
Some Synchronization Issues in OSPF Routing

Anne Bouillard1, Claude Jard2 and Aurore Junier3

1ENS/INRIA, Paris, France
2LINA, University of Nantes, Nantes, France

3INRIA, Rennes, France

Keywords: OSPF Routing, Synchronization, Simulation, Time Petri Nets.

Abstract: A routing protocol such as OSPF has a cyclic behavior to regularly update its view of the network topology. Its
behavior is divided into periods. Each period produces a flood of network information messages. We observe a
regular activity in terms of messages exchanges and filling of receive buffers in routers. This article examines
the consequences of possible overlap of activity between periods, leading to a buffer overflow. OSPF allows
“out of sync" flows by considering an initial delay (phase). We study the optimum calculation of these offsets
to reduce the load, while maintaining a short period to ensure a protocol reactive to topology changes. Such
studies are conducted using a simulated Petri net model. A heuristic for determining initial delays is proposed.
A core network in Germany serves as illustration.

1 INTRODUCTION

Routing protocols generally work in a dynamic en-
vironment where they have to constantly monitor
changes. This function is implemented locally in
routers by a programming loop that generates regu-
lar behaviors. Open Shortest Path First (OSPF) pro-
tocol (Moy, 1998) is an interesting example, widely
used in networks. OSPF is a link-state protocol that
performs internal IP routing. This protocol regularly
fills the network with messages “hello” to monitor the
changes of network topology and messages “link state
advertisements” (LSA) to update the table of shortest
paths in each router.

A lot of work (Francois et al., 2005; Basu and
Riecke, 2001) has been devoted to stability issues.
The stability is required if there is a change in the
network state (e.g., a link goes down), all the nodes
in the network are guaranteed to converge to the new
network topology in finite time (in the absence of
any other events). The question is difficult when the
change is determined as a result of a bottleneck in
a router (as possible in the OPSF-TE (Katz et al.,
2003)). If the response to a congestion is the exchange
of additional messages, the situation may become
critical. But it has been proved (Basu and Riecke,
2001) that OSPF-TE is rather robust in that matter.

In this article we look at a related problem which
is to focus on the possibilities of congestion of the

input buffers of routers due to LSA traffic. Indeed,
we believe that there are situations where the cycli-
cal behavior of routers may cause harmful timings in
which incoming messages collide in a very short time
in front of routers.

In current implementations, the refresh cycle is
very slow and congestion is unlikely in view of the
routers’ response time. Nevertheless, we address the
question to increase the refresh rate to ensure better
responsiveness to changes. This article shows a pos-
sibility of divergence, and discusses the possibilities
of avoiding harmful synchronization by adjusting the
phase shift of cyclical behavior.

The approach is as follows. We modeled LSAs ex-
changes using Time Petri Nets (in a fairly abstract rep-
resentation). This model was simulated for a topology
of 17 nodes representing the heart of an existing net-
work in Germany (data provided by Alcatel). We then
demonstrated the possibility of accumulation of mes-
sages for well-chosen parameter values. Accumula-
tion is due to a possible overlap of refresh phases in
terms of messages. To validate this model, and thus
the reality of the observed phenomenon, we repro-
duced it on a network emulator available from Alca-
tel. Curves could indeed be replicated. Parameter val-
ues were different, but it was difficult to believe that
the model scaled with respect to the rough abstraction
performed. Once the problem identified, the question
is then to try to solve it by computing optimum initial

5
Bouillard A., Jard C. and Junier A..
Some Synchronization Issues in OSPF Routing.
DOI: 10.5220/0004506800050014
In Proceedings of the 4th International Conference on Data Communication Networking, 10th International Conference on e-Business and 4th
International Conference on Optical Communication Systems (DCNET-2013), pages 5-14
ISBN: 978-989-8565-72-3
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

delays. Such a computation can be performed using
linear integer programming on a simplified graphical
model. We will show using simulation that the com-
puted values are relevant to avoid message accumula-
tion in front of routers.

The rest of the paper is organized as follows: we
first present in section 2 the modeling of the LSA
flooding process and its validation. In section 3, simu-
lation shows a possible overload of buffers depending
on the refresh period. Then, in section 4, we study a
possible adjustment of the initial delays, which aims
at minimizing the overload. We show how to compute
these delays. The impact is then demonstrated using
simulation.

2 TPN MODELING OF THE LSA
FLOODING PROCESS

2.1 LSA Flooding Process

The network is represented by a directed graphG =
(V,E), whereV is a finite set ofn vertices (the routers)
andE is a binary relation onV to represent the links.
Theith router is denoted byRi . The setV (Ri) denotes
the set of neighbors ofRi , of cardinality|V (Ri)|. To
help the reader Table 1 gives the list of the main nota-
tions introduced in this paper.

The LSA flooding occurs periodically everyTr
seconds (30 minutes in the standard). Thus, the LSA
flooding process starts at timekTr , ∀k∈N.

