
Process Lines for Automatic Workflow Development

Mario L. Bernardi1, Marta Cimitile2 and Fabrizio M. Maggi3
1 University of Sannio, Benevento, Italy

2 Unitelma Sapienza University, Roma, Italy
3 University of Tartu, Tartu, Estonia

Keywords: Workflow Development, SOA, Business Process Lines.

Abstract: In some business environments, processes of different organizations are very similar to each other. This
produces families of processes with common characteristics but also portions that vary according to the specific
organization. Two emerging approaches can be adopted and combined to easily model, implement and update
families of business processes: Software Product Line (SPL) and Service-Oriented Architecture (SOA). Our
work suggests a framework to transfer the main peculiarities of the SPL to the SOA system development, in
order to realize a SOA system line. Starting from the SPL concept, we introduce process lines, i.e., families
of process models suitable for different customers or market segments. Moreover, we present an approach
for the automatic generation of a SOA system starting from a process model. The combination of these
approaches, can be used to easily develop a family of SOA systems each one appropriate for different context
characteristics. In this work, an application of the proposed approach in a real project is also proposed.

1 INTRODUCTION

Often, organizations working in the same business en-
vironment execute their business processes in simi-
lar but slightly different manners (Mohammadi and
Mukhtar, 2011). To provide them with appropriate
workflow systems, it is necessary to tailor these sys-
tems according to different context factors (objec-
tives, technologies, industrial standards, quality pro-
grams, budget, workers, tools, cultural factors). For
this reason, it is necessary to define new approaches
aiming at reducing the effort in modeling, updating
and implementing a family of similar processes each
one suitable to be used in a specific context. We pro-
pose an approach based on process lines and Service
Oriented Architectures (SOA) supporting the reuse of
process model components, the generation of process
models based on combinations of such components
(suitable for different contexts) and their rapid im-
plementation into workflow systems. This proposal
comes up from the following considerations:

� the concept of Software Product Line (SPL) is
based on the idea that enterprises can imple-
ment software systems for different customers
reusing software resources rather than developing
the same software capabilities again. This concept
can be extended to processes for modeling them

in the perspective of process reuse and flexibility
(Bernardi et al., 2012a).

� SOA offers a mature platform to rapidly imple-
ment a process model in pace with specific busi-
ness needs (Welke et al., 2011).
The proposed approach consists of 2 phases: Pro-

cess Variant Definition (PVD) and Automatic Work-
flow Development (AWD). The PVD phase is based
on the concept of process line, which is, in turn, de-
rived from the one of SPL. Through a process line, it
is possible, starting from a basic process model, to de-
fine a process variant based on the customization and
the adaptation of the basic process model according
to different customer needs. We use BPMN (Business
Process Modeling Notation) (Dijkman et al., 2011) to
define the process models in a process line.

In the AWD phase, we transform a process vari-
ant into an executable SOA system through successive
transformations aimed at making the process model
understandable by an execution engine. In particu-
lar, we introduce an approach for transforming BPMN
process models to BPEL (Business Process Execution
Language) (Zhao et al., 2010).

Starting from a process line, it is possible, there-
fore, to automatically generate a SOA system line that
automates the underlying process models. So, a pro-
cess model can be customized using a process line and

41Bernardi M., Cimitile M. and Maggi F..
Process Lines for Automatic Workflow Development.
DOI: 10.5220/0004492400410049
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 41-49
ISBN: 978-989-8565-68-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



the SOA system generated from it will be, in turn, cus-
tomized. Also, if the underlying process line changes,
it becomes straightforward to adapt the SOA system
line accordingly. Finally, since a SOA system will re-
sult from the automatic translation of a process model,
it will be in line with the underlying model without
misalignment between models and their implementa-
tion.

The remainder of the paper is structured as fol-
lows: section 2 presents some related work; section
3 gives the overview of the proposed approach; sec-
tion 4 illustrates the application of the approach in a
research project; section 5 completes the paper pro-
viding some conclusive insights and final remarks.

