE

In this section we present the architecture of the pro-
posed device assessor. Ease of integration, sustain-
ability, and flexibility have been defined as basic
design requirements for the proposed device asses-
sor. Although these requirements appear to be rather
generic, they are indeed of special relevance for this
particular solution. Ease of integration is important
as mobile applications are typically subject to fast de-
velopment processes and short release cycles. Sus-
tainability is another important requirement as it can
be expected that the relevance of smartphones will
continue to increase in future. Finally, also flexibil-
ity is of relevance as different applications potentially
have different requirements regarding the security of
the user’s smartphone.

Considering theses design requirements, the ar-
chitecture shown in Figure 1 has been chosen for the
proposed device assessor. Figure 1 illustrates core
components of the device assessor, as well as exter-

Policy-based�Security�Assessment�of�Mobile�End-user�Devices�-�An�Alternative�to�Mobile�Device�Management�Solutions
for�Android�Smartphones

349

nal components that interact with the device assessor
through well-defined interfaces.

���������	
������	���

���������	������������

���������	�

��������� ���

����	�����
�	��������

�����	� ������!��
�����
�

��	����	��

"#	������

��$����	����

������

"#	������

��$����	����

������

�
�
����

�����	�

�����%���

���

���������	�

��������&

���������	�

��������'

���������	�

��������(

�
�
�
�
��

�
�
	

��

Figure 1: Architecture of the device assessor.

As shown in Figure 1, the architectural design
defines anapplication programming interface (API),
through which the device assessor’s functionality can
be accessed by third-party applications. Reliance on
an API assures an easy integration of the device as-
sessor’s functionality into arbitrary third-party appli-
cations.

As shown in Figure 1, the provided API can be
used by third-party applications for three purposes.
First, applications can use the API to define security
policies to be assessed on the given device. Second,
the API provides applications with the results of con-
ducted assessments. Third, applications can option-
ally send obtained results back to the device assessor,
in order to display them to the user. For this purpose,
the device assessor provides aresult visualizer. The
result visualizer allows applications to easily inform
users about the results of device-assessment processes
and releases applications from implementing own re-
sult interpretation and visualization methods.

The chosen architecture follows a plug-in based
approach.Assessment plug-insare used to assess the
given device. Each assessment plug-in supports the
assessment of certain security aspects. To assess these
aspects, plug-ins either access public APIs provided
by the Android operating system, or retrieve addi-
tional information from external information sources.
For instance, information on the current status of the
file-system encryption can be retrieved directly from
the Android operating system. In contrast, external
information sources might be necessary when apply-
ing black- or whitelist based assessment processes. In
general, the plug-in based approach assures sustain-
ability by guaranteeing that new security aspects and
innovative assessment methods can easily be added to

the existing solution at a later stage.
Finally, also flexibility has been defined as design

requirement for the proposed device assessor. Hence,
the chosen architectural design shown in Figure 1 de-
fines the integration of apolicy interpreterthat is able
to handle arbitrary security policies. This way, each
third-party application that integrates the device as-
sessor can define its own security policy for the given
device. The policy interpreter extracts relevant secu-
rity aspects from the obtained policy and forwards
them to the device assessor’sassessment core mod-
ule. This module acts as controller and delegates the
assessment of relevant security aspects to appropri-
ate assessment plug-ins. Results of conducted assess-
ment processes are collected by the assessment core
module and forwarded to theresult assembler. The
result assembler combines obtained results and re-
turns them to the calling third-party application.

The architecture shown in Figure 1 basically
meets all predefined design requirements. Although
being mainly tailored to the Android platform, the
proposed architecture can basically be used to develop
device assessors for arbitrary smartphone platforms.
However, in consideration of the various security vul-
nerabilities of Android that have been discussed in de-
tail in Section 2, we have decided to verify the prac-
ticability of the architectural design by means of a
concrete implementation for the Google Android plat-
form. Details of this implementation are provided in
the next section.