The LSA of a routerRi records the content of its
database. Then,Ri shares this LSA (denotedLSAi)
with its neighbors to communicate its view of the net-
work at the beginning of each period. The routerRi
sendsLSAi after aninitial delay di. More precisely,
Ri sendsLSAi at di + kTr , ∀k ∈ N. Suppose that a
routerRj receivesLSAi and that it starts processing it
at timet. Then,Rj ended the processing ofLSAi at
time t+Tp, whereTp is the time needed by any router
to process an LSA or an acknowledgment (Ack). Dur-
ing this processing,Rj updates its database and sends
a new LSA to its other neighbors if some new infor-
mation is learned. Consequently,Rj could send a new
LSA at timet+Tp, and its neighbors will receive it at
time t +Tp+Tt , whereTt represents the time to send
a message.

Note that any information received byRj can be
taken into account if some properties are satisfied.
The most important one is the age of the LSA. An
LSA that is too old is simply ignored. In all cases, at
time t +Tp, Rj sends an Ack toRi . The objective is
to informRi thatLSAi has been correctly received. In

parallel,Ri waits for an Ack from all of its neighbors
before a given time. If an Ack is not received before
the end of this time,Ri sendsLSAi again until an Ack
is properly received.

The LSA flooding process ends when every router
has synchronized to the same database.

2.2 The Simulation Model

Time Petri Net (TPN) (Jard and Roux, 2010) is an
efficient tool to model discrete-event systems and to
capture the inherent concurrency of complex systems.
In the classical definition, transitions are fired over an
interval of time. Here, transitions are fired at a fixed
time. This assumption is justified by observations of
actual OSPF traces whose data processing time does
not vary that much. In our case, the formal definition
of TPN is the following:

Definition 2.1 (Time Petri Net). A Time Petri Net
(TPN) is a tuple (P,T,B,F,M0,ϕ) where

• P is a finite non-empty set of places;
• T is a finite non-empty set of transitions;
• B : P×T→N is the backward incidence function;
• F : T×P→N is the forward incidence function;
• M0 : P→N is the initial marking function;
• ϕ : T→N is the temporal mapping of transitions.

The remainder of this part is devoted to the con-
struction of the TPN that models message exchanges
of the LSA flooding process. The objective is to
model and observe the dynamic behavior of a given
network.

Router Modeling The TPN that models the behav-
ior of the LSA flooding process in a routerRi needs
three timers: di , Tr and Tp. Their functions are:
creatingLSAi , managing a message received and re-
transmitting a received LSA when needed. Messages
are processed one by one. The following paragraphs
present each functional part of the TPN that models a
router.
• Place Processor. Initially this place contains

one token, representing the processing resource of a
router that is used to process LSAs and Acks. This
place mimics the queuing mechanism ofRi and guar-
anties that only one message is processed at once. For
each different kind of messages (LSAi andAck) the
processing mechanism is the following: an instanta-
neous transition is fired, to reserve the resource ofRi .

Note that it can only be fired if a message is wait-
ing. Then the successor transition with timingTp can
be fired, modeling the processing time of the router,
and Processorbecomes marked again, enabling the
processing of a new message.

DCNET�2013�-�International�Conference�on�Data�Communication�Networking

6

ACKs arrivals from a neighbor

LSAs arrivals from a neighbor

Acks sendings to the sender

ACKs arrivals from a neighbor

LSAs arrivals from a neighbor

Acks sendings to the sender

Starti
di

Tr 0

Tp

LSAsendi→k

Tp

LSArec j→i

ACKrec j→i

ACKsendi→ j

0

0

Tp 0

0
Retransmission

Destruction

bound

Tp

LSAreck→i

ACKreck→i

ACKsendi→k

0

0

Tp 0

0
Retransmission

Destruction

bound

bi

0

bi

Processor LSAsendi→ j

Figure 2: TPN of a routerRi that has two neighbors,Rj andRk.

p3

LSAsendi→k

p5

Tp t5

LSAsendi→ j

t3

p2 0t2

t4 0Tr

p4

Processor

Starti t1di

Figure 1: Part of TPN that creates the LSA of a routerRi .

• Creation of LSA. Figure 1 represents the part
of the TPN that createsLSAis at timedi + kTr , for
k ∈ N in router Ri . Initially Starti contains one to-
ken, t1 fires at timedi and a token appears inp2
at time di for the first time. Afterward, the cycle
p2, t2, p3, t3 generates a token inp4 at timesdi + kTr ,
k∈N. Those token will be processed using the mech-
anism described above, generating tokens in places
LSAsendi→ j , Rj ∈ V (Ri).

• Reception of an Ack(dotted rectangles on Fig-
ure 2) A token inACKrecj→i represents this event.
It is processed using the mechanism described above
and does not generate any new message.

• Reception of an LSA from a neighbor(dashed
rectangles in Figure 2). A token in placeLSArecj→i
represents this event. It is processed using the mech-
anism described above and generate anAck, that is
sent to the sender. It can also possibly generate an
LSA message that will be retransmitted to its other

neighbors (transitionRetransmission). Otherwise, the
token is destroyed (transitionDestruction). In the
flooding mechanism, anLSAj is retransmitted only
if it is received for the first time during one flooding
period. That way, the LSA flooding process ensures
that every router converges to the same database be-
fore the end of every period. To model this, we bound
the number of retransmissions per period (forRi , the
number of retransmissions of an LSA received from
Rj is bi , that is modeled by placingbi tokens in each
placeboundof Ri at the beginning of each period).
The tokens are inserted in these places by weighted
arcs betweent2 and each placebound.