2 RELATED WORK

The proposed approach is mainly based on the ap-
plication of SPL principles to the business process
domain and their integration with a workflow devel-
opment method for business process implementation.
The adoption of SPL in the context of process mod-
els was introduced in (Bernardi et al., 2012a) and can
also be found in (Gimenes et al., 2008; Rolland and
Nurcan, 2010). For example, in (Rolland and Nur-
can, 2010) the authors propose to organize business
processes as business process families and to manage
variability and commonalities within the family in or-
der to promote reuse and adaptability of business pro-
cess models. To capture variability across the busi-
ness processes of a family in an intentional manner, a
modeling formalism is used.

A method that enables business managers to cre-
ate and edit business rules is presented in (Auechaikul
and Vatanawood, 2007). This approach allows the
user to construct decision tables as a guideline and to
expose them as web services. Similarly, in (Costello
and Molloy, 2004), an approach decoupling business
logic encoded as business rules from the applications
in an organization is proposed.

Our approach to workflow development is based
on a refinement of the algorithm first presented in
(Ouyang et al., 2006; Ouyang et al., 2007). Here a
mapping of BPMN process models to BPEL is in-
troduced. Based on this algorithm, a process vari-
ant derived from a process line (according to a given
context profile) can be translated into an executable
workflow. We define a mapping between BPMN arti-
facts and BPEL variables and between BPMN activi-
ties and the web services to be orchestrated (including
user interfaces to execute human tasks). Then, based
on the algorithm presented in (Ouyang et al., 2006;
Ouyang et al., 2007), we translate well-structured

BPMN components into standard BPEL constructs
and BPMN components that are not well-structured
into control links and BPEL handlers.

3 PROPOSED APPROACH

The proposed approach consists of two main phases:
Process Variant Definition (PVD) and Automatic
Workflow Development (AWD). In the first phase,
starting from a process line and from specific cus-
tomer needs, a process variant is identified. In the
second phase, the process variant is automated and
transformed into a SOA system. These phases, shown
in Figure 1, are detailed in the following subsections.

Figure 1: Proposed Approach.

3.1 Process Variant Definition

The PVD phase is focused on the concept of process
line. Process lines realize the idea that Software Prod-
uct Line principles can be transferred to the business
process field. In (Schnieders and Puhlmann, 2006),
(Bayer et al., 2006), a process line is defined as a
set of similar process models sharing invariant assets
and variant assets. The first formalization of a pro-
cess line through a decision table is proposed in (Bof-
foli et al., 2009). In this work, the authors defined
a process asset as an atomic reusable part of a pro-
cess model including one or more activities with their
inputs/outputs. A process variant is composed of in-
variant and variant assets integrated to obtain a pro-
cess model suitable for a given context. Variant as-
sets are selected to be included in a process variant
depending on the specific context where the process

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

42



will be executed whereas invariant assets are always
included in every process variant independently of the
specific context profile.

The Process Variant Definition can be done
through the following steps:
Process Line Selection: A process line is selected
basing on the type of the process to model. Some
examples of process lines can be: Selling, Procure-
ment, Marketing, Human Resource Management, Fi-
nancial Management, Shipping. For each one of these
processes, some invariant and variant assets can be
defined. For example, an invariant asset for Selling
is activity Obtain order and all the inputs/outputs re-
lated to it.
Variant Assets Definition: When a process line is se-
lected, invariant assets and all candidate variant as-
sets are specified. To extract a process variant from
the process line, the suitable variant assets must be
selected on the basis of the specific customer needs.
For example, if we are interested in the process vari-
ant Sell Product in electronic store with auction we
will use the process line Selling and we will select
(among the others) the variant asset Auction and its
related inputs/outputs.
Process Assets Specialization: Process assets (vari-
ant or invariant) are also specialized basing on the
context. The specialization aims at specifying the be-
havior of each process asset through specialization ac-
tions. A specialization action can consist of the addi-
tion of input/output artifacts to an activity, the special-
ization of an artifact name, the specialization of an ac-
tivity name, the addition of an attribute to an artifact
(e.g., size, compilation guidelines, quality standards
etc.), the addition of an attribute to an activity (e.g.,
required skills, tools, hardware or software resources
etc.). For example, if we want to specialize Selling
into Sell Product in electronic store we specialize ac-
tivity Obtain order in Obtain order in electronic store.
Assets Integration: The process assets selected and
specialized must be integrated into a process vari-
ant. This integration is obtained relating the activities
through their inputs and outputs.