4 IMPLEMENTATION

To assure ease of integration, the developed device
assessor has been implemented as Android library
project4. Implementation details of the developed li-
brary project and its integration into third-party ap-
plications are presented in this section by means of a
concrete example. For this example, we assume that
an Android application wants to condition its execu-
tion on the satisfaction of the following requirements:

• R1. To assure the confidentiality of data stored by
the application, the smartphone’s file system must
already be encrypted or currently being encrypted.

• R2. To preclude the existence of SMS intercept-
ing malware on the smartphone, alternative appli-
cation sources must be disabled and no static SMS
broadcast receivers must be registered.

• R3. To preclude the existence of manipulated key-
boards that log user input, alternative keyboards
must not be installed on the smartphone.

4http://developer.android.com/tools/projects/index.html

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

350

Note that these specific requirements have been
defined for demonstration purposes only and do not
necessarily make sense in real-world scenarios. In
the following subsections we will discuss how these
exemplary requirements can be converted into an ap-
propriate security policy, how the implemented device
assessor assesses the given smartphone according to
this policy, and how obtained results of the assess-
ment process are displayed by the device assessor.

4.1 Policy Definition

The use of security policies guarantees that each ap-
plication that integrates the developed device asses-
sor can define and assess its own critical security as-
pects. The use of security policies and related pol-
icy description languages (PDL) is a common ap-
proach that is frequently followed when security re-
quirements need to be defined in a structured way (Lv
and Yan, 2006) (Hashimoto et al., 2009). It is thus
reasonable that our solution relies on a policy based
approach as well. However, we have refrained from
using established PDLs for the sake of simplicity. In-
stead of using a powerful but complex PDL, our im-
plementation relies on a simple proprietary security-
policy format. However, due to the modular design of
our implementation, alternative PDLs can easily be
integrated into our implementation at a later stage if
required.

So far, our implementation supports rather simple
policies. The basic building blocks of these policies
are so calledsecurity properties. Security properties
and the two logic operators AND and OR can be used
to assemble arbitrary security policies. The device as-
sessor’s current implementation supports assessment
of 22 security properties including the ones listed be-
low.

• SecProp1.A password containing numeric char-
acters is required to access the smartphone.

• SecProp2. A password containing alphabetic
characters is required to access the smartphone.

• SecProp7.Encryption has been activated and the
device’s file system is encrypted.

• SecProp8. Encryption is currently being acti-
vated.

• SecProp9.Encryption is available on the device
but has not yet been activated.

• SecProp10.Encryption is not available on the de-
vice.

• SecProp12. No alternative keyboards are in-
stalled on the device.

• SecProp13.The device’s default keyboard is cur-
rently in use.

• SecProp14.An alternative keyboard is currently
in use.

• SecProp16. No suspicious application has been
registered to receive incoming SMS messages.

• SecProp17.There is evidence that the device has
been rooted.

• SecProp22. Alternative application sources are
disabled on the device.

Note that some properties have been omitted due
to space limitations. A complete list of all supported
security properties is available in the project docu-
mentation5. Using these security properties, arbitrary
security policies can be defined. Considering our
concrete example, the security propertiesSecProp7,
SecProp8, SecProp12, SecProp16, and SecProp22
can be used to map the rather informal definition of
the requirementsR1, R2, andR3to an appropriate se-
curity policy.

Using the identified relevant security properties
and appropriate logic operators, the overall security
policy SecPolcan be assembled according to Equa-
tions (1), (2), and (3).

SubPolA= OR(SecProp7,SecProp8) (1)

SubPolB= AND(SecProp16,SecProp22) (2)

SecPol= AND(SubPolA,SubPolB,SecProp12) (3)

As shown in Figure 2, security policies can be
graphically represented by hierarchical trees. The tree
root represents the complete security policy. Tree
nodes represent sub-policies that in turn consist of
two or more child nodes (security properties or sub-
policies). Leaf nodes (i.e. nodes with no child nodes)
represent security properties.

������

������	

	
�

��������

�������

��

�������

�������

	
�

�������� ��������

Figure 2: Tree representation of the security policy defined
in Equations (1), (2), and (3).