• Global TPN Figure 2 represents the behavior
for one router. Such a net is built for each router. Fi-
nally, placeLSAsendi→ j (resp. ACKsendi→ j) is con-
nected to placeLSAreci→ j (resp. ACKreci→ j) by in-
serting a transitionLSAi→ j (resp.ACKi→ j) with firing
timeTt between them.

2.3 Model Validation

We performed our experimentations on the 17-node
German telecommunication network represented in
Figure 3. This article focuses on the study of routerR8
that has the largest number of neighbors (|V (R8)| =
6).

Some�Synchronization�Issues�in�OSPF�Routing

7

R5

R4

R10

R3

R14 R2 R7 R1

R8

R12 R9 R16 R17 R13

R15R6

R11

Figure 3: German telecommunication network.

The arrivals of LSAs and Acks in the actual net-
work are captured by an emulation using the Quagga
Routing Software Suite (Ishiguro, 2012), where each
node is set from an Ubuntu Linux machine that hosts
a running instance of the Quagga Routing Software
Suite. Figure 4 represents the arrival of messages in
R8 by the emulation of the LSA flooding on the Ger-
man topology during 8000s withTr = 1800s.

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000 7000 8000

u
m

b
er

o
fm

es
sa

g
es

ar
riv

ed

time(s)

rrrr
rrr
rrrr
rrrr
rrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rr rrrr

rrrr
rrr
rr rrrr

rrrr
rrr
rrrr
rrrr
rrr
rrrr
rrrr
rrr
rrrr
rrrr
rrr rrr

rrrr
rrrr
rr rrrr

rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrr
rrrr
r rrrr

rrr
rrrr
rr rrrr

rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
r rrrr

rrrr
rrr
rr rrrr

rrrr
rrr
rrrr
rrrr
rrr
rrrr
rrrr
rrrr
rrrr
rr

Figure 4: Emulation of the arrivals toR8.

During the emulation, the processors of routers
are parametrized with a 900 MHz CPU, and the mean
size of an LSA (resp. an Ack) is 96 bytes (resp. 63
bytes). The processing time of an LSA (resp. an Ack)
is approximately 0.8µs (resp. 0.5µs). The transmis-
sion time of an LSA (resp. an Ack) in 96 ms (resp. 64
ms).

Unfortunately, these parameters can not be used
directly to parametrize the TPN, as the TPN only
represents the behavior of the LSA flooding process.
However, an actual router is much more loaded. Thus,
Tp andTt must be adjusted to include the whole load
of the router.

The simulations presented in this article are pro-
duced by the software Renew (see (Kummer et al.,
2003)) which can simulate Time Petri Nets. Note
that the TPN are automatically generated (the TPN
that models the German Telecommunication network
is not represented here due to its size). Figure 5 rep-
resents the simulation of message arrivals using the
TPN whereTr = 1800s,Tp = 15s,Tt = 30s. To corre-
spond to the sendings emulated in Figure 4 the num-
ber of LSAs retransmitted per neighbour during a pe-
riod isbi = ⌈

(n−1)
4|V (Ri)|

⌉.
One can observe that Figure 4 and 5 are quite sim-

ilar: the parameters chosen as above are defined to
represent the actual behavior of an LSA flooding pro-

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

er
o

fm
es

sa
g

es
ar

riv
ed

time(s)

rrrr
rrr
rrrr
rrrr
rrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
r rrrr

rrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
r rrr

rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrr rrrr

rrrr
rrr
rrrr
rrrr
rrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
r rrr
rr rr
rrr rrrr

rrrr
rrr
rrrr
rrrr
rrr
rrrr
rrrr
rrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
rrrr
r

Figure 5: Message arrivals toR8 with Tr = 1800s.

cess. The two curves are both composed of periods
that last 1800s. They show on each period a burst of
message arrivals that lasts approximately 800s, then
message arrivals stop until the next period. We there-
fore conclude that our abstract model correctly cap-
tures the phenomenon of LSA flooding.

From now on we fix the parameters ((bi)i∈{1,...,n},
Tp, Tt andTr) as defined above.

3 STUDY OF PERIOD LENGTH

We study here the effect of the period lengthTr on
both message arrivals and queue length. We first dis-
cuss the normal case whereTr = 1800s. Then, we
present a congested case whereTr = 514s. Finally,
we observe a limit case whereTr = 1000s.

3.1 Low Traffic Case

Figure 6 represents the simulated queue length ofR8
during 105s (approx. 1 day), whereTr = 1800s. One
can observe a lot of fluctuations. At the beginning
of each periodR8 receives and processes messages.
However, the number of messages that are received
is much larger than those which are processed. Con-
sequently, the queue length increases. Afterward, the
sendings stop, andRi keeps processing messages. The
queue length decreases.

0

5

10

15

20

25

30

35

40

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

Q
u

eu
e

le
n

g
th

time(s)

Figure 6: Buffer length ofR8 with Tr = 1800s.

