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Abstract: A routing protocol such as OSPF has a cyclic behavior to regularly update its view of the network topology. Its
behavior is divided into periods. Each period produces a flood of network information messages. We observe a
regular activity in terms of messages exchanges and filling of receive buffers in routers. This article examines
the consequences of possible overlap of activity between periods, leading to a buffer overflow. OSPF allows
“out of sync" flows by considering an initial delay (phase). We study the optimum calculation of these offsets
to reduce the load, while maintaining a short period to ensure a protocol reactive to topology changes. Such
studies are conducted using a simulated Petri net model. A heuristic for determining initial delays is proposed.
A core network in Germany serves as illustration.

1 INTRODUCTION input buffers of routers due to LSA traffic. Indeed,
we believe that there are situations where the cycli-
Routing protocols generally work in a dynamic en- cal behavior of routers may cause harmful timings in
vironment where they have to constantly monitor Which incoming messages collide in a very short time
changes. This function is implemented locally in in front of routers.
routers by a programming loop that generates regu-  In current implementations, the refresh cycle is
lar behaviors. Open Shortest Path First (OSPF) pro-very slow and congestion is unlikely in view of the
tocol (Moy, 1998) is an interesting example, widely routers’ response time. Nevertheless, we address the
used in networks. OSPF is a link-state protocol that question to increase the refresh rate to ensure better
performs internal IP routing. This protocol regularly responsiveness to changes. This article shows a pos-
fills the network with messages “hello” to monitor the sibility of divergence, and discusses the possibilities
changes of network topology and messages “link state of avoiding harmful synchronization by adjusting the
advertisements” (LSA) to update the table of shortest phase shift of cyclical behavior.
paths in each router. The approachis as follows. We modeled LSAs ex-
A lot of work (Francois et al., 2005; Basu and changes using Time Petri Nets (in a fairly abstract rep-
Riecke, 2001) has been devoted to stability issues.resentation). This model was simulated for a topology
The stability is required if there is a change in the of 17 nodes representing the heart of an existing net-
network state (e.g., a link goes down), all the nodes work in Germany (data provided by Alcatel). We then
in the network are guaranteed to converge to the newdemonstrated the possibility of accumulation of mes-
network topology in finite time (in the absence of sages for well-chosen parameter values. Accumula-
any other events). The question is difficult when the tion is due to a possible overlap of refresh phases in
change is determined as a result of a bottleneck interms of messages. To validate this model, and thus
a router (as possible in the OPSF-TE (Katz et al., the reality of the observed phenomenon, we repro-
2003)). Ifthe response to a congestion is the exchangeduced it on a network emulator available from Alca-
of additional messages, the situation may becometel. Curves could indeed be replicated. Parameter val-
critical. But it has been proved (Basu and Riecke, ues were different, but it was difficult to believe that
2001) that OSPF-TE is rather robust in that matter.  the model scaled with respect to the rough abstraction
In this article we look at a related problem which performed. Once the problem identified, the question
is to focus on the possibilities of congestion of the is then to try to solve it by computing optimum initial
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delays. Such a computation can be performed usingparallel,R; waits for an Ack from all of its neighbors

linear integer programming on a simplified graphical before a given time. If an Ack is not received before

model. We will show using simulation that the com- the end of this timelR; sendd.SA again until an Ack

puted values are relevant to avoid message accumulais properly received.

tion in front of routers. The LSA flooding process ends when every router

The rest of the paper is organized as follows: we has synchronized to the same database.

first present in section 2 the modeling of the LSA

flooding process and its validation. In section 3, simu- 2.2 The Simulation Model

lation shows a possible overload of buffers depending

on the refresh period. Then, in section 4, we study a Time Petri Net (TPN) (Jard and Roux, 2010) is an

possible adjustment of the initial delays, which aims efficient tool to model discrete-event systems and to

at minimizing the overload. We show how to compute capture the inherent concurrency of complex systems.