The implemented device assessor’s API provides
a PolicyFactoryclass that allows third-party applica-
tions to define security properties and to assemble ar-
bitrary security policies from different security prop-
erties using logic AND and OR operators.

5http://demo.egiz.gv.at/

Policy-based�Security�Assessment�of�Mobile�End-user�Devices�-�An�Alternative�to�Mobile�Device�Management�Solutions
for�Android�Smartphones

351

4.2 Device Assessment

According to the architectural design shown in Figure
1, the given Android device is assessed by the assess-
ment core module and a set of assessment plug-ins.
While the assessment core module basically provides
a common API-based interface to the implemented
assessment capabilities, the assessment of different
security properties is implemented by the assessment
plug-ins. Each plug-in is able to assess a certain set of
security properties. So far, seven plug-ins have been
implemented that are able to assess the 22 security
properties that are currently supported by our imple-
mentation.

• Access-Protection Plug-in.This plug-in checks
the configured access-protection method of the as-
sessed Android device. Required information is
retrieved directly from the Android system.

• Encryption Plug-in. This plug-in checks the cur-
rent state of the assessed device’s encryption sys-
tem.

• Keyboard Plug-in. This plug-in gives security-
critical applications the opportunity to check
whether alternative keyboards are installed and
used on the assessed Android device. A whitelist
containing default keyboards of all common ven-
dors is used to accomplish this task.

• SMS Broadcast-Receiver Plug-in. This plug-
in detects if there are suspicious applications in-
stalled on the assessed device, which have regis-
tered themselves to receive incoming SMS mes-
sages. These applications are identified by ana-
lyzing the Android manifest files of installed ap-
plications.

• Root-Detection Plug-in. The termsrooting and
jailbreaking subsume methods to gain root ac-
cess to a smartphone’s operating system. There-
fore, a root-detection plug-in has been developed
that allows security-critical applications to check
whether the underlying device has been rooted.
In contrast to other plug-ins, the root-detection
plug-in is not able to provide definite results. Al-
though the plug-in implements various different
methods to determine if the assessed device has
been rooted, all implemented methods can in the-
ory be circumvented by attackers (or malware)
with unlimited root access to the device.

• Malware-detection Plug-in.To give applications
the opportunity to refuse execution on devices in-
fected with malware, this plug-in implements a
simple malware-detection method. This detection
method uses an externally provided blacklist in

order to separate benign applications from mali-
cious ones.

• Application-Store Plug-in. This plug-in verifies
whether the assessed device has been configured
to allow for the installation of third-party applica-
tions from alternative application sources. The re-
quired information for this assessment is obtained
from Android’s public API.

4.3 Result Assembly

Different security properties supported by the imple-
mented plug-ins can be arbitrarily combined to spe-
cific security policies using logic AND and OR oper-
ators. Assessment results determined by the different
plug-ins are collected by the device assessor’s assess-
ment core module and forwarded to the result assem-
bler. The result assembler combines obtained results
according to the logic operations defined by the se-
curity policy. Reconsidering the exemplary security
policy shown in Figure 2, the final result is combined
from assessments conducted by the encryption plug-
in, application-store plug-in, SMS broadcast-receiver
plug-in, and keyboard plug-in.

The final result can again be represented by a tree
structure that exactly matches the structure of the se-
curity policy. Figure 3 shows an exemplary result
for the policy shown in Figure 2. In Figure 3, each
leaf node represents the assessment result of the cor-
responding security property. Security properties can
either be fulfilled (OK) or not be fulfilled (NOK). Re-
sults of sub-policies (i.e. tree nodes) are determined
by applying the sub-policy’s logic operator (AND or
OR) to the results of the tree node’s child nodes. This
way, each tree node evaluates either to OK or to NOK.
The final result of the entire assessment process is rep-
resented by the result tree’s root node. In the exam-
ple shown in Figure 3, the given security policy could
obviously not be assessed successfully, as one sub-
policy is not satisfied by the assessed device.

���

��

���

��

��

��

���

���

���

�� ���

Figure 3: Sample assessment result.