More formally, the Process Variant Definition can
be described as a function associating to a specific
context profile the corresponding process variant in
the process line:

f : CP! S (1)

CP is the set of all the possible context profiles. cp
is an element of CP and is represented as a vector
of diversity factors in DFi with i = 1; : : : ;r. Each
DFi is a factor characterizing a particular aspect of
the environment and has a definition domain [DFi] =
d fi1;d fi2; : : : ;d fiq, where each d fi j with j = 1; : : : ;q

is an instance of DFi. Therefore, CP = [DF1] �
[DF2]� : : :� [DFr]. S is the set of all the possible
process variants of the considered process line. f can
be detailed in this way:

f (cp) = f(r(cp;K);r(cp;c(cp))) (2)

If A is the set of all the process assets associated to
the process line, in (2):

� K = fia1; ia2; : : : ; iang � A is the set of invariant
assets;

� c : CP ! A� K is the function associating to
each fixed cp in CP the set of variant assets
fva1;va2; : : : ;vamg� A�K according to the fixed
context cp. A�K is the set of the candidate vari-
ant assets associated to the process line;

� r is the function associating to a set of assets
another set of assets specialized according to the
fixed context profile through specializing actions.
In particular, r(cp;fasset1;asset2:::assetpg) =
fr1(cp;asset1);r2(cp;asset2); : : : ;rn(cp;assetp)g,
where r1;r2; : : : ;rp are transformations special-
izing respectively assets asset1;asset2; : : : ;assetp
according to the context profile cp.

� f includes the integration rules useful to compose
the assets.

3.1.1 Asset Selection and Specialization

The process line logic model can be implemented
through a decision table system (Hong et al., 1999).
A decision table is a tabular representation of a proce-
dural decision situation, where the state of a number
of conditions determines the execution of a set of ac-
tions. In general, a decision table is a table divided in
four quadrants: conditions, conditional states, actions
and rules. The table is defined so that each combina-
tion of conditions and conditional states corresponds
to a set of actions to be executed. We need two types
of tables for defining the process line logic model, one
for Variant Asset Selection and another for Asset Spe-
cialization.

A Variant Asset Selection Table is structured as
follows:

CONDITIONS. The quadrant contains the diver-
sity factors DFi with i = 1; : : : ;r driving the variant
assets selection. They are all the factors characteriz-
ing a given context.
CONDITIONAL STATES. The quadrant contains the
possible values for each diversity factor: [DFi] =
d fi1;d fi2; : : : ;d fiq.
ACTIONS. The quadrant contains all the candidate
variant assets (va) that can be selected to define a pro-
cess variant.

Process�Lines�for�Automatic�Workflow�Development

43



RULES. The quadrant identifies the relationships be-
tween each context profile and the variant assets to
realize the corresponding process variant.

An Asset Specialization Table allows us to spe-
cialize a process asset (variant or invariant) on the ba-
sis of a specified context profile, by executing a set
of specializing actions. This decision table is differ-
ent from the Variant Asset Selection table only for the
actions and the rules quadrants. The actions quad-
rant contains the specialization actions (sa) used to
specialize the asset according to the specified context
profile. The rules quadrant identifies the relationships
between each context profile and the specialization
actions to be applied. A Variant Asset Selection Table
and an Asset Specialization Table are shown in Figure
2.

3.2 Automatic Workflow Development

The AWD phase allows a process model defined in
BPMN to be translated into a BPEL workflow. BPMN
models are well versed for communication between
domain experts. These models can be understood by
both business users and developers and they are often
given as requirement specifications for software de-
velopment projects. To implement a BPMN model it
is necessary to translate it in a language for process
execution like BPEL. BPEL derives from the exten-
sion of imperative programming languages with con-
structs characteristic of service orientation and also
defines a concrete engine for executing business pro-
cesses. Even if BPMN and BPEL share several con-
structs there is no simple one-to-one mapping be-
tween them. Indeed, there are several constructs and
components in BPMN diagrams that could not be eas-
ily translated to BPEL. Here, we adopt an extension
of the automatic approach for mapping BPMN pro-
cess graphs to BPEL processes described in (Ouyang
et al., 2006).