these delays. The impact is then demonstrated usingln the classical definition, transitions are fired over an

simulation. interval of time. Here, transitions are fired at a fixed
time. This assumption is justified by observations of
actual OSPF traces whose data processing time does

not vary that much. In our case, the formal definition
2 TPN MODELING OF THE LSA S Mo | o
FLOODING PROCESS Definition 2.1 (Time Petri Net) A Time Petri Net
(TPN) is a tuple (P, T,B,F,Md) where
2.1 LSA Flooding Process e Pis afinite non-empty set of places;

T is afinite non-empty set of transitions;
B:PxT — Nis the backward incidence function;
F : T x P— Nis the forward incidence function;

The network is represented by a directed gréph
(V,E), whereV is afinite set ofi vertices (the routers)
andE is a binary relation oV to represent the links. ) . " . .
Theit" router is denoted bR . The set?/(R;) denotes Mo: P — N > the initial marklng. function; "
the set of neighbors d&;, of cardinality|7(R)|. To ¢ : T — Nis the temporal mapping of transitions.
help the reader Table 1 gives the list of the main nota-  The remainder of this part is devoted to the con-
tions introduced in this paper. struction of the TPN that models message exchanges
The LSA flooding occurs periodically everf of the LSA flooding process. The objective is to
seconds (30 minutes in the standard). Thus, the LSAmodel and observe the dynamic behavior of a given
flooding process starts at tinkd;, vk € N. network.
The LSA of a routelR; records the content of its
database. Thery shares this LSA (denotedSA) Router Modeling The TPN that models the behav-
with its neighbors to communicate its view of the net- ior of the LSA flooding process in a rout® needs
work at the beginning of each period. The rougr  three timers: di, T, and Tp. Their functions are:
sendsLSA after aninitial delay d. More precisely,  creatingLSA, managing a message received and re-
R sendsLSA at di + KT, Yk € N. Suppose that a transmitting a received LSA when needed. Messages
routerR; received SA and that it starts processing it are processed one by one. The following paragraphs
at timet. Then,R; ended the processing oBA at present each functional part of the TPN that models a
timet + Tp, whereT, is the time needed by any router router.
to process an LSA or an acknowledgment (Ack). Dur- e Place Processor. Initially this place contains
ing this processingy; updates its database and sends one token, representing the processing resource of a
a new LSA to its other neighbors if some new infor- router that is used to process LSAs and Acks. This
mation is learned. ConsequentR,could send anew  place mimics the queuing mechanismRyfand guar-
LSA at timet + Tp, and its neighbors will receive itat  anties that only one message is processed at once. For
timet+ Tp+ T, whereT; represents the time to send each different kind of messagelsSA and Ack) the
a message. processing mechanism is the following: an instanta-
Note that any information received 3; can be neous transition is fired, to reserve the resourdg of
taken into account if some properties are satisfied. Note that it can only be fired if a message is wait-
The most important one is the age of the LSA. An ing. Then the successor transition with timifigcan
LSA that is too old is simply ignored. In all cases, at be fired, modeling the processing time of the router,
timet+ Tp, Rj sends an Ack t&. The objective is  and Processorbecomes marked again, enabling the
to informR; thatLSA has been correctly received. In  processing of a new message.
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Figure 2: TPN of a routelR; that has two neighbor®; andR.

Processor

neighbors (transitioRetransmission Otherwise, the
token is destroyed (transitioDestructior). In the
flooding mechanism, ahSA is retransmitted only
OLSAxend,-ﬂ if it is received for the first time during one flooding
LSAsend; period. That way, the LSA flooding process ensures
ps that every router converges to the same database be-
Figure 1: Part of TPN that creates the LSA of a rolRer fore the end of every period. To model this, we bound
the number of retransmissions per period @rthe
number of retransmissions of an LSA received from
R; is bj, that is modeled by placinly tokens in each
placeboundof R, at the beginning of each period).
The tokens are inserted in these places by weighted

p3

e Creation of LSA. Figure 1 represents the part
of the TPN that createkSAs at timed; + kT, for
k € N in routerR;. Initially Star{ contains one to-
ken, t; fires at timed; and a token appears ip
at time di for the first time. AfterWard, the CyCIe arcs betweett and each p|acbound