DCNET�2013�-�International�Conference�on�Data�Communication�Networking

8

3.2 Congested Case

Figure 7 represents the message arrivals inR8 during
8000s, and Figure 8 the queue length ofR8 during
105s, whereTr = 514s. One can observe that mes-
sages arrive continuously on routerR8. Then,R8 is
never idle and never empties its queue. Consequently
the queue length permanently increases.

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

er
o

fm
es

sa
g

es
ar

riv
ed

time(s)

rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrr rrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrrrrrr
rrrrrrrrr
rrrrrr

Figure 7: Message arrivals toR8 with Tr = 514s.

0

1000

2000

3000

4000

5000

6000

0 100002000030000400005000060000700008000090000100000

Q
u

eu
e

le
n

g
th

time(s)

Figure 8: Buffer size ofR8 with Tr = 514s.

3.3 Limit Case

Figure 9 represents the message arrivals inR8 during
8000s, and Figure 10 shows the queue length of router
R8 during 105s, whereTr = 1000s. This time, the
sendings of a period are not merged with the sendings
of the next period. Then, each period is long enough
so thatR8 can process messages from its queue be-
fore the beginning of the next one. Figure 10 shows
the fluctuations of the queue length that correspond to
this. However the queue length is not empty at the
end of each period. Consequently, the stability of this
router is not ensured.

3.4 Sufficient Condition for Congestion

Suppose being in the worst case where each router
learns some new information from each router and let
us now focus on the quantity of messages received
during a period.

Theorem 3.1. Let n(j) be the number of messages
received by a router Rj during a flooding period Tr .

0

50

100

150

200

250

300

350

400

450

500

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

er
o

fm
es

sa
g

es
ar

riv
ed

time(s)

rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
r rrrrr

rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
r rrrrr

rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrr rr
rrrrr
rrrr rrrrr

rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrr rrrrr

rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
r rrrr
rrrrr
r rrrrr

rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrr rrrrr

rrrrr
r rrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
r rrrrr

rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrrrr
rrr rrrrr

Figure 9: Message arrivals toR8 with Tr = 1000s.

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000
Q

u
eu

e
le

n
g

th
time(s)

Figure 10: Buffer length ofR8 with Tr = 1000s.

Then
n(j)> n(|V (Rj)|).

Proof. Let us first focus on the case of networks with
a tree topology. In this case, we show that the above
inequality is in fact an equality. Two kinds of mes-
sages can be received: LSAs and Acks. Let us first
count the number of messages received by routerRj
concerning the flooding from routerRi . ConsiderRi
as the root of the tree,Rj can receiveLSAi from its fa-
ther only:Rj will receive one and only onceLSAi. Af-
terwardRj sendsLSAi to its children and will receive
anAck(as illustrated in Figure 11). As a consequence,
the number of messages received for the flooding of
LSAi is the number of neighbors ofRj . Consider the
flooding ofLSAj . The routerRj sends the LSA to its
neighbors and will receive anAck from them. Glob-

LSAi sent at step j

1

1

j

ack sent in response to LSAi received

2

R j

Ri

1

2 2 22

Figure 11: Flooding ofLSAi : LSA and ACKs transmissions
in a tree topology.

Some�Synchronization�Issues�in�OSPF�Routing

9

ally, Rj will then receive exactlyn(|V (Rj)|) mes-
sages.

For networks with a general topology, one can ob-
serve that the flooding ofLSAi defines a spanning tree
of the graph:(Rj ,Rk) is an edge of the spanning tree
if Rk first receivedLSAi from Rj . Then for the flood-
ing of LSAi , Rj receives at least the messages it would
received if the topology were the spanning tree, which
gives the desired inequality.

The number of messages processed by routerRj
during a flooding period is 1+n(j): it processes the
received messages plusLSAj . DefineN(j) the num-
ber of messages processed during a flooding period
by Rj , we have

N(j) = n(|V (Rj)|)+1.

If a router can not process every message of its
buffer before the end of each period a congestion oc-
curs. Also, given the minimal bound of Theorem 3.1
the congestion is ensured by the following threshold
onTr .

Lemma 3.2. If Tr < TpN(j) then the queue length of
Rj tends to infinity.

Proof. The proof is straightforward from Theo-
rem 3.1.

Example 3.3 (Simulation of TPN by Renew soft-
ware). Consider the tree topology network of Fig-
ure 11. Theorem 3.1 ensures that the number of mes-
sages received by Rj (|V (Rj)|= 4) is N(j) = 9×4+
1 = 37. Therefore, if Tp is set to 15 s in the TPN, if
Tr < 15×37= 555s the network is congested. Sim-
ulation of the TPN, representing this topology, with
Tp = 15s, Tr = 554s, Tt = 30s has been made during
4.105 s to illustrate this result. The evolution of the
queue length of router Rj is shown in Figure 12. The
queue length of Rj clearly increases during the simu-
lation, showing that the network is congested. Finally,
as the simulation has been made with the largest pe-
riod length that ensures congestion, during each pe-
riod, Rj has enough time to process many messages
from his queue. Consequently, one can observe that
the queue length varies a lot.