The final outcome of the AWD phase is a BPEL
application realizing the integration of the web ser-
vices provided by all the parties involved. The Au-
tomatic Workflow Development can be done through
the following steps:

� Process model specification: Due to the gap ex-
isting between a process modeling language and
a process execution language, the original process
model must be translated into a detailed process
model including all the information needed for its
implementation.

� BPEL generation: The detailed process model is
automatically translated into an executable BPEL
process.

3.2.1 Process Model Enrichment

The translation of a BPMN process model into an ex-
ecutable BPEL process is possible by defining a map-
ping between BPMN and BPEL entities. In partic-
ular, we enrich the abstract model with few imple-
mentation details, thus generating a detailed BPMN
model. BPMN activities can be translated to web ser-
vices or human tasks depending on their properties.
In particular, system-side activities that do not need
interactions with human actors can be translated to
web services. If a web service implementing an ac-
tivity is already available, the detailed BPMN model
will associate the activity to the corresponding WSDL
URL. Conversely, if for some activities a web service
is not available, the detailed BPMN model will asso-
ciate them to a skeleton java class. Activities requir-
ing data and the interaction with at least a (human)
system user will be mapped to adequate human tasks.
For the implementation of the user interfaces we use
the BPEL extension BPEL4People (Kloppmann et al.,
2005).

We map a BPMN artifact to a BPEL variable
whose name corresponds to the artifact label. More-
over, the variable type should match the structure of
the class which represents the artifact. However, in-
formation contained in the class definition is not al-
ways sufficient to automatically translate the class
into a BPEL type. Consequently the detailed BPMN
model must also provide a mapping between each
class in the abstract process model and the corre-
sponding BPEL types in the executable process. A
BPEL type can be simple, or complex (equivalent to
Java data structures defined as a combination of one or
more simple or complex types). The detailed model
will include the (simple or complex) BPEL type cor-
responding to each (simple or complex) artifact in
the abstract model. For instance, in the Selling pro-
cess the artifact Order can correspond to the Java data
structure:
public class Order {

public int sellerID;
public int buyerID;
public int productID;
public int quantity;
public float price;

}

Note that, when an activity is implemented using a
web service, the corresponding WSDL file is already
provided with the BPEL types associated to the web
service input/output variables. In this case, the de-
tailed BPMN model should only contain the mapping
between the input/output artifacts of the BPMN activ-
ity and the (existing) BPEL types extracted from the
specified WSDL file.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

44



Figure 2: Asset Selection (left) and Specialization (right) Table.

<complexType name="Order">
<sequence>
<element name="sellerID" type="xsd:int"/>
<element name="buyerID" type="xsd:int"/>
<element name="productID" type="xsd:int"/>
<element name="quantity" type="xsd:int"/>
<element name="price" type="xsd:float"/>
</sequence>
</complexType>

Figure 3: XML Code Translation.

3.2.2 BPEL Generation

If a detailed BPMN model is built including the in-
formation mentioned above, an automatic translation
algorithm is able to automatically generate a BPEL
application implementing the underlying model. We
first execute a pre-processing phase to import into the
generated BPEL workflow the complex types needed
for its execution. Complex types are imported from
the existing WSDL files implementing the different
activities of the business process. Complex types
which cannot be extracted from the available WSDL
files must be created using the information contained
in the detailed BPMN model. For instance, the above
Order type is translated into the code of Figure 3.

A recursive algorithm has been implemented to
deal with nested complex types. After the pre-
processing phase, we start the translation of the entire
BPMN (detailed) model. The adopted algorithm is
introduced and largely discussed by (Ouyang et al.,
2006; Ouyang et al., 2007). The approach distin-
guishes between well-structured BPMN components
(that can be directly mapped to BPEL structured ac-
tivities) and components that are not well structured.
A formal definition of well-structured component is
given in (Ouyang et al., 2006). The algorithm tries
to map to control link-based BPEL code components
that are not well structured but acyclic. Components
that are not well-structured and, also, cannot be trans-
lated using control links (e.g., if they contain unstruc-
tured cycles) are mapped to BPEL code based on
event handlers.

