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Abstract: When outsourcing large sets of data to the cloud, it is desirable for clients to efficiently check, whether all
outsourced data is still retrievable at any later point in time without requiring to download all of it. Provable
data possession (PDP)/proofs of retrievability (PoR), for which various constructions exist, are concepts to
solve this issue. Interestingly, by now, no PDP/PoR scheme leading to an efficient construction supporting both
private and public verifiability simultaneously is known. In particular, this means that up to now all PDP/PoR
schemes either allow public or private verifiability exclusively, since different setup procedures and metadata
sets are required. However, supporting both variants simultaneously seems interesting, as publicly verifiable
schemes are far less efficient than privately verifiable ones. In this paper, we propose the first simultaneous
privately and publicly verifiable (robust) PDP protocol, which allows the data owner to use the more efficient
private verification and anyone else to run the public verification algorithm. Our construction, which is based
on elliptic curves, achieves this, as it uses the same setup procedure and the same metadata set for private and
public verifiability. We provide a rigorous security analysis and prove our construction secure in the random
oracle model under the assumption that the elliptic curve discrete logarithm problem is intractable. We give
detailed comparisons with the most efficient existing approaches for either private or public verifiability with
our proposed scheme in terms of storage and communication overhead, as well as computational effort for
the client and the server. Our analysis shows that for choices of parameters, which are relevant for practical
applications, our construction outperforms all existing privately and publicly verifiable schemes significantly.
This means, that even when our construction is used for either private or public verifiability alone, it still
outperforms the most efficient constructions known, which is particularly appealing in the public verifiability
setting.

1 INTRODUCTION outages occur in practice. One way to mitigate this
problem is to introduce redundancy in order to im-
Cloud storage is an increasingly popular means for prove availability (Slamanig and Hanser, 2012). An-
archiving, backup, sharing of data, synchronization other crucial aspect in the context of availability is to
of multiple devices and it is also envisioned for fu- verify whether all outsourced data is still retrievable
ture primary storage of (enterprise) data. Despite the and intact. A naive solution to this problem would be
advantages of cloud storage being among others ubigto download all outsourced data and, thereby, check
uitous access to data, immediate scalability and thethe completeness from time to time. However, for
pay-per-usage billing model, there are still concerns, large data sets this is apparently not feasible. Thus,
which hinder a widespread adoption. These concernsthe concepts of provable data possession (PDP) and
are mainly devoted to missing or inadequate security proofs of retrievability (PoR) have been introduced.
and privacy related features, requiring customers to The goal of the aforementioned approaches is that a
fully trust in the integrity of the cloud provideras well client can regularly challenge the storage server to
as the provider’s security practices. Among these is- provide a proof that assures that the outsourced data
sues is the availability of outsourced data. Recent in- is still retrievable without having access to the data
cidents (Cloud Outages, 2011) indicate that, despiteitself locally. In contrast to the naive approach, this
the assumed high availability guarantees of the cloud, strategy aims at reducing the communication as well
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as the computational overhead significantly. Ideally, of challenges. However, this approach is of theoreti-
such proofs are of constant length (independent of thecal interest only, since PIR requires the storage server
size of the data) and the verification of these proofs to access the entire data, which is clearly undesirable,
requires only a small and constant number of compu- and the computational effort for the server as well as
tations at the client. Such schemes are said to supporthe client renders this approach impractical.
private verifiability, if only the client, who has pre- Furthermore, PORs typically employ a coding
viously outsourced the data (the data owner), is able theoretic approach, i.e., a file is encoded prior to out-
to verify proofs of data possession from the storage sourcing, whereas PDPs initially were not concerned
server using a private key. In contrast, one speaks ofwith encoding (and thus corrections of minor corrup-
public verifiability if the data owner provides addi- tions), but only to handle the detection of corruptions
tional parameters into the public key, such that any of larger parts of the outsourced file. While PORs
third party is able to request and verify proofs of data come with an explicit knowledge extraction algorithm
possession without the client giving away its private Extract to retrieve the file from a sequence of chal-
key. Consequently, no third party is able to compute |enges, PDPs only implicitly require such a knowl-
valid verification metadata for the data and, thus, can- edge extractor in the course of their security proofs.
not modify outsourced data such that valid proofs can Therefore, the security guarantees made by the origi-
still be given. It should be noted that publicly verifi- nal PDP constructions are slightly weaker than those
able PDP schemes in general are far more expensiveof a POR. However, we note that in recent works both
than privately verifiable schemes. approaches seem to converge to a single unified ap-
The first construction tailored for the use within® proach as it is quite straightforward to combine PDPs

outsourced storage denoted as provable data posseswith suitable codes and thus obtain robustness against
sion (PDP) was presented.in (Ateniese et al., 2007; small corruptions as well. What we denote as robust
Ateniese et al., 2011). A PDP protocol works by con- PDP also refers to this converged model and thus also
structing homomorphic verifiable tags (HVTs), which  may be seen as a “modern” PoR.
are computed by the client prior to outsourcing the
gata and are stored as metadata in addition to thel.l Related Work