P2,t2, s, ts generates a token ipy at t|me_sdi + K, e Global TPN  Figure 2 represents the behavior
k € N. Those token will be processed using the mech- ) . .
for one router. Such a net is built for each router. Fi-

anism described above, generating tokens in places . -
LSAsend,;, R; € V(R). nally, placeLSAsend.,; (resp. ACKsengl,;) is con-

_ _ nected to plac&SAreg.,j (resp. ACKreg_,;) by in-
» Reception of an Ackdotted rectangles on Fig-  serting a transitiohSA . (resp.ACK; ;) with firing

ure 2) A token inACKreq_,j represents this event. timeT; between them.

It is processed using the mechanism described above

and does not generate any new message.

e Reception of an LSA from a neighb@ashed
rectangles in Figure 2). A token in plat&Areg._;

2.3 Model Validation

We performed our experimentations on the 17-node

represents this event. It is processed using the mech-German telecommunication network represented in

anism described above and generateAak that is

Figure 3. This article focuses on the study of rolRgr

sent to the sender. It can also possibly generate anthat has the largest number of neighbd®(Rs)| =
LSA message that will be retransmitted to its other 6).
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Figure 3: German telecommunication network.

The arrivals of LSAs and Acks in the actual net- O
work are captured by an emulation using the Quagga ime(s)
Routing Software Suite (Ishiguro, 2012), where each Figure 5: Message arrivals Ry with T, = 1800s.
node is set from an Ubuntu Linux machine that hosts
a running instance of the Quagga Routing Software cess. The two curves are both composed of periods
Suite. Figure 4 represents the arrival of messages inthat last 1800s. They show on each period a burst of
Rg by the emulation of the LSA flooding on the Ger- message arrivals that lasts approximately 800s, then
man topology during 8000s wiff} = 1800s. message arrivals stop until the next period. We there-
fore conclude that our abstract model correctly cap-

350

- | tures the phenomenon of LSA flooding.
— . A | From now on we fix the parameter®i)ic(1,...n}
— ' K . Tp, Tt andT;) as defined above.
é 150 ( f 0‘{ i
& 100l d d
e : 3 'STUDY OF PERIOD LENGTH
0 1000 2000 3000 4000 5000 6000 7000 | 8000 We study here the effect of the period len@thon

time(s)

, ) , both message arrivals and queue length. We first dis-
Figure 4: Emulation of the arrivals Rs.

cuss the normal case whefe= 1800s. Then, we
s Present a congested case whére= 514s. Finally,

During the emulation, the processors of router 9=
g b we observe a limit case whefg= 1000s.

are parametrized with a 900 MHz CPU, and the mean
size of an LSA (resp. an Ack) is 96 bytes (resp. 63 .
bytes). The processing time of an LSA (resp. an Ack) 3-1 Low Traffic Case
is approximately 0.8is (resp. 0.5us). The transmis- . ]
sion time of an LSA (resp. an Ack) in 96 ms (resp. 64 Figure 6 represents the simulated queue lengtRgof
ms). during 1@®s (approx. 1 day), v_vherE = 1800s. C_)ne_
Unfortunately, these parameters can not be usedc@n observe a lot of fluctuations. At the beginning
directly to parametrize the TPN, as the TPN only Of each periodRg receives and processes messages.
represents the behavior of the LSA flooding process. However, the number of messages that are received
However, an actual router is much more loaded. Thus, IS much larger than those which are processed. Con-
T, andT; must be adjusted to include the whole load sequently, the queue length increases. Afterward, the
of the router. sendings stop, arfg keeps processing messages. The
The simulations presented in this article are pro- quéue length decreases.
duced by the software Renew (see (Kummer et al., 40
2003)) which can simulate Time Petri Nets. Note as|-
that the TPN are automatically generated (the TPN a0l
that models the German Telecommunication network
is not represented here due to its size). Figure 5 rep-