4 CASE STUDY

In order to validate the feasibility of our approach,
we applied it for the definition and implementation
of an online selling process. In particular, we used
our approach to model the selling process of a typical
online shopping auction store.

At this aim, first, we created a process line for
selling processes. Then, we used this process line to
model a selling process variant. Finally, the obtained
process variant was implemented in BPEL with our
automatic workflow development approach.

4.1 Selling Process Line Definition

Starting from the analysis of the literature (Malone
et al., 2003; Bernardi et al., 2012b; Bernardi et al.,
2012c), we realized a process line for selling pro-
cesses. The characteristics of this process line are
synthesized in Tables 1, 2 and 3. Table 1 includes
the invariant assets, i.e., the assets that are common to
all the selling process variants.

For example, each process variant contains an as-
set corresponding to activity Obtain Order with input
Order request and output Order.
Table 2 is obtained taking into consideration the pos-
sible application contexts where a selling process can
be applied. In this table, we list a number of diversity
factors and their possible values. For example, we
introduce the diversity factor Sell How and its possi-
ble values: Sell via physical store, Sell via electronic
store, Sell via face to face, Sell via direct mail, Sell via
email/fax, Sell via television. This means that the sell-
ing process will be executed differently based on how
the items are sold. For example, we will select dif-
ferent variant assets (and we will specialize the assets
differently) if the items are sold in a physical store or
in an electronic store. Finally, in Table 3, we indicate
the candidate variant assets, which are the assets that
can be included in one or more process variants. For
example, we can have, in some process variants, the
asset Share out goods with input Goods and Shared
out equipments and output Shared out goods.

Starting from the tables just described, we create
the Variant Asset Selection Table. An extract of this

Process�Lines�for�Automatic�Workflow�Development

45



Table 1: Invariant Assets.

Activity IN OUT
ia1 Obtain order Order request Order
ia2 Deliver Order Delivered goods
ia3 Receive payment Order Receipt

Table 2: Diversity Factors.

Diversity Factors Values

Sell How

Sell via physical store
Sell via electronic store

Sell via face to face
Sell via direct mail
Sell via email/fax
Sell via television

Sell via telemarketing
Sell What Services

Product
Store

Auction Y , N
Advance Payment Y , N

Quality control Y , N
Selling Suggestions Y , N

Seller Direct , Indirect
Advertising Y , N

Customer Assistance Y , N

table is shown in the top of the Figure 5.1 It specifies
the rules for associating to each possible context pro-
file the related variant assets. These have to be com-
posed with the invariant assets to obtain the process
variant specific for the given context profile.

For instance, we have that for the context profile
cp*= (Sell via electronic store, Product, Y, Y, Y, N, In-
direct, Y, Y) the variant assets to be selected are (see
column 101 of the table): va1 = Register Seller, va2 =
Arrange store displays, va3 = Auction, va4 =Check
Quality, va5 =Register Auction Result, va6 =Identify
potential customer needs, va7 =Identify potential cus-
tomers, va8 = Manage customer relationship.

To define the Asset Specialization Table of the
process line we have to identify the specializing ac-
tions needed for each possible context profile. Figure
4 (bottom) includes some of the rules for associating
to each context profile, the actions to be executed to
specialize the behavior of the (variant and invariant)
assets of the process line. For instance, for the con-
text profile cp* considered before (see column 52), we
need to specialize the activities: Deliver in Deliver
product and Obtain order in Obtain order in elec-
tronic store. Moreover, we have to add inputs Receipt
and Shipping paper to Deliver Product. To obtain the

1In this case study, we use Prologa (Vanthienen and
Wets, 1995), a tool supporting the decision table modeling.

process variant for a given context profile, we have to
integrate variant and invariant assets. This integration
is obtained based on the inputs and the outputs of each
asset.