The entire result tree is finally returned to the call-
ing Android application through the device assessor’s
API. By evaluating the result of the tree’s root node,
the calling application can easily determine, whether
its security policy is fulfilled by the device or not.
Additionally, the application can parse the obtained

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

352

result tree in order to identify problematic security
properties of the assessed device.

4.4 Result Visualization

In most cases, security-critical applications that in-
tegrate the device assessor might want to inform the
user about identified problematic security properties.
Applications can do so by parsing the obtained result
tree and by implementing own appropriate visualiza-
tion methods. Alternatively, applications can also use
the result visualizerprovided by the device assessor.
The result visualizer can be called via the device as-
sessor’s API and takes a result tree as input. The main
task of the result visualizer is to appropriately display
this result tree and related information to the user.

Since security policies – and hence also obtained
result trees – can be of arbitrary length and complex-
ity, the result visualizer follows a modular approach
to display assessment results. Only one hierarchical
level of the result tree is displayed at once. The result
visualizer’s GUI allows users to navigate between dif-
ferent hierarchical levels.

Figure 4 shows the GUI of the result visualizer.
The left screenshot shows the second hierarchical
level of the given result tree. The three horizontal bars
represent the two sub-policies and the security prop-
erty of this level. The bar’s color indicates whether
the property or sub-policy is fulfilled on the particular
device or not. Using the info button at the right end of
each bar, the user can access additional information
about the respective sub-policy (or security property)
and its assessment result. This is shown in the right
screenshot of Figure 4 for the sub-policy called Sub-
PolA. The displayed text (as well as the name of the
property or sub-policy) can be dynamically defined
by the calling application during the definition of the
security policy.

Users can close this view and return to the result-
tree visualization using the leftward-arrow button that
can be found below the displayed policy information.
Furthermore, the other displayed arrow buttons can
be used to navigate through different hierarchical lev-
els of the result tree. This way, the result visualizer
helps users to explore identified security weaknesses
of their smartphones.

5 EVALUATION

In order to evaluate our implementation, we have as-
sessed the implemented device assessor’s applicabil-
ity and reliability in practice. This has been achieved
by evaluating our implementation on both virtual and

Figure 4: Left screenshot: Assessment results of security
policy’s sub-policies and security properties (child nodes of
root node). Right screenshot: Detailed information on first
sub-policy.

real devices covering smartphones manufactured by
different hardware vendors and featured with different
versions of Android. Furthermore, we have made our
implementation publicly available6 and have invited
application developers from both the public and the
corporate sector to use our solution. Obtained feed-
back is collected and used to continuously improve
our implementation.

First evaluation results show that our solution ba-
sically works reliably on non-rooted Android devices.
On rooted devices, correct results are likely but cannot
be guaranteed, as the security of the developed solu-
tion itself cannot be taken for granted if an attacker
has gained unlimited root access to the operating sys-
tem.

The conducted evaluation has also shown that the
proposed solution is basically applicable on all cur-
rent Android versions. It might however be necessary
to provide version-specific instances of the developed
device assessor, in order to consider differences in
the Android API between different Android versions.
Hence, not all features of the proposed solution are
available for all Android versions.

6 CONCLUSIONS

In this paper, we have proposed a device assessor for
smartphones. This device assessor can be integrated
into arbitrary third-party applications in order to ver-
ify if the smartphone, on which the application is exe-
cuted, satisfies a certain security policy. This way, the

6http://demo.egiz.gv.at

Policy-based�Security�Assessment�of�Mobile�End-user�Devices�-�An�Alternative�to�Mobile�Device�Management�Solutions
for�Android�Smartphones

353

proposed device assessor allows third-party applica-
tions to refrain from executing security-critical oper-
ations on potentially insecure smartphones. We have
shown the practicability of this approach by means of
a concrete implementation for the Android platform.
Furthermore, we have evaluated the reliability and ap-
plicability of our implementation on a set of virtual
and real Android smartphones. Obtained results of
this evaluation show that the proposed device asses-
sor is able to reliably assess a wide range of security
properties on smartphones.