Queue length
)
o

resents the simulation of message arrivals using the 15

TPN whereTl; = 1800s,T, = 15s,T; = 30s. To corre- 10 N ”

spond to the sendings emulated in Figure 4 the num- s

ber of LSAs retransmitted per neighbour during a pe- %o 10000 2000030000 40000 50000 60000 70000 80000 90000100000
riod isbi = [ 73Ry 1 e

One can observe that Figure 4 and 5 are quite sim- Figure 6: Buffer length oRg with Tr = 1800s.

ilar: the parameters chosen as above are defined to
represent the actual behavior of an LSA flooding pro-
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Proof. Let us first focus on the case of networks with
a tree topology. In this case, we show that the above
inequality is in fact an equality. Two kinds of mes-
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Figure 8: Buffer size oRg with T, = 514s.

3.3 Limit Case

sages can be received: LSAs and Acks. Let us first
count the number of messages received by roRfer
concerning the flooding from rout&;. ConsiderR;

as the root of the tre®; can receiv&.SA from its fa-

ther only:R; will receive one and only ondeSA. Af-

Figure 9 represents the message arrivaBginluring terW&rde SendiSA to its children and will receive
8000s, and Figure 10 shows the queue length of routeranAck(as illustrated in Figure 11). As a consequence,
Rg during 1®s, whereT, = 1000s. This time, the  the number of messages received for the flooding of
sendings of a period are not merged with the sendingsLSA is the number of neighbors &j. Consider the

of the next period. Then, each period is long enough flooding of LSA. The routeiR; sends the LSA to its
SO thatRS can process messages from its gueue be_neighbors and will receive afcck from them. Glob-
fore the beginning of the next one. Figure 10 shows
the fluctuations of the queue length that correspond to
this. However the queue length is not empty at the
end of each period. Consequently, the stability of this
router is not ensured.

3.4 Sufficient Condition for Congestion

Suppose being in the worst case where each router
learns some new information from each router and let j
us now focus on the quantity of messages received =~~~ LSAisent at step j

during a period. *- > ack sent in response to LSA; received

Theorem 3.1. Let n(j) be the number of messages Figure 11: Flooding oESA: LSA and ACKs transmissions
received by a router Rduring a flooding period T 1N @ tree topology.
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ally, Rj will then receive exactlyn(|?7(R;)|) mes-
sages.

For networks with a general topology, one can ob-
serve that the flooding afSA defines a spanning tree
of the graph:(R;,R) is an edge of the spanning tree
if R first received_SA from R;. Then for the flood-
ing of LSA, R; receives at least the messages it would
received if the topology were the spanning tree, which
gives the desired inequality. O

The number of messages processed by rarjer
during a flooding period is 4 n(j): it processes the
received messages pluSA. DefineN(j) the num-
ber of messages processed during a flooding period
by R;j, we have

N(j) =n(|V(Ry)[) + 1.

If a router can not process every message of its
buffer before the end of each period a congestion oc-
curs. Also, given the minimal bound of Theorem 3.1
the congestion is ensured by the following threshold
onT.

Lemma 3.2. If T, < TpN(j) then the queue length of
R; tends to infinity.

Proof. The proof is straightforward from Theo-
rem 3.1. O

Example 3.3 (Simulation of TPN by Renew soft-
ware) Consider the tree topology network of Fig-

Queue lengt
30

20

10

o M
0

50000 100000 150000 200000 250000 300000 350000 400000
time(s)

Figure 12: Queue length & with T, = 554s of tree topol-

ogy.

as parameters. The question is then to infer con-
straints on these parameters that ensure a minimum
size of the input buffers. Even if this kind of question
can be theoretically solved using symbolic model-
checking (Lime et al., 2009), the computation com-
plexity is high. The state of the art of the current ex-
isting tools did not allow us to automatically produce
such symbolic constraints.