4 COMPUTING OPTIMUM
INITIAL DELAYS

In Section 2.2, we emulated the flooding phenomenon
of the OSFP protocol using Time Petri nets. The ini-
tial idea was to consider initial delays for each router

0

10

20

30

40

50

60

70

80

0 50000 100000 150000 200000 250000 300000 350000 400000

Queue length

time(s)

Figure 12: Queue length ofR3 with Tr = 554s of tree topol-
ogy.

as parameters. The question is then to infer con-
straints on these parameters that ensure a minimum
size of the input buffers. Even if this kind of question
can be theoretically solved using symbolic model-
checking (Lime et al., 2009), the computation com-
plexity is high. The state of the art of the current ex-
isting tools did not allow us to automatically produce
such symbolic constraints.

In order to compute initial delays, we adopt the
following method. We only take into account the mes-
sage contributing to the flooding mechanism: when
an LSA message concerning routerRj is received at
routerRi , it is forwarded only if it is received for the
first time. Then, we will model neither the LSA mes-
sages that are not the first to be received at a node, nor
the Acknowledgments.

4.1 Constraints Modeling

Our goal is to perform the floodings as closed as pos-
sible while interacting as little as possible. We say
that two floodings do not interact if, for each router,
the first LSA received from those two floodings in that
router are not queued at the same time.

More formally, we consider a graphG = (V,E),
where V = {R1, . . . ,Rn} is the set of routers and
E ⊆V×V is the set of links between the routers. If
(Ri ,Rj) ∈ E, thenτi, j denotes the transmission time
betweenRi andRj , andτi, j = ∞ if (Ri ,Rj) /∈ E. The
sojourn time of a message inRi , between its recep-
tion and its forwarding, belongs to the interval[δi ,∆i [.
This time also holds for the source of messages.

Let us first compute the intervals of timeIi, j
when the first LSA originating fromRi is received
in Rj if the flooding starts at time 0. Ifi = j, then
Ii,i = [0,0], and otherwise, we haveIi, j = [αi, j ,βi, j [
whereαi, j = mink∈{1,...,n}αi,k + δk + τk, j and βi, j =
mink∈{1,...,n}βi,k+∆k+ τk, j .

The quantitiesαi,k+ δk andβi,k+∆k respectively
represent the minimal and the maximal departure
times fromRk.

DCNET�2013�-�International�Conference�on�Data�Communication�Networking

10

For the computation of bothαi, j andβi, j , we recog-
nize the computation of a shortest path in a graph with
respective edge lengths(δi + τi, j) and(∆i + τi, j). Let
α = (αi, j) andβ = (βi, j) the matrices of the shortest-
paths. They can, for example, be computed using the
Floyd-Warshall algorithm. Now, the messages origi-
nating fromRi are present inRj during an interval of
time included in[αi, j ,βi, j +∆ j [= [αi, j ,γi, j [. We de-
note byDi, j this interval andD the matrix of these
intervals.

Example 4.1(Sojourn times in the routers).

R1

R3 R4

R2

[δ1,∆1[= [1,2[

[δ4,∆4[= [2,3[

[δ2,∆2[= [1,3[

1

2
5

2

[δ3,∆3[= [1,2[

Figure 13: Example of a toy topology.

Figure 13 represents a toy topology with 4 vertices.
Matrix D is then:

D =







[0,2[[2,6[[5,9[[8,14[
[2,6[[0,3[[3,7[[6,12[
[5,9[[3,7[[0,2[[3,7[
[9,14[[7,12[[4,7[[0,3[






.

Now, if the flooding from serverRi starts at time
di , its first LSA received byRj is present in that server
at most in the intervaldi +Di, j = [di +αi, j ,di + γi, j].

Then, in order to have no interference between
the floodings in routerRj , the family of intervals
(di +Di, j)i∈{1,...,n} must be two-by-two disjoint, and
to have no interference at all, the following condition
must hold:

∀i, j,k∈ {1, . . . ,n}, i 6= k⇒ di +Di, j ∩dk+Dk, j = /0,

that is,

∀i, j ,k∈ {1, . . . ,n}, i 6= k⇒

{

di + γi, j ≤ dk+αk, j or
dk+ γk, j ≤ di +αi, j .

For each triple(i, j,k), the two constraints above are
exclusive: asγi, j > αi, j , if one holds, necessarily, the
other one does not hold.

Now, if we don’t consider the first flooding from
each router only, we have to study the interferences
between the first and second flooding from each
router (if there is no interference between those two
sets of flooding, then there will be no interference at
all).

If the flooding period isT, then the constraints
must then be transform in

∀i, j,k∈ {1, . . . ,n},

di + γi, j ≤ dk+αk, j or
dk+ γk, j ≤ di +αi, j and
dk+ γk, j ≤ di +T +αi, j and
di + γi, j ≤ dk+T +αk, j

(1)
The two cases are illustrated on Figure 14. Note

that, depending on which of the two first constraint
is satisfied, one of the two last inequalities is trivially
satisfied.

d′

k +Dk, j d′

k +T +Dk, j

dk +Dk, j dk +T +Dk, j

di +Di, j di +T +Di, j

d′

i +T +Di, jd′

i +Di, j

Figure 14: Different possibilities for the constraints. Inthe
first case,di +Di, j is beforedk+Dk, j and in the second case,
d′k +Dk, j is befored′i +Di, j , but in both cases,dk+Dk, j is
beforedi +T +Di, j anddi +Di, j is beforedk+T +Dk, j

The problem we want to solve is then to find
(di)i∈{1,...,n} such that all the constraints are satisfied
andT is minimized.