ata at the server. Typically, the proof then requires
the storage server (prover) to prove the knowledge
of a linear combination of randomly challenged data In (Ateniese et al., 2009), the authors provide a
blocks. It can be efficiently verified by the client by generic construction of PDP protocols from any ho-
using compact verification data sent by the verifier, momorphic identification protocol. The authors of
whose size is independent of the data size. Although (Shacham and Waters, 2008) present a privately ver-
elegant, this RSA-style construction imposes a rather ifiable PDP construction from pseudo-random func-
large computational burden on the verifier (client), tions in the standard model and a publicly verifiable
i.e., a number of large integer exponentiations and in- construction from BLS signatures (Boneh et al., 2001)
versions linear in the number of challenged blocks. in the random oracle model. Based on this approach,
Independently to PDP, proofs of retrievability (PoR) the authors of (Wang et al., 2013) introduce a pub-
(Juels and S. Kaliski Jr., 2007) were introduced, fur- lic auditing scheme, which extends the classical pub-
ther refined in (Bowers et al., 2009) and generalized licly verifiable PDP/PoR model with the properties
as well as studied from a coding theoretic point of Of privacy-preservation and batch auditing. The for-
view in (Dodis et al., 2009; Paterson et al., 2012). mer means that an auditor (verifier) can not learn any-
PORs, in their original sense, pursue another ap-thing about the stored data during the auditing pro-
proach, namely, check-values (so called sentinels) arecess. The latter means that a third party perform-
inserted in random positions into the data and then ing the challenges on behalf of several clients is able
the entire file is encrypted and permuted before out- to batch all single challenges in order to obtain im-
sourcing. A proof amounts to requiring the server to Proved performance. Recently, (Xu and Chang, 2012)
send some of these sentinels to the client, who canintroduced a new privately verifiable PDP protocol
then check them locally. While PORs are restricted to based on polynomial commitments in the standard
a limited number of challenges for given data, PDPs model. Another scheme based on polynomial com-
usually support an unlimited number of challenges, Mitments for public verifiability has been introduced
which is clearly desirable. We note that by using pri- in (Yuan and Yu, 2013). There are also constructions
vate information retrieval (PIR) in order to hide the for a distributed storage setting, that is, considering
exact positions of the accessed sentinels, one can alsénultiple storage servers (Curtmola et al., 2008; Zhu

realize POR schemes supporting an unlimited numberet al., 2012). The original PDP setting applies only to
static (or append-only) files or only supports limited
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updates with a bounded number of challenges (Ate- quires none of the aforementioned overheads. We
niese et al., 2008). Dynamic provable data posses-provide a construction, which supports efficient pri-
sion (DPDP), in contrast, extends the PDP model to vately und publicly verifiable robust PDP on the same
support provable updates to stored data (Erway et al.,set of metadata and based on the same setup proce-
2009; Chen and Curtmola, 2012; Cash et al., 2013) dure. Both versions can be shown to be secure in
including insertions at arbitrary positions, updates on the random oracle model under the assumption that
existing blocks, revision control (Zhang and Blanton, the ECDLP is intractable. Moreover, we give de-

2013), etc. tailed comparisons of the most efficient existing ap-
proaches for either private or public verifiability (Ate-
1.2 Contribution niese et al., 2011; Shacham and Waters, 2008; Xu

and Chang, 2012) with our proposed construction in
terms of storage and communication overhead as well
By now no PDP leading to an efficient construction  as computational effort for the client and the server.
supporting both private and public verifiability simul- - Qur analysis shows that our construction outperforms
taneously is known. In particular, this means that by || existing privately and publicly verifiable schemes
now all PDP either allow pUbllC or private Verlflablllty Signiﬁcanﬂy_ This means, that even when our con-
only, since different setup procedures and metadatastryction is used for either private or public verifiabil-
sets are required. However, supporting both variantsity alone, it still outperforms the most efficient con-
simultaneously seems interesting, as publicly verifi- structions known, which is particularly appealing in
able schemes are far less efficient than privately veri- the public verifiability setting.
fiable ones. In this paper, we propose the first simul-
taneous privately and publicly verifiable (robust) PDP 1.3 Outline
protocol, which allows the data owner to use the more

efficient private verification and anyone else to run Section 2 discusses the mathematical and crypto-

the public verification algorithm. Our construction, graphic preliminaries. Section 3 introduces the for-

which is based on elliptic curves, achieves this, as it )
al model of provable data possession and the cor-
uses the same setup procedure and the same metadata . : . )
résponding security model. Then, Section 4 details

set for private and public verifiability. To the best of our construction for simultaneous private and public
our knowledge, this is the only construction support- e : P P
verifiability. In Section 5, we compare our results to

ing both features at the same time. Clearly, a triv- ; .
: . - : related approaches, and, finally, Section 6 concludes
ial alternative to the feature of providing private und ) .

the paper and lists open issues for future work.

public verifiability in parallel would be to use a pri-
vately verifiable PDP protocol resulting in one set of
metadata (tags) and a second publicly verifiable PDP
protocol resulting in a second set of metadata (tags)2 PRELIMINARIES
and to store both metadata sets at the storage site.
Then, the data owner could run the protocol on the |n this section, we give an overview of required math-
first set of metadata and all other parties on the sec-ematical and cryptographic preliminaries.
ond set. However, besides inducing a doubled storage
overhead for the metadata, which may be quite signif- 2 1 Elliptic Curves and Pairings
icant, this trivial solutions suffers from additional de-
ficiencies. Namely, one needs to rely on different PDP
schemes likely requiring a different setting, e.g., the
used groups, and providing security under potentially
unrelated cryptographic assumptions, the data owner
has to maintain more private key material as well as
public parameters and the data owner has to run the
computation of metadata twice. The latter issue does
not only apply to the preprocessing when outsourc-
ing data but also for the recomputation of tags when
updating any already stored data. Clearly, this also
results in an unnecessary computational overhead for
the data owner. Definition 1 (Bilinear Map) Let Gi, Gy, Gt be three
In contrast, our construction relies on a single cyclic groups of the same prime order p, where G,
well-established cryptographic assumption and re- are additive groups and {is a multiplicative group.