In order to compute initial delays, we adopt the
following method. We only take into account the mes-
sage contributing to the flooding mechanism: when
an LSA message concerning rouigyris received at
routerR;, it is forwarded only if it is received for the
first time. Then, we will model neither the LSA mes-
sages that are not the first to be received at a node, nor
the Acknowledgments.

ure 11. Theorem 3.1 ensures that the number of mes-4,1  Constraints Modeling

sages received by;R|V(R;)| =4)isN(j) =9x 4+
1=37. Therefore, if | is set to 15 s in the TPN, if

T, < 15x 37=555s the network is congested. Sim-
ulation of the TPN, representing this topology, with
Tp = 15s, T = 554s, T = 30s has been made during
4.10° s to illustrate this result. The evolution of the
queue length of router Rs shown in Figure 12. The
queue length of Relearly increases during the simu-
lation, showing that the network is congested. Finally,
as the simulation has been made with the largest pe-

Our goal is to perform the floodings as closed as pos-
sible while interacting as little as possible. We say
that two floodings do not interact if, for each router,
the first LSA received from those two floodings in that
router are not queued at the same time.

More formally, we consider a grap = (V,E),
whereV = {Ry,...,R,} is the set of routers and
E CV xV is the set of links between the routers. If
(Ri,Rj) € E, thent; ; denotes the transmission time

riod length that ensures congestion, during each pe- pepweerR, and Rj, andt; | = » if (R,R;) ¢ E. The
riod, Ry has enough time to process many messagessgjourn time of a message R, between its recep-
from his queue. Consequently, one can observe thatijyn and its forwarding, belongs to the intery&L A [.

the queue length varies a lot.

4 COMPUTING OPTIMUM
INITIAL DELAYS

In Section 2.2, we emulated the flooding phenomenon
of the OSFP protocol using Time Petri nets. The ini-
tial idea was to consider initial delays for each router

10

This time also holds for the source of messages.
Let us first compute the intervals of timig;
when the first LSA originating fronk; is received
in R; if the flooding starts at time 0. [f= j, then
lij = [0,0], and otherwise, we havgj = [ai j,Bi [
whered; j = MiNeqy,. n ik + Ok + Tk j and B j =

MiNkc(1 . Bik + Ak + Tk j-

The quantitiesy;  + o andp; k + Ay respectively
represent the minimal and the maximal departure
times fromR.
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If the flooding period isT, then the constraints

nize the computation of a shortest path in a graph with must then be transform in

respective edge lengthi§; +1; ;) and (A +1; j). Let
a = (ajj) andP = (Bi,j) the matrices of the shortest-

paths. They can, for example, be computed using the Vi, j,k € {1,...,n},

Floyd-Warshall algorithm. Now, the messages origi-
nating fromR; are present ifiR; during an interval of
time included in[a; j,Bi j + Aj[= [0, Vi,j[. We de-
note byD; j this interval andD the matrix of these
intervals.

Example 4.1(Sojourn times in the routers)

[81,A1[=[1,2] [62,A2[=[1,3]

[837A3[: [172[ [84aA4[: [273[
Figure 13: Example of a toy topology.

Figure 13 represents a toy topology with 4 vertices.
Matrix D is then:

0.2 [26] [59 [814
o_ |26 (03 B7 [612
59 37 02 [7]
0.14 [7.12 [47] [0.3]

Now, if the flooding from serveR; starts at time
di, its first LSA received by, is presentin that server
at most in the intervad; + Dj j = [di + @ j, di +Vi j].
Then, in order to have no interference between
the floodings in routeR;, the family of intervals
(di +Di j)ief1,...ny Must be two-by-two disjoint, and

to have no interference at all, the following condition
must hold:

Vi,j,ke{1,...,n}, i#k=di+DjjNdc+Dyj =0,
that is,

di+vij<dc+oagj or

vi,jke{l,...,n}, i#ké{ A+ Vi) < G+ ).

For each tripl€(i, j, k), the two constraints above are
exclusive: asy j > a; j, if one holds, necessarily, the
other one does not hold.