Theorem 4.2. Given(αi, j)i, j∈{1,...,n}, (γi, j)i, j∈{1,...,n}
and T, the problem of finding(di)i∈{1,...,n} satisfying
the constraints of Equation (1) is NP-complete.

Proof. The problem is trivially in NP as for any as-
signment of(di) and periodT, it is possible to check
in polynomial time if the constraints are satisfied
(there areO(n3) constraints).

Now, to show that the problem is NP-hard, we re-
duce the salesman problem with triangular inequality
to that problem.

Suppose a complete weighted graph, with posi-
tive weights of the edgesw(u,v), satisfying the tri-
angular inequality: for all verticesu,v,x, w(u,x) +
w(x,v) ≤ w(u,v). Setγi, j = maxk∈{1,...,n}w(k, i) and
αi, j = γk, j −w(i,k).

This assignment of the variables is made in such a
way that if for somej, di−dk ≥ γk, j −αi, j , then this
holds for all j, asγk, j −αi, j = wi,k.

Now, let (di) andT be a solution of our problem.
There is a Hamiltonian cycle of weightW ≤ T in the
graph: suppose, without loss of generality thatd1 ≤
d2≤ ·· · ≤ dn.

Then,w(1,2)+w(2,3)+ · · ·+w(n,1)≤
(d2−d1)+ (d3−d2)+ · · ·+(d1−dn+T) = T.

Conversely, suppose that there is a Hamiltonian
cycle of weightW, corresponding without loss of gen-
erality to the cycle 1,2, . . . ,n. Setd1 = 0 anddi =

Some�Synchronization�Issues�in�OSPF�Routing

11

di−1 +w(i − 1, i). We have for alli, j di every con-
straint is satisfied andT = W is a possible period: if
k> i, dk−di =w(i, i+1)+ · · ·+w(k−1,k)≥w(i,k).
Moreover,(di+W)−dk =w(k,k+1)+ · · ·+w(n, i)+
· · ·+w(i−1, i)≥ w(k, i).

Hence, we have a Hamiltonian path of length at
mostT if and only if we can find a solution to our
problem with period at mostT: the problem is NP-
hard.

4.2 Exact Solution with Linear
Programming

This problem can be solved with a linear program us-
ing both integer and non-integer variables. The trick
is to encode the constraints

di + γi,k ≤ dk+αk, j or
dk+ γk, j ≤ di +αi, j

into a linear program, and this is why we introduce
integer variables.

First, this set of constraints can be rewritten in

dk−di ≥ bi,k, j or di−dk≥ bk,i, j

with bi,k, j = γi, j −αk, j . SetB= maxi, j ,k bi,k, j .

Lemma 4.3. There is a solution of this problem where
for all i ∈ {1, . . . ,n}, di ∈ [0,nB].

Proof. The assignmentdi = (i−1)B is a solution of
the problem. Indeed,∀i < k, ∀ j ∈ {1, . . . ,n}, dk−di =
(k− i)B≥B≥ bi,k, j . Moreover,∀i,k, j, dk−di = (n−
k+ i)B≥ B≥ bi,k, j .

Lemma 4.4. The following sets of constraints are
equivalent.

(i) di,dk ∈ [0,nB] and (dk− di ≥ bi,k, j or di − dk ≥
bk,i, j)

(ii) d i,dk ∈ [0,nB], q ∈ {0,1} and dk − di + (1−
q)nB≥ bi,k, j and di−dk+qnB≥ bk,i, j .

Proof. Suppose that the constraints(i) are satisfied.
Eitherdk−di ≥ bi, j ,k and the constraints in(ii) with
q= 1 are satisfied (we have the two constraintsdk−
di ≥ bi, j ,k anddi−dk+nB≥ nB≥ bk,i, j); or di−dk >
bk,i, j and similarly, the constraints in(ii) with q = 0
are satisfied.

Suppose now that the constraints(ii) are satisfied.
If q = 1, then, trivially,dk− di ≥ bi, j ,k and if q = 0,
thendi−dk≥ bk,i, j .

Consequently, the linear program is

Minimize T under the constraints

∀i, j,k∈ {1, . . . ,n}, i 6= k,
0≤ di ≤ nB










qi,k, j ∈ {0,1}
dk−di +(1−qi, j ,k)nB≥ bi,k, j
di−dk+qi, j ,knB≥ bk,i, j
dk−di ≤ T−maxj∈Nn bk,i, j

Example 4.5. The toy example above gives T= 28,
with d1 = 0, d2 = 21, d3 = 14and d4 = 5.