An elliptic curveE over the finite fieldfq is a plane,

smooth algebraic curve usually defined by a Weier-

strass equation. The s&(Fq) of points (x,y) €

Fg satisfying this equation plus the point at infinity

O, which is the neutral element, forms an additive

Abelian group, whereas the group law is determined

by thechord-and-tangeniethod (Silverman, 1986).
Furthermore, ifG is a cyclic group ang a divi-

sor of its group order, then there exists a subgroup of

orderp, which we subsequently denote Gyp|.
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We call the map eG; x G, — Gt a bilinear map or provide a proof that the outsourced data is still retriev-
pairing, if the following conditions hold: able. Ideally, such proofs are of constant length (inde-
pendent of the size of the data) and the verification of

L ;
Bilinearity. Forall P,,P2€ Gy and P, € Gowe o o proofs requires only a small and constant num-

have: ber of computations &. This is achieved by requir-
o e(PL+P2,P") =e(P,P) eP,P)forall P’ ¢ ing C to compute verification metadata (tags) for the
Gz, data prior to outsourcing and storing the data together
e e(P,P +P)) =e(P.P)) ePP;) forall P € Gy. with the tags atS. Furthermore S should not need
Non-degeneracy.If P is a generator of G and P to access the entire data for generating a proof and,
a generator of G, then éP,P') is a generator of ~ therefore, a probabilistic spot checking approach is
Gr,ie. €PP) £ 1g,. used. This means th@tchallengesSto prove the pos-

session of a randomly sampled subset of data blocks,

Efficiently Computable. e can be computed- effi- such that the best strate@can follow is to store the

ciently. entire data. Otherwis€ will detect this misbehavior
If G = G, theneis calledsymmetricandasym- with high probability (see Section 3.1 for a discus-
metricotherwise. The former type is also call€gbe- sion of the choice of parameters). Furthermore, the

1 pairing, whereas in case of the latter we distinguish data is encoded prior to outsourcing to obtain robust-
betweerlype-2andType-3pairings. For Type-2 pair-  ness against minor corruptions, which would not be
ings there is an efficiently computable isomorphism detected by means of spot checking. Subsequently,
Y : Gy = Gy (Chatterjee and Menezes, 2011) and we give a formal definition of such a provable data
for Type-3 pairings such an efficiently computable possession scheme and in the remainder we denote an
isomorphism does not exist. Furthermore, @Gt = outsourced data unit as file.

F;k[p], which is an ordemp subgroup oﬂFak. Note _

thatk, the so callecembedding degreés defined as 3.1  Spot Checking and Robustness
k=min{feN:p|qg -1}

Definition 2 (Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP)) Let E(Fq)[p] be an elliptic curve

group of prime order p generated by PE(Fq)[p].
Given elements,BP € E(IFq) [p] compute & Zp.

Spot checking means that the client asks the server to

prove the possession of a subsetondomly sam-

pled file blocks of the entire file. This allows a client

to detect, whether the server has corrupted a larger

portion of the file. Now, one can ask how the choice

of ¢ should be made when a file consists/dilocks

2.2 Erasure Codes and that the server has corrupted/del@étbcks. As
discussed in (Ateniese et al., 2011), the probability

An (n,k,d)-erasure codds a code that transforms P that at least one of blocks sampled by the client

a message of symbols into a codeword af sym- matches one of the blocks corrupted/deleted by the

bols, such that the minimum Hamming distance of server can be analyzed by an urn experiment and can

any two codewords isl. In general, this allows to  be shown to be bounded by

detect up tad — 1 and to correct up tod — 1)/2 er- By C B ¢

roneous symbols per codeword. A standard choice 1- (1— Z) <P<1- (1— . 1) .

for erasure codes, are Reed-Solomon codes (Ree

and Solomon, 1960), which are based on polynomials or instance, let us assume that we have a file consist-
over finite fieldsFq = IFpn. For this particular erasure ing of ¢ = 10° file blocks (oft elements each) and we
code, we have — q— 1 and a minimum distance of 2SSUme that the server has corrugied 10° of these

blocks, i.e., 01.% of all blocks, then to achieve ~
d =n—k+1. Consequently, up ta— k erroneous ’ ’ ’ .
symbols ;;n be detegted azd upp(tn— K)/2 can be 0.99 we have to set the challenge sizé tp= 4600.
corrected. However, when the server only corrupts a very
small fraction of the file , e.g., a single block, this
can not be efficiently recognized via spot checking.
Therefore, erasure codes can be applied to a file be-
3 PROVABLE DATA POSSESSION fore outsourcing in order to resolve this problem (cf.
(Ateniese et al., 2011; Juels and S. Kaliski Jr., 2007)
The goal of a provable data possession scheme is thafor a discussion). PDP schemes that also take re-
a clientC can outsource data to some storage seBver Sistance against small corruptions into account, typ-
(typically a cloud provider), then delete the local copy ically by means of erasure codes, are caliedust
of the data while being able to regularly challer®e PDP schemes (Chen and Curtmola, 2012).
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3.2 PDP Protocol and Security Model

We emphasize that in a privately verifiable PDP
protocolStore and Challenge can only be run by the

Definition 3 (Provable Data Possession Scheme data owner, while in a publicly verifiable PDP pro-

(PDP)) A PDP scheme is a tuple of polynomial-time
algorithms(KeyGen, Tag, Prove, Verify) so that:

KeyGen(k): This probabilistic algorithm gets the se-
curity parametei € N and returns a public and
private key pair(pk,sk).

Tag(pk,sk,id,i,m): This deterministic algorithm
takes a key pairpk,sk), a file identifierid, the
index i of the file block®y as input and returns a
verification tag T.

Prove(pk, M,T,C): This deterministic algorithm
gets as input the public keyk, a file M (whosed
is determined by’), the sequence of correspond-
ing tags7, and the challengg. It returns a proof
of possessiom for the blocks determined by the
challengeC.