Now, if we don’t consider the first flooding from

each router only, we have to study the interferences

between the first and second flooding from each
router (if there is no interference between those two
sets of flooding, then there will be no interference at
all).

di +vij < di+ 0 j or
Ak + Vi j < di + 0 and
O +Vej <di+T+aj; and
di+yi,j < dk—i—T—i—C(k,j

1)

The two cases are illustrated on Figure 14. Note
that, depending on which of the two first constraint
is satisfied, one of the two last inequalities is trivially
satisfied.

di+ Dy A +T + Dy
r 1 L rJ |
CJ | E— CJ | E—
d,'-f—D,"j di—b—T—}—D,"j

dp+Dy d+T+Dy;

s I | L1

| | I

d}+Dj d/+T+D;;

Figure 14: Different possibilities for the constraints.tle
first cased +D; j is beforedy + Dy j and in the second case,
di+ Dy j is befored/ 4-D; j, but in both cases +- Dy j is
befored; + T + D; j andd; + Dj j is beforedy + T + Dy

The problem we want to solve is then to find

.....

.....

the constraints of Equation (1) is NP-complete.

Proof. The problem is trivially in NP as for any as-
signment of(d;) and periodT, it is possible to check
in polynomial time if the constraints are satisfied
(there areD(n®) constraints).

Now, to show that the problem is NP-hard, we re-
duce the salesman problem with triangular inequality
to that problem.

Suppose a complete weighted graph, with posi-
tive weights of the edges(u,v), satisfying the tri-
angular inequality: for all vertices,Vv,x, w(u,x) -+
W(va) < W(U7V). Setyl,] = ma)ﬁ(e{l,...,n}w(kai) and
O, j = Yi,j — W(i,K).

This assignment of the variables is made in such a
way that if for somej, dj — dx > vk ; — @i j, then this
holds for all j, asyi j — Qi,j = Wi k.

Now, let(d;) andT be a solution of our problem.
There is a Hamiltonian cycle of weigit < T in the
graph: suppose, without loss of generality tHat<
dp <--- <dh.

Then,w(1,2) +w(2,3) 4 ---+w(n,1) <
(dy—d1)+(d3—dp)+ -+ (d1—dy+T)=T.

Conversely, suppose that there is a Hamiltonian
cycle of weighW, corresponding without loss of gen-
erality to the cycle 12,...,n. Setd; = 0 andd,

11
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di—1+w(i —1i). We have for alli, j d; every con-
straint is satisfied an@l =W is a possible period: if
K>i,dg—di=w(i,i+1)+---+wk—1,k) > w(i,k).
Moreover,(di +W) —dx = w(k, k+1) +---+w(n,i)+
cew(i —1,0) > wi(ki).

Hence, we have a Hamiltonian path of length at
mostT if and only if we can find a solution to our
problem with period at mosk: the problem is NP-
hard. O

4.2 Exact Solution with Linear
Programming

This problem can be solved with a linear program us-
ing both integer and non-integer variables. The trick
is to encode the constraints

di+Vik < di+ 0 j
dk-i-yk,j <di+aj;j

or

into a linear program, and this is why we introduce
integer variables.
First, this set of constraints can be rewritten in

di —di > by j ordi —dx > by j

with bi,k,j =Vij—0gj. SetB = maxJ,kbi’k,j.

Lemma 4.3. There is a solution of this problem where
foralli € {1,...,n}, d €[0,nB|.

Proof. The assignmerd; = (i — 1)B is a solution of
the problem. Indeedli <k, Vj€{1,...,n},dc—di =
(k—=i1)B>B>bjy ;. Moreoveryi kK, j, dg—di = (n—
k+1)B>B>bj;j. O

Lemma 4.4. The following sets of constraints are
equivalent.

(i) di,d¢ € [0,nB] and (ck —di > bjj or di —dx >
by.i.j)

(i) di,dc € [0O,nB], q € {0,1} and d —di + (1 —
qnB> bi,k,j and d — dx+qnB> bk,i,j-

Proof. Suppose that the constrair(i$ are satisfied.
Eitherdx —d; > b j « and the constraints iii) with
g =1 are satisfied (we have the two constrais-
di > bi,j,k andd, —dx+nB>nB> bk,i,j); ord, —dy >
bk j and similarly, the constraints ifii) with g =0
are satisfied.