Computing this exact solution is possible but has
two drawbacks. First, as the problem is NP-complete,
computing the initial delays in larger networks may
be untractable. Second, this solution does not ex-
hibit monotony properties. For example, if the linear
program lead to a periodT and the target period is
T ′ > T, it might be better to stretch the valuesdi−dk
to (di−dk)T ′/T. It is unfortunately not ensured with
the solution found. In the next paragraph, we show
how to compute a solution complying with this addi-
tional constraint.

4.3 Heuristic using a Greedy Algorithm

To simplify the problem we only use strongest con-
straints: withci,k = maxk∈Nn bi,k, j ,

ci,k≤ dk−di ≤T−ck,i or ck,i ≤ di−dk≤T−ci,k.
(2)

Lemma 4.6. If (di)i∈{1,...,n} is a solution to the con-
straints of Eq. (2) with a period T , then for T′ > T,
(T ′

T di) is a solution for the same constraints with pe-
riod T ′.

Proof. If ci,k ≤ dk− di ≤ T − ck,i , then asT ′
T ≥ 1,

T ′
T (dk− di) ≥ dk− di ≥ ci,k. Second,T

′

T (dk− di) =
T ′
T (T− ck,i) = T ′− T′

T ck,i ≤ T ′− ci,k.

Solving these constraints is still a NP-complete
problem. In fact the proof of Theorem 4.2 is valid
in this case.

Now, in order to assign the values, we can use the
greedy algorithm presented in Algorithm 1. At each
step, the algorithm assigns one initial delay, that is
chosen to be the smallest as possible, given the ini-
tial delays already assigned, while satisfying the con-
straints set by them.

Lemma 4.7. At each step of the algorithm, the con-
straints (2) such that i,k∈ D are satisfied.

Proof. We show the result by induction. WhenD = /0
or |D|= 1, then this is obviously true as no constraints
are involved. Suppose this is true forD and lets the
next element that is added toD in the algorithm. From

DCNET�2013�-�International�Conference�on�Data�Communication�Networking

12

Algorithm 1: Initial delays computation.

Data: ci, j .
Result: d1, . . . ,dn, T.

1 begin
2 D← /0 ;
3 S←{1, . . . ,n};
4 foreach i ∈ Sdo di ← 0;
5 while S 6= /0 do
6 s← Argmini∈Sdi ;
7 S← S\ {s};
8 foreach i ∈ Sdo di ←max(di ,ds+cs,i);
9 foreach i ∈ D do

T←max(T,ds−di + cs,i);
10 D← D∪{s};

line 8, we know thatds≥maxi∈D di + ci,s. Then, for
all i ∈ D, ds− di ≥ ci,s. Now, from line 9, for all
i ∈ D, T ≥ ds−di + cs,i, sods−di ≤ T− cs,i. So, the
constraints involvings are satisfied. Now, if the con-
straints betweeni and j, i, j ∈ D are satisfied at one
step of the algorithm, they will remain satisfied dur-
ing the following steps, asT can only increase.

Example 4.8(Application of Algorithm 1). With our
toy example, we have

C= (ci, j) =







0 8 11 14
6 0 9 12
9 7 0 7
14 12 9 0






.

If 1 is chosen first (di = 0 ∀i ∈ {1,2,3,4}), the val-
ues are updates to d1 = 0, d2 = max(0,d1+c1,2) = 8,
d3 = 11 and d4 = 14; T = 0. Then,2 is chosen and
we get d3 = max(d3,d2 + c2,3) = 17 and d4 = 20;
T = max(T,d2− d1 + c2,1) = 14. Finally, we have
d1 = 0, d2 = 8, d3 = 17, d4 = 24and T= 38.

Note that this problem could also have been solved
using a linear program (with integer variables), by re-
placing the variablesqi,k. j in the linear program of the
previous paragraph byqi,k: forgetting the parameterj,
exactly leads to the same constraints of Equation (2).
In this case, we findT = 36, with d1 = 0, d2 = 30,
d3 = 11 andd4 = 18. Our heuristic is near this opti-
mal.

In the next lemma, we assume that our target pe-
riod isT ′<T, that is, we are not able to find a solution
so that there is at most one message in the queues of
the routers. We assume here that the sojourn time of
a message does not depend on the queue length.

Lemma 4.9. Let (di) be a solution for the initial de-
lays with period T . The same assignment with period
T ′ < T ensures that in each router, there are never
more than⌈ T

T ′ ⌉ messages simultaneously.

Proof. Set⌈ T
T ′ ⌉ = q. We number the messages:mj

i
is the j-th message originating from routeri. Forℓ ∈
{0, . . . ,q− 1}, in each server, simultaneously, there
cannot be several messages among(mkq+ℓ

i)k∈N,i∈Nn,
becauseqT′ ≥ T. As a consequence, there cannot be
more thanq messages in a router.

4.4 Simulation Results with Initial
Delays

In this section, we present simulations of the TPN
modeling the German telecommunication network
with initial delays defined by Algorithm 1 in the sta-
ble case (Tr = 1800s).