Verify(pk,sk, C,m): This deterministic algorithm
takes as input a key paifpk,sk), a challenge
C and a proof of data possessian It returns
accept if Ttis a correct proof of possession for the
blocks determined by the challengeand reject
otherwise.

A PDP scheme is calledorrect, if for any hon-
estly generated proof of possessimising honestly
generated tagg’, the probability that the verify al-
gorithm accepts is 1. Using the definition of a PDP

tocol Challenge can be run by any (third) party and
Store only by the data owner.

Now, we state the security for a PDP protocol us-
ing a game that captures what we require for this pro-
tocol to be secure. Loosely speaking, a server should
only be able to provide a valid proof, if it holds all
challenged data and corresponding tags and can only
forge valid proofs for files he does not possess with
at most negligible probability. Our security model
adopts the security model of (Xu and Chang, 2012).

Definition 5 (Data Possession Gameélhe data pos-
session game is comprised of the following consecu-
tive phases:

Setup. The challenger V executé&yGen(k), gives
pk to the adversary B and keepsprivate.

Query. The adversary B makes adaptive tagging
and verification queries. B can perform tag-
ging queries for potentially different filed's,

i.e., B chooses a file block}, sends it to the
challenger, who returns;Tobtained by running
Tag(pk,sk,id,i,m). Per fileid, B is only allowed

to query consecutive file blocks. For eadhthe
adversary stores these blocks and the sequence of
corresponding tags. B is restricted to query only
unique(id,i) pairs.

scheme, we can now specify the interaction between Retrieve. V challenges B\ times for some previ-

a clientC and a servet by means of the following
generic PDP protocol.

Definition 4 (Provable Data Possession Protoc@\)
PDP protocol is a tuple of interactive polynomial-
time algorithmgSetup, Store, Challenge) so that:

Setup. The clientC obtains a key paipk, sk) by run-
ning KeyGen(k), publishespk and keepsk pri-
vate.

Store. Given a fileF identified byid, encode the file
using a suitable erasure code and obtain the file
M. Then, divide it intd = n/t elements and ex-
ecuteTag(pk, sk, id,i, M) on every file blockty of
t elements iMV = (Ma,..., Mn). Finally, send
(id, M, T) to the server S.

Challenge. The challenger V (not necessarily the
client C) generates a challenge = (id,l,l),
whereid is the file identifier, | is a subset of block
indexes IC {1,...,[#]} and | is a randomly cho-
sen coefficient. V sends the challeg® S and
S runsProve(pk, M, T, C) to generate the proof
1. S sendstback toV andV checks the proof via
Verify(pk, sk, C, ).

ously queried fileM™* identified byid*, where the
challenged indexes have been queried before and
sends it to B. B computes the according proofs
m,...,m for the file #* identified byid* and
challenge¢ and returns them to V. From the file
blocks obtained in these proofs, V extracts a file
M' using some PPT knowledge extractor. B wins
the game ifM’ # M*.

An adversary is called-admissibleif the proba-
bility that it is able to convinc¥ to accept a proofin
the retrieve phase of the above game is at least

Now, we state what constitutes a secure PDP pro-
tocol:

Definiton 6. A PDP protocol (Setup,Store,
Challenge) built upon a PDP schem@eyGen, Tag,
Prove, Verify) guarantees robust provable data
possession, if it is correct and if for amyadmissible
PPT adversary there is a value for the number of
queries in the retrieve phase, which is bounded by
some polynomial in the number of file blocks, such
that the probability that B wins the data possession
game is negligibly small in the security parameter
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4 CONSTRUCTION

In this section, we present our construction for simul-
taneous private and public verifiability. The intuition
behind our protocol in general is th&is required to
prove the knowledge of a linear combination of file
blocks (indicated by the challenge), where the coef-
ficients are based on a value randomly chosen by the|
client in each protocol run. This makes storing lin-
ear combinations of file blocks instead of file blocks
impractical. Along with this linear combinatioS8ag-
gregates the tags corresponding to the challenged file
blocks, which enable verification &twithout having
access to the actual file blocks.

In the following, we identify each file block with
a vector. Therefore, as it is common, we split the
file M = (my,...,my) represented as elementsZyf
intof = tﬂ consecutive vectorsy = (Im1,...,my) for
1 <i < ¢ of t subsequent elements 8§, wheret is
a parameter chosen by the user to adjust the storage
overhead. We assume that the lengtf 9/ is a mul-
tiple of t, whereasM is padded with an appropriate
number of elements of the form®Z, if this condi-
tion is not satisfied. Doing so, we obtain a represen-
tation M’ of M such that

m my 1 myt
M= m |=|m: mi ¢
iy Mo 1 Moy |

For each vectam;, we compute a tag, i.e., every tag
aggregates elements ofZ,. We emphasize that the
challenge in designing PDP protocols, which aggre-
gate vectors into single tags, is to prevent the storage
server from storing the sum of the vectors components
instead of all components thereof.

Scheme 4.1 shows the detailed construction of our
scheme for simultaneous private and public verifiabil-
ity, which is used as building block for Protocol 4.1.

Tag: Givenpk, sk, afile identifierid, a vector index and

KeyGen: On inputk, choose an elliptic curvé (Fq)
with a subgroup of large prime ordgp gener-
ated by P € E(Fq)[p], such that the bitlength
of p is k. Choose an asymmetric pairi
e: E(Fq)[p] x Go — Fak[p} with G, being a p-
order elliptic curve subgroup over (an extension
the field Fq with generatorP’, where the choice
of G, depends on the specific instantiation of the
pairing. Now, let elements;,s;,a €r Zp, let
Q) =s1P', Q, = 5,P’, computeaP,...,a'P, choosg
two cryptographic hash functiorts: {0,1}* — Zp
and H : {0,1}* — E(Fg)[p] and output pk =
(E(IFCI)vGZvev p7P7P/7Q/17Q/2,GP,...7(XtP7h7H) as
well assk = (s1,5,0).

a vectormy = (n‘”)tj:l, compute the corresponding
tag asT; = (s;H (id|[i) +sah(id i) 7 m; ja’P) and
outputT;.