Suppose now that the constraifjiig are satisfied.
If g= 1, then, trivially,dy — di > bj j x and ifg= 0,
thend; — dy > bk,i,j- O

Consequently, the linear program is
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Minimize T under the constraints

Vi, ke {1,....n}, i £k,
0<di<nB
Gikj €{0,1}
Ak — di + (1 —qijk)NB > bj
di — dk+qi,j kB > by |
dk — di < T —maxjen, b,

Example 4.5. The toy example above gives=28,
withd; =0, d, =21, d3 = 14and d; = 5.

Computing this exact solution is possible but has
two drawbacks. First, as the problem is NP-complete,
computing the initial delays in larger networks may
be untractable. Second, this solution does not ex-
hibit monotony properties. For example, if the linear
program lead to a periodl and the target period is
T'> T, it might be better to stretch the valugis- d
to (di —dy)T'/T. It is unfortunately not ensured with
the solution found. In the next paragraph, we show
how to compute a solution complying with this addi-
tional constraint.

4.3 Heuristic using a Greedy Algorithm

To simplify the problem we only use strongest con-
straints: withgj x = maxXen, bik j,

Ck<O—adi<T—cgi or oi<di—dk<T—Cix

(@)

Lemma 4.6. If (di)ic1,...n) iS a solution to the con-

straints of Eq. (2) with a period T, then for B T,

(TT'di) is a solution for the same constraints with pe-
riod T'.

Proof. If iy < d¢—d <T —cj, then asTT' >1,
T(d—di) > dk—di >k Second,T (d—di) =
T i) =T - Toi < T —cig O

Solving these constraints is still a NP-complete
problem. In fact the proof of Theorem 4.2 is valid
in this case.

Now, in order to assign the values, we can use the
greedy algorithm presented in Algorithm 1. At each
step, the algorithm assigns one initial delay, that is
chosen to be the smallest as possible, given the ini-
tial delays already assigned, while satisfying the con-
straints set by them.

Lemma 4.7. At each step of the algorithm, the con-
straints (2) such that k € D are satisfied.

Proof. We show the result by induction. Whén=0

or |D| =1, then this is obviously true as no constraints
are involved. Suppose this is true forand lets the
next element that is addedoin the algorithm. From



Algorithm 1: Initial delays computation.
Data: ¢ j.
Result dp,...,d,, T.
begin
D« 0;
S+ {1,...,n};
foreachi € Sdod; + 0;
while S# 0do
S < Argmin,cgti;
S« S\ {s};
foreachi € Sdo d; < max(di,ds+ Cs;);
foreachi € D do
T < max(T,ds—di + Csj);
10 D« DU({s};
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line 8, we know thatls > maxcp d; +¢is. Then, for
all i e D, ds—di > cis. Now, from line 9, for all
ieD, T>ds—d+csj, sods—di < T —csj. So, the
constraints involving are satisfied. Now, if the con-
straints betweenand j, i, j € D are satisfied at one
step of the algorithm, they will remain satisfied dur-
ing the following steps, a§ can only increase. [

Example 4.8(Application of Algorithm 1) With our
toy example, we have

0 8 11 1
6 0 9 12
C=C@i)=19 7 0o 7
14 12 9 0

If 1is chosen first (d=0Vi € {1,2,3,4}), the val-
ues are updates tojd= 0, dp = max(0,d; +¢12) = 8,
dz3=11land d =14, T = 0. Then,2 is chosen and
we get @ = max(ds,dz + c23) = 17 and d = 20,
T = maxT,dz —d1 +¢21) = 14. Finally, we have
d1=0,d=8,d3=17,dy =24and T= 38.

Note that this problem could also have been solved
using a linear program (with integer variables), by re-

placing the variableg;  j in the linear program of the
previous paragraph luy : forgetting the parametgr

exactly leads to the same constraints of Equation (2). 16

In this case, we find = 36, withd; = 0, do = 30,
ds = 11 andds = 18. Our heuristic is near this opti-
mal.