Although the developed device assessor has al-
ready been made publicly available and is ready for
productive operation, several further developments
are considered as future work. This includes a further
improvement of the implmented assessment methods
and the evaluation of alternative policy-description
languages that could potentially replace the currently
used policy format. We are also evaluating potential-
ities to port the existing Android based solution also
to other smartphone platforms.

Even though there is still room for improvement,
the current implementation presented in this paper al-
ready demonstrates the general practicability of the
proposed approach and its capability to assure the se-
curity of mobile end-user devices in scenarios such as
m-banking or m-government, in which MDM is not
an option.

REFERENCES

Bing, H. (2012). Analysis and Research of System Security
Based on Android. In2012 Fifth International Con-
ference on Intelligent Computation Technology and
Automation, pages 581–584. IEEE.

Chen, Y. and Ku, W.-S. (2009). Self-Encryption Scheme for
Data Security in Mobile Devices. In2009 6th IEEE
Consumer Communications and Networking Confer-
ence, number 607, pages 1–5. IEEE.

Chin, E., Felt, A. P., Greenwood, K., and Wagner, D.
(2011). Analyzing Inter-Application Communication
in Android. InComponents, MobiSys ’11, pages 239–
252. ACM Press.

Enck, W., Octeau, D., Mcdaniel, P., and Chaudhuri, S.
(2011). A Study of Android Application Security. In
USENIX Security, number August in SEC’11, pages
935–936. USENIX Association.

Enck, W., Ongtang, M., and McDaniel, P. (2009). Under-
standing Android Security. InIEEE Security Privacy
Magazine, volume 7, pages 50–57. IEEE.

Felt, A. P. (2012). Android Permissions : User Attention,
Comprehension, and Behavior. InScience And Tech-
nology, pages 1–16.

Gasti, P. and Chen, Y. C. Y. (2010). Breaking and Fixing the
Self Encryption Scheme for Data Security in Mobile
Devices. InParallel Distributed and NetworkBased

Processing PDP 2010 18th Euromicro International
Conference on, pages 624–630. IEEE.

Hackmageddon (2011). One Year Of Android Malware
(Full List). http://hackmageddon.com/2011/08/11/
one-year-of-android-malware-full-list/.

Hashimoto, M., Kim, M., Tsuji, H., and Tanaka, H. (2009).
Policy Description Language for Dynamic Access
Control Models. In2009 Eighth IEEE International
Conference on Dependable Autonomic and Secure
Computing.

Lookout Mobile Security (2011). 2011 Mobile Threat
Report. https://www.lookout.com/resources/reports/
mobile-threat-report.

Lv, T. and Yan, P. (2006). A Web Security Solution based on
XML Technology. In2006 International Conference
on Communication Technology, pages 1–4. Ieee.

Pacatilu, P. (2011). Android Applications Security. InIn-
formatica Economica, volume 15, pages 163–171. In-
formatica Economica.

Schwartz, M. J. (2012). Zeus Botnet Eurograbber Steals
$47 Million. http://www.informationweek.com/
security/attacks/zeus-botnet-eurograbber-steals-47-
millio/240143837.

Shabtai, A., Fledel, Y., and Elovici, Y. (2010). Securing
Android-Powered Mobile Devices Using SELinux. In
IEEE Security Privacy Magazine, volume 8, pages
36–44. IEEE Computer Society.

Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., and Dolev,
S. (2009). Google Android: A State-of-the-Art Re-
view of Security Mechanisms. InNeural Networks,
volume 126, page 42.

Shurui, L., Jie, L., Ru, Z., and Cong, W. (2010). A Modi-
fied AES Algorithm for the Platform of Smartphone.
In Computational Aspects of Social Networks CASoN
2010 International Conference on, pages 749–752.
IEEE.

Tang, W., Jin, G., He, J., and Jiang, X. (2011). Extending
Android Security Enforcement with a Security Dis-
tance Model. In2011 International Conference on In-
ternet Technology and Applications, pages 1–4. IEEE.

Woods, S. (2013). Bring Your Own Device (BYOD)
Increasingly Important to Small Business Budgets.
http://technorati.com/business/small-business/article/
bring-your-own-device-byod-increasingly/.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

354