Prove: On input pk, M = (rﬁl,...,rﬁg), T and chal
lengeC = (id, I,1), compute

M= (1))1 = (h(iduwzm‘,jli);:l andT:Z|i'|'i7

wherem j is the element with indef, j) in the rep-
resentationd” of M. Returnmi= (W 1) € Z}, x
E(Fq).

Verifyp,i,: Givenpk,sk, challengeC and proofrt, check
whether the relation

Sj_%li~H(id|i)+(52]_ilujaj)P—T

holds and returiaccept on success angject other-
wise.

Verifyp,p: Given pk,sk = null, challengeC and proof
1, check whether the relation

) t )
o3 1'-H(idl). Q) - e 3 y(@/P).Qf) = (P
e j=1

holds and returiaccept on success angject other-
wise.

Note that for the data owner it is considerably cheaper scheme 4.1: PDP scheme with simultaneous private and

to run the private verification, since it, firstly, does public verifiability.

not involve pairing evaluations and, secondly, saves
a considerable amount of scalar multiplications and

The proof of Theorem 1 can be found in Ap-

point additions, as the data owner has access to thependix 6.1.

private key.

4.2 On Efficient Implementations

4.1 Security Analysis

In our construction, we make use of a hash func-

For Protocol 4.1 we are able to prove the following tionH : {0,1}* — E(Fq)[p], which maps to an ellip-

Sstatement. tic curve group. We note that there are well-known
Theorem 1. Assuming the hardness of the ECDLP, strategies to hash into elliptic curve groups (Icart,
Protocol 4.1 guarantees robust provable data posses- 2009). However, in our concrete scenario, we are able
sion in the random oracle model. to chooseH to be of a partic-
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Setup: C runs  KeyGen(K) and obtaing
the key pair (pk,sk), where pk =
(E(Fq)7627e7 p, P7 P/7Q€|_7Q/27GP7 i '7atP7h7 H)

andsk = (s1,5,0). C publishespk in an authentig
way and keepsk private.

Store: Apply a Reed-Solomon code (Reed 4
Solomon, 1960) to the fil§ and obtain an encode
file 2. For every vectomy of t elements inW
identified by id, C invokes Tag(pk,sk,id,i,m)
to build the sequence of tagé. Then, C sends
(id, M ,T) to the servetS and removesM and T
locally.

Challengep,i,: C requests a proof of possession for file
M with identifierid by spot checking: vectors of

M as follows:

e Cpicks anindex setC {1,...,{} of celements
arandom elemeritc Zp and sends the challen
C = (id,l,l) to the servess.

e OnreceivingC, SrunsProve(pk, M, 7, C) to ob-
taintand sends it t€.

e Finally, C runsVerifyp,y (pk, sk, C, ).

Challengep,p: V requests a proof of possession for

M with identifierid by spot checking: vectors ofi

M as follows:

e V picks an index set C {1,....7} of c ele-
ments, a randorh € Zp and sends the challen
C=(id,I,l)toS

e OnreceivingC, SrunsProve(pk, M, T, C) to ob-
tainttand sends it tv.

e Finally,V runsVerifyp,, (pk, null, C, ).

je

ile

je

Protocol 4.1: PDP protocol with simultaneous private and
public verifiability.

ular form, which allows us to obtain very efficient
implementations of our construction. In particular,
we chooseH in such a way thaH (x) = h(0||x) - P
whereash is the cryptographic hash function map-
ping to the integers modulo the group order used in
Scheme 4.1. Note that prepending 0 to the input of
h yields a hash function, which is independent from
h itself. This is necessary to prevent tags from being
malleable.

The above hash function instantiation allows us to
simplify Scheme 4.1 as follows:

Tag:

—

Ti = (s1h(O}|id||i) + s2h(id||i) Z

Verifyp,;\,:

(&Zh(OHidHi)l' +% le.le(J)P:
i€ =

Verifypub:
e((> h(oJlid]ji)I
>

As one can see, this allows us to trade expen-
sive elliptic curve scalar multiplications for inexpen-
sive field multiplications inZ,. Furthermore, us-
ing Horner’'s method for the polynomial evaluations,
the number of field multiplications in the algorithms
Prove, Verifyp,, andVerifyp,, can be kept at a min-
imum. Moreover, note that the algorithrRgove and
Verifyp,, are well-suited for the application of si-
multaneous multiple point multiplication (Hankerson
et al., 2003), which.improves their computational ef-
ficiency considerably.

Notice, that we can use such an instantiation of
the hash functioil without sacrificing the security of
the overall construction, as we incorporate the random
and unknown valus; in the computation of the tags.
An implication of this particular choice df is thate
needs to be a Type-3 pairing, in order to preveht
andQ), to be mapped to the grodf(Fq)[p], as, oth-
erwise, the tag construction is no longer secure. Nev-
ertheless, Type-3 pairings are the best choice from a
security and performance perspective (Chatterjee and
Menezes, 2011).

Finally, we emphasize that after applying these
optimizations, the data owner still benefits signif-
icantly from using the private verification relation,
which will be clear from the analysis in Section 5.

t

A2 il

"PQY)- (@lP),Q,) =

e(t,P’)

4.3 Remarks

e In our challenge, we have included the index set
|. For sake of reduced communication bandwidth,
it can be generated by the server from a com-
pact seed by using th@,y)-hitter construction
given by Goldreich (Goldreich, 1997) or by using
pseudo-random functions (PRFs) as in (Ateniese
etal., 2011).

e We suggest point compression for all transmitted
and stored curve points.