Some Synchronization Issues in OSPF Routing

Proof. Set(%} = g. We number the messagesy
is the j-th message originating from routerFor ¢ €
{0,...,q—1}, in each server, simultaneously, there
cannot be several messages am(]mﬁqM)keN’ieNn,
becausgT > T. As a consequence, there cannot be
more tham messages in a router. O

4.4 Simulation Results with Initial
Delays

In this section, we present simulations of the TPN
modeling the German telecommunication network
with.initial delays defined by Algorithm 1 in the sta-
ble caseT; = 1800s).

We first need to define the transmission and so-

journ times used by the algorithm:

e the transmission time has already been defined to
Tjj = Ty = 30s, for all the links of the network;

e foreach routeR;, the sojourntime is at least equal

to the processing timg = T, = 15s, the time to
process the message where the queue is empty.
The maximum sojourn time is extracted from the
simulation of the TPN of Section 2 (with no ini-
tial delays). During the simulation, the maximum
queue length i); in routerR;. Then we take
Lj = QiTp.
Note that doing this enables to take into account
all the messages from the LSA flooding mecha-
nism, and not only the first LSA message in each
router.

The maximal queue length of each router is
extracted from a simulation of the TPN dur-
ing approximately 3.5 days (BO®s). Here is
the list of each maximal queue lengthQ =
(7,8,13,2,2,17,8,37,4,5,132,2,3,13 6,2). Then,
Algorithm 1 returns the following initial delays:

d = (0,1051200810 75,255420,13351035
108011551530 630,330,780, 330,1680.

Furthermore, Algorithm 1 compute3ivax =

695s.

Figure 15 represents the result of the TPN simula-

tion with initial delays listed above wheh = 1800s.

The maximum queue length for rout&; is now

In the next lemma, we assume that our target pe- Maxg = 25, which gives a significant improvement:

riodisT/ < T, thatis, we are not able to find a solution

it was Maxg = 37 without the computation of initial

so that there is at most one message in the queues oflelays. Moreover, the queue length is most of the time
the routers. We assume here that the sojourn time ofbelow 10.

a message does not depend on the queue length.
Lemma 4.9. Let (di) be a solution for the initial de-

lays with period T. The same assignment with peiod 5 CONCLUSIONS

T’ < T ensures that in each router, there are never

more than(%} messages simultaneously. This article presents a method usable for the OSPF

13
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Figure 15: Buffer length oRg with T, = 1800s and initial
delays.

protocol and cyclic protocols that use delay parame-
ters. This method aims at increasing the reactivity of

the network to topology changes, and at minimizing

the queue length of routers. Algorithm 1 provides an

efficient way to spread messages over the whole pe-
riod. Furthermore, it shows to be a good tool to reduce
gueue lengths.
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APPENDIX
Table 1: List of main notations.

Notation Full name

G=(V.E) directed graph representing the network

n number of routers

R ith router in the network

V(R) set of neighbors oR;

[Y(R)] cardinality of (R;)

di initial delay of R;

bj number of retransmission of an LSA
received from a neighbor &;

LSA link state advertisement messagerpf

Ack acknowledgment message

Ty (orT) period length of the LSA flooding proces

Tp processing time of messages

Tt time to send a message

(P,T,B,FMo,b) a Time Petri Net (TPN)

Start initial place of TPN to createSAs

LSAsend,; place to send SA to R;

ACKsend,; place to send an Ack frofR; to R;

LSAreg., place to receivéSA in R

ACKreg_i place to receive an Ack from; in R

Processor place to guaranty that one message
is processed at a time

bound place to bound the number of
retransmission from a neighbor

Retransmission | place to retransmit a received LSA

Destruction place to destroy a received LSA

n(j) (resp.N(j)) | number of messages received (resp.
processed) biRj during T,

Ti.j transmission time betwed® andR;

[, [ sojourn time of a message R

li,j = [aij,Bij[ | time of firstLSA received inR;

a=(aj;j) matrix of values; j

B=(Bij) matrix of values; j

D = (Di,j) Di,j = [0}, yi,j[ with i j = Bij + 4,

Q=(Q) maximal queue length d¥,

bi,k,j andB bi,k,j =Vi,j—0Okj andB = max‘,k‘,j bi,k,j

C=(cik) Cik = Maken, Pikj
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