We first need to define the transmission and so-
journ times used by the algorithm:
• the transmission time has already been defined to

τi j = Tt = 30s, for all the links of the network;

• for each routerRi , the sojourn time is at least equal
to the processing timeδi = Tp = 15s, the time to
process the message where the queue is empty.
The maximum sojourn time is extracted from the
simulation of the TPN of Section 2 (with no ini-
tial delays). During the simulation, the maximum
queue length isQi in router Ri. Then we take
∆i = QiTp.
Note that doing this enables to take into account
all the messages from the LSA flooding mecha-
nism, and not only the first LSA message in each
router.
The maximal queue length of each router is

extracted from a simulation of the TPN dur-
ing approximately 3.5 days (3.105s). Here is
the list of each maximal queue length:Q =
(7,8,13,2,2,17,8,37,4,5,13,2,2,3,13,6,2). Then,
Algorithm 1 returns the following initial delays:

d = (0,105,1200,810,75,255,420,1335,1035,

1080,1155,1530,630,330,780,330,1680).

Furthermore, Algorithm 1 computesTrMax =
16695s.

Figure 15 represents the result of the TPN simula-
tion with initial delays listed above whenTr = 1800s.
The maximum queue length for routerR8 is now
Max8 = 25, which gives a significant improvement:
it was Max8 = 37 without the computation of initial
delays. Moreover, the queue length is most of the time
below 10.

5 CONCLUSIONS

This article presents a method usable for the OSPF

Some�Synchronization�Issues�in�OSPF�Routing

13

0

2

4

6

8

10

12

14

16

18

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

Q
u

eu
e

le
n

g
th

time(s)

Figure 15: Buffer length ofR8 with Tr = 1800s and initial
delays.

protocol and cyclic protocols that use delay parame-
ters. This method aims at increasing the reactivity of
the network to topology changes, and at minimizing
the queue length of routers. Algorithm 1 provides an
efficient way to spread messages over the whole pe-
riod. Furthermore, it shows to be a good tool to reduce
queue lengths.

REFERENCES

Basu, A. and Riecke, J. (2001). Stability issues in ospf rout-
ing. In Proceedings of the 2001 conference on Ap-
plications, technologies, architectures, and protocols
for computer communications, SIGCOMM ’01, pages
225–236, New York, NY, USA. ACM.

Francois, P., Filsfils, C., Evans, J., and Bonaventure, O.
(2005). Achieving sub-second igp convergence in
large ip networks. SIGCOMM Comput. Commun.
Rev., 35(3):35–44.

Ishiguro, K. (2012). Quagga, a routing software package
for tcp/ip networks, http://www.nongnu.org/quagga/.

Jard, C. and Roux, O. H. (2010).Communicating Embed-
ded Systems, Sofware and Design, Formal Methods.
ISTE and Wiley.

Katz, D., Kompella, K., and Yeung, D. (2003). Traffic Engi-
neering (TE) Extensions to OSPF Version 2. Updated
by RFC 4203.

Kummer, O., Wienberg, F., Duvigneau, M., Kohler, M.,
Moldt, D., and Rolke, H. (2003). Renew the reference
net workshop. Inmi.

Lime, D., Roux, O. H., Seidner, C., and Traonouez, L.-
M. (2009). Romeo: A parametric model-checker for
petri nets with stopwatches. In Kowalewski, S. and
Philippou, A., editors,TACAS, volume 5505 ofLec-
ture Notes in Computer Science, pages 54–57, York,
United Kingdom. Springer.

Moy, J. (1998). RFC 2328 OSPF v2. Technical report.

APPENDIX

Table 1: List of main notations.

Notation Full name
G= (V,E) directed graph representing the network
n number of routers
Ri ith router in the network
V (Ri) set of neighbors ofRi
|V (Ri)| cardinality ofV (Ri)
di initial delay ofRi
bi number of retransmission of an LSA

received from a neighbor ofRi
LSAi link state advertisement message ofRi
Ack acknowledgment message
Tr (or T) period length of the LSA flooding process
Tp processing time of messages
Tt time to send a message
(P,T,B,F,M0,ϕ) a Time Petri Net (TPN)
Starti initial place of TPN to createLSAis
LSAsendi→ j place to sendLSAi to Rj
ACKsendi→ j place to send an Ack fromRi to Rj
LSArecj→i place to receiveLSAj in Ri
ACKrecj→i place to receive an Ack fromRj in Ri
Processor place to guaranty that one message

is processed at a time
bound place to bound the number of

retransmission from a neighbor
Retransmission place to retransmit a received LSA
Destruction place to destroy a received LSA
n(j) (resp.N(j)) number of messages received (resp.

processed) byRj duringTr
τi, j transmission time betweenRi andRj
[δi ,∆i [sojourn time of a message inRi
Ii, j = [αi, j ,βi, j [time of firstLSAi received inRj
α = (αi, j) matrix of valuesαi, j
β = (βi, j) matrix of valuesβi, j
D = (Di, j) Di, j = [αi, j ,γi, j [with γi, j = βi, j +∆ j
Q= (Qi) maximal queue length ofRi
bi,k, j andB bi,k, j = γi, j −αk, j andB= maxi,k, j bi,k, j
C= (ci,k) ci,k = maxk∈Nn bi,k, j

DCNET�2013�-�International�Conference�on�Data�Communication�Networking

14