Note that the proposed scheme can be easily
adapted to batch challenges (Wang et al., 2013)
over multiple files, which yields a constant com-
munication overhead independent of the number
of challenged files.

5 COMPARATIVE ANALYSIS

In this section we draw a comparison between exist-
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Table 1: Symbols for costs of arithmetical operations.

| Operation | Semantics | Operand Size | Description
P e(P,Py) 224 Pairing computation
E bd 2048 Large integer exponentiation
S d-P 224 Scalar multiplication
A P1+P, 224 Point addition
1 b~ (modN) 2048 Large integer modular inversion
M by by 2048 Large integer multiplication
i bt 224 Field inversion
m by-bp 224 Field multiplication
H H(m) 224 Hash or PRF function evaluatio

Table 2: Comparison of computational complexity of PDP soé® with private and public verifiability.

| Scheme | Key Size | Tagging | Server | Client |

| Private Verifiability |
S-PDP (Ateniese et al., 2011) Kk=2048 ((2KE+2M+H) (2ct+c)E+2(c—1)M+H (C+2)E+I+cM+(c+1)H
SPOR (Shacham and Waters, 2008) k=2048 (M+((+1)H c(t+1)M (c+t)M+(c+1)H
EPOR (Xu and Chang, 2012) K=224 L(t+1)m+H (t—1)(S+A)+(ct+c+t)m 2S+i+(c+1)m+cH
Scheme 4.1 K=224 | 0(S+(t+3)m+2H) | cS+(c—1)A+c(t+2)m+cH S+(c+t+2)m+cH

| Public Verifiability |
P-PDP (Ateniese et al., 2011) k=2048 2n(KE+M+H) CE+2(c—1)M (c+2)E+14-2(c—1)M+2cH
PPOR (Shacham and Waters, 200B) k=224 £((t41)S+tA+H) €S+(c=1)A+ctm 2P+ (C+t)S+(C+t—1)A
Scheme 4.1 K=224 | ((S+(t+3)m+2H) | cS+(c—1)A+c(t+2)m+cH | 3P+(t+1)S+(t—1)A+cm-+cH

Table 3: Comparison of communication and storage overhER®B schemes with private and public verifiability.

| Scheme | Key Size | Communication Overhead | Storage Overhead|

| Private Verifiability |

S-PDP (Ateniese et al., 2011) Kk=2048 (c+1)k+h K
SPOR (Shacham and Waters, 2008) k=2048 (2t+-c+1)k+h LKA+K
EPOR (Xu and Chang, 2012) k=224 (c+3)k K
Scheme 4.1 K=224 (t+1)k K
| Public Verifiability |
P-PDP (Ateniese et al., 2011) K=2048 (c+2)k >nK
PPOR (Shacham and Waters, 200B) k=224 (2t+c+2)k IK+(t+1)K
Scheme 4.1 K=224 (t+1)k K

ing approaches and our construction in terms of stor- 5.1  Computational Effort
age and communication overhead as well as computa-

tional effort. We point out that existing literature typi- |n Table 2, we compare our proposed scheme with
cally uses far too small security parameters for the in- existing approaches in terms of computational effort.
tended use of provable data possession, i.e., outsourcThe symbols for the operands and their respective
ing large datasets for long-term storage. In particu- meanings are illustrated in Table 1.

lar, all works we are aware of suggest parameter sizes  Figure 1 illustrates the performance comparison
of 1024 bits for RSA-based/DL-based approaCheS andof our proposed scheme with existing approaches_

160 bits for ECDL-based approaches. However, hav- \we conducted the experiments on an Intel Core i5-

ing the long-term characteristic in mind, it is more 2540M equipped with 8GB RAM running Ubuntu
natural to choose at least 2048 and 224 bits security,12.10/amd64 and OpenJDK 6/amd64. For the 2048-
respectively, as suggested by NIST in (Barker et al., pjt integer arithmetics we use the standard Jagig-
2007). Subsequently, t and? stand for the security  |yeqer class. Furthermore, we were using the jPBC
parameter, the number of file elements, which are a0-iprary ! version 1.2.1. We have chosen an MNT
gregated into one tag ard= n/t the number of file  ¢\,e (Miyaji et al., 2001) with a group size of 224
blocks (vectors), respectively. Furthermore, let the piis and embedding degrée= 6 over a prime field
challenged index set of file blocks (vectoispe of

sizec. Ihttp://gas.dia.unisa.it/projects/jpbc
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7.5

a2 - 5-PDP

Log time [ms] 2.8
Log time [ms]

EPOR 2.1

Scheme 4.1/ ~ sPOR
PPOR
0.0.0.0
350.0 EPOR
7990 : ~960.0
: 480.0 . mheme 4.1
“ Challenge size ¢ 0.0 — a g

960.0 :
Sequence size t Challenge size ¢ Seguence/sizeit

(a) Computational costs fdrove in the case of public and (b) Computational costs forerify in the case of private veri-
private verifiability. fiability.
1902.F il % — PPOR

Time [ms]

Scheme 4.1
I

951-1‘

-960.0

~480.0
Seguence size t

p i ~ 700.0 0.0

Challenge size ¢

(c) Computational costs farerify in the case of public verifi-

ability.
Figure 1: Figure 1(a) illustrates the computational costhe Prove algorithms of all schemes in Table 2 by varying both
parameters andt. Figure 1(b) illustrates the computational costs of\teeify algorithms of all privately verifiable schemes
in Table 2 by varying both parametezandt. The time is in logarithmic scale with radix 10. Figure 1(&)strates the costs
of the Verify algorithms of the publicly verifiable schemes PPOR and Seherin Table 2 by varying both parameterand
t. Furthermore, we sét = 0.

and used the Tate pairing in order to perform our munication overhead of our scheme compared to ex-
benchmarks. In order to guarantee fairness and sim-isting approaches. In the followin@, stands for the
plicity for the comparisons illustrated in Figure 1, we output length of a hash function or HMAC of suit-
have omitted the costs of hash function evaluations in able size. As one can see from Table 3, our proposed
our benchmarks. Figure 1 shows that our scheme isscheme is as efficient as the most efficient previous
the most efficient scheme for private and public veri- schemes, which either support only private or public
fiability with respect to server and client computations verifiability with respect to communication and stor-
for reasonable values of the challenge siznd vec- age overhead. Here, we need to note that when one
tors sizet. It is important to note that an efficiexiér- wants to have private and public verifiability simul-
ify algorithm, as achieved by our scheme, is the most taneously than for all other schemes except ours the
important aspect with respect to practicality. This is storage overhead will be the sum of the storage over-
due to the fact that the client can be assumed to be farheads of the respective privately and publicly verifi-
more resource constraint than the server (the cloud),able PDP schemes.
since the client could, for instance, be a smart phone.

In Table 2, one can see that for the data owner it
is considerably cheaper to run the private verification, §  CONCLUSIONS
as the data owner has access to the private key. More

precisely, the data owner can trade three pairing eval-y, yhis paper we have presented a novel construction
uationsf scalar mulltlpl_lcatlc_)ns ant-1 additions for for privately and publicly verifiable robust provable
t+2 cheap multiplications ittp. data possession. Our construction is based on ellip-
tic curves and is provable secure in the random oracle
5.2 Storage Overhead model assuming the intractability of the elliptic curve
discrete logarithm problem. We have shown that our
In Table 3, we give an analysis of the storage and com- scheme is the most efficient (robust) scheme with re-
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spect to server and client computations for reason- Boneh, D., Lynn, B., and Shacham, H. (2001). Short sig-
able values of challenge and block size for private as natures from the weil pairing. IASIACRYPTpages
well as public verifiability. To the best of our knowl- 514-532.

edge our construction is the first to support the use Bowers, K. D., Juels, A., and Oprea, A. (2009). Proofs of
of simultaneous private and public verifiability on the retrievability: theory and implementation. BCSW

. pages 43-54.
same set of metadata. This means that the dataowne&ash D., Kiipcti, A., and Wichs, D. (2013). Dynamic

can use the more efficient scheme with private verifi- Proofs of Retrievability via Oblivious RAM. IfEU-
cation, while any other party can run the publicly ver- ROCRYPT 2013.NCS. Springer.
ifiable variant at the same time without having access Chatterjee, S. and Menezes, A. (2011). On crypto-
to the owner’s private key. Thereby, both versions use graphic protocols employing asymmetric pairings -
the same parameters as well as metadata (tag) sets. the role ofy revisited. Discrete Applied Mathemat-
ics, 159(13):1311-1322.
Chen, B. and Curtmola, R. (2012). Robust dynamic prov-
6.1 Future Work able data possession.( I@D)CS Workshgpspageps
515-525.

The original PDP setting applies only to static (or cjoud Outages (2011). http:/mwww.crn.com/slide-shows/
append-only) files or only supports limited updates cloud/231000954/the-10-biggest-cloud-outages-of-

with a bounded number of challenges (Ateniese et al., 2011-so-far.htm.
2008). Dynamic provable data possession (DPDP), Curtmola, R., Khan, O., Burns, R. C., and Ateniese, G.
in contrast, extends the PDP model to support prov- (2008). Mr-pdp: Multiple-replica provable data pos-

able updates to stored data (Erway et al., 2009; Chen_ _Session. ICDCS 2008 pages 411-420.

and Curtmola, 2012; Cash et al., 2013) including P°dis. Y., vadhan, S.P., and Wichs, D. (2009). Proofs of re-
trievability via hardness amplification. IRCC, pages

insertions at arbitrary positions, updates on existing 109-127.

blocks, revision control (Zhang and Blanton, 2013), Erway, C. C., Kiipcil, A., Papamanthou, C., and Tamassia,
etc. Future work includes investigating our construc- R. (2009). Dynamic provable data possessiolCG§

tion in the DPDP model. pages 213-222.

Goldreich, O. (1997). A sample of samplers - a computa-
tional perspective on sampling (survegCCC 4(20).
Hankerson, D., Menezes, A. J., and Vanstone, S. (2003).
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APPENDIX

Proof of Theorem 1
Proof. This proof consists of three parts addressing
the correctness, the unforgeability of the tags, via a

reduction to the ECDLP i (Fq)[p], and the retriev-
ability of the file F.

At first, we show the correctness of Scheme4.1. From
the verification relation iVerifyp,;, we get:

Slg“'H(idHi)'i‘(Szngjaj)P:
t

SlZIi'H(

t
I (stH(id[[i) +52 S h(id|im jalP) = S I'Ty =
; (stH (id[[i) Szj§: (id[i)m; jo'P) ; T

id[li) + (s I'h(id]|li)m ja')P =

Furthermore, from the verification relation in

Verifyp,p We get:
. t i
E(ZI'-H(id\li)v%)-e(zluj(a‘P)v%) =
e 1=

e(slzli-H(idHi»FV)-e(sZ Zf” (@lP),P') =

e 1=
e(slzﬂ.H(idui)+S2iiuj(a"P),P’) =

i€ 1=
e(slzli-H(idunwilzlihcdui)mj alPP) =

i€ J=1lie

I'(s1-H(id|[i) + thid'- j-alP),P) =
e(; (s1-H(id[[i) SZJ;( [i)-mj-alP),F)
e(ZI‘Ti,P') =e(1,P)

This demonstrates the correctness of both verification
relations.

versaryB winning the data possession game for a file
not equal to the original file, can be turned into an ef-
ficient PPT algorithnA\ that solves arbitrary instances
of the ECDLP inE(Fq)[p]. In the following, we de-
scribe how this algorithm simulates the environment
of the challenger when interacting with the adversary.
Algorithm A is given an arbitrary instand®, R =
rP) of the ECDLP inE(Fq)[p]. Then, A sets the
public and private keys a&(Fq), p,P,H), whereA
choosest!P = (@jP+ y;R) for ¢,y €r Zp, as well
assk = (s1,s2) and givesk to B. Note that this choice
of the valuesa! P in the simulation is indistinguish-
able from the values chosen in the real game. It will
be clear from the simulation of the hash function why
we use values!P of this particular form.
FurthermoreA simulates the tagging and hash or-
acle queries foB, whereasB is allowed to run the
public verification algorithm for all generated tags.
Now, if A receives a tagging query for a file block
m identified by(id,i), A checks whether a previous
query has already been made fad,i). If so, A re-
trieves the recorded tupléd, i, my,tj; Ti). Otherwise,
A chooses an elemetiter Zp and computes the tag
as the poinfl; =tjP € E(IFq)[p] and records the tu-
ple (id,i,m,t,Ti). In both case#\ returnsT;. A an-
swersB’s hash oracle queries for the hash function
h as follows. If A receives a hash query for some
valueid||i, thenA checks whether a previous query
has already been made fai|i. If so, A retrieves the
recorded tupléid||i,xq,i) and otherwise\ chooses a
valuexiqj €r Zp and records the tupl@d||i, ;). In
both casesA returnsxqj. A answersB’s hash ora-
cle queries for the hash functidd as follows. If
A receives a hash query for some valdgi, thenA
checks whether a previous query has already been
made forid||i. If so, A retrieves the recorded tuple
(id||i,H(id]i)). OtherwiseA retrieves(id,i,m,t,Ti)
from the list of recorded tagging queries and the re-
quired tuplegid||i,xq,i) from the list of recorded hash
queries for the hash functidnand computes

t .
H(id|[i) = ;1 (6P — Sp%ia i Zlm,j (a'P)) € E(Fq)[p]
=

and records the tuplgd||i,H(id||i)). In both casesi
returns the recorded vald(id||i).

In the retrieve phasé generates challenges =
(id*,1,1) for 1 <i < A for a file M* identified byid*.
Now, if B delivers proofst = (y, 1) for file M’ £ M+
and challeng&; thenA proceeds as follows. W.l.0.g.
we demonstrate the reduction by means of a single

proofriwith p= ()i_; = (Tiqy |ih(id*||i)-m’jj)‘j:1

Secondly, we prove that the tags in our scheme areandt = 3 I'T;. Recall that the verification relation,

unforgeable. We do so by showing that any PPT ad-

after substituting the simulated hash function values,
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looks as follows:

i (alP) =

By replacing the values!P, we obtain:

ZI' (tiP— szx,d.ZmJ (a/P))

_ t
Z" (P =i ) MLj(@P+WiR)+
IS j=1

SQZ Hj(@P+YjR) =1
Simplifications of the left-hand-side yield:

) t
2 1'(tP =i 3 Mj(@P+WjR)+
i€ =1

t

K (@iP+W;R) =
=1

t

Zli (tiP — SpXiq Z mj (P + R+
=1

le

t
SoXidi y M (@P+WjR)) =
IJZL WY J
t

> (ny;

=1

) t
le(tiP_FSZXid’i Zéi,j((PjP‘F YjR)) =
e =1

Z'i(tiPJrSind,i -mj)(eP+YjR)) =

. t
le(tiP+szXid,i D %ij@P)+
e =1

) t
Z|'(tiP+szxid,i > SR
ic =1

whered; j = m j —m’;. Equating the so obtained
simplification with the right-hand-side and subtract-
ing the right-hand-side, we get:

. t
Z'I(ti +%Xai y 8,j9)P+
e =1
. t
(Y 'spxiai 01 jWj)R=

From this it follows that
Sier 1 (ti + X, thzl&,j(Pj)P

R=rP=- .
(Tici l's2%iai Y521 8 W)

Consequently, ifB provides a forged proof, i.e., if
there is at least one pam j # ny; implying that

26

Si—a(mj —m;) # 0, thenA can compute € Zp,
which is the solution to the given instan@R = rP)
of the ECDLP inE(Fq)[p]. Areturns(P,R,r).

Note that the reduction can be performed analo-
gously using the public verification relation, which
would lead to the following relation:

 Sier 't tspxig 55181 9)
—g (Tiel "% Tj=1 30,j9))

r

g

A returns(P,R r) which is a valid solution to the
ECDLP, sinceE(Fq)[p] ~ Fak[p] ~ Zp and g =
e(P,P') is a generator dF;k[p].

Finally, we need to show that for sufficiently large
A the original file F can be reconstructed. As shown
in (Dodis et al., 2009), it suffices to prove that if the
encoding of the file (primary encoding) as well as the
response from the server (secondary encoding) are ef-
ficiently erasure-decodable, then the original file can
be efficiently reconstructed. The primary encoding of
the file is done using a Reed-Solomon code and is,
thus, efficiently erasure decodable. By looking at the
server’s response, in particular at the value

= (o = (MG 3 m 1)

it is clear that the verifier can elimi_nf%lte the values
h(id||i) giving the sequencéyic m,jl')jzl, whose
elements constitute Reed-Solomon encodings of the
sequencesm j)ici. This means that our secondary
encoding is also efficiently erasure decodable. Con-
sequently, by applying Lemma 6 and then applying
Lemma 7 of (Dodis et al., 2009), the desired result
follows.

(I