4.2 Process Variant

The process line introduced in the previous section
can be used to model different process variants of a
selling process. In particular, here, we describe the
application of the process line to automate a selling
process with online auction. The considered process
owner sells products in an electronic store through
auctions. The organization is an indirect seller, i.e.,
it offers a virtual market place and some additional
services to support the interaction between the di-
rect seller and the customers. In particular, a regis-
tered seller can send an auction proposal. The pro-
cess owner certifies the quality of the products and
starts the auction. When the auction is over, the orga-
nization offers an online payment service. After the
payment, the (direct) seller sends the products to the
process owner that, in turn, sends them to the cus-
tomers. The process owner also offers customer as-
sistance and advertising services. The process owner
needs to model the selling process as just described
and to automate it into a SOA system. The system
must integrate the services of the indirect seller with
the ones provided by the direct sellers and by their
shipping partners. Starting from the process owner re-
quirements, we specify the context profile cp* = (Sell
via electronic store, Product, Y, Y, Y, N, Indirect, Y,
Y). Using the Variant Asset Selection table, we iden-
tify the list of variant assets needed for the given con-
text profile. Through the Asset Specialization table,
we identify the list of specialization actions to be ap-
plied to the process assets. The specialized assets are
integrated in the process variant shown in Figure 5.
In the figure, invariant assets are colored in blue, vari-
ant assets are colored in yellow, while the specialized
artifacts/activities are highlighted with a red border.

4.3 BPEL Workflow Generation

Using our workflow development approach, we have
generated the detailed process model starting from
the process variant identified through the process line.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

46



Table 3: Variant Assets.

Activity IN OUT
va1 Share out goods Goods, Shared out equipments Shared out goods
va2 Register Seller Entry document Registered entry document
va3 Register Alternative Product Registered entry document Suggestions
va4 Arrange store displays Registered entry document Arranged goods
va5 Auction Arranged goods Customer ID, Order request
va6 Check quality Arranged goods Quality certification
va7 Register Auction Result Customer ID, Order, Registered entry document Registered Order
va8 Identify customers needs Registered Order Marketing report
va9 Identify potential customers Customer request Marketing report
va10 Inform potential customers Marketing report Advertising initiative
va11 Manage customer relationships Marketing report, Customer ID Customer support

Figure 4: An example of Variant Asset Selection Table (top) and Asset Specialization Table (bottom).

This new model has been obtained enriching the pro-
cess model with implementation details. We have
implemented a prototype tool to support the detailed
process model generation. This tool has been re-
alized as an Eclipse add-inn, a graphical UML de-
sign and business analysis tool for modeling, doc-
umenting, building and maintaining object-oriented
software systems. Starting from the detailed process
model previously created, through the algorithm de-
scribed in (Ouyang et al., 2006), we generated the
workflow BPEL implementing the underlying process
variant. The process structured composition tree, ob-
tained by applying the algorithm to the portion of the
BPMN model highlighted with a red dashed line in
Figure 5, is shown in figure Figure 6. Using such a

model as a guide, the corresponding BPEL code is
generated as shown in Figure 7.

5 CONCLUSIONS

This paper extends the best practices of SPL to the
SOA systems development. In particular, we intro-
duce here the concept of process line aiming at com-
bining a set of reusable process assets into a BPMN
process variant suitable to be used in a specific con-
text. In addition, we show an approach for imple-
menting a SOA system starting from the obtained
BPMN process model. This system will be, in turn,
suitable to be used in the context previously speci-

Process�Lines�for�Automatic�Workflow�Development

47



Figure 5: Online Selling Process Variant.

Figure 6: Excerpt of BPEL Process composite Structure.

Figure 7: Small Excerpt of BPEL Generated Code.

fied. We show an application of our approach to a case
study for the automation of an online auction selling
process. In this scenario, we have evaluated the fea-
sibility of our approach. In particular, we carried out
a qualitative evaluation in which two developers were
asked to model and implement the same process. The
first developer was asked to use our approach whereas
the second developer was asked to use a only stan-
dard CASE tools. According to the data gathered, we
found out that the proposed approach reduces the time
required for modeling and workflow development of
around 65%. A limit of the proposed approach is re-
lated to the effort needed to model the process lines

(200h were required for the Selling process line de-
scribed in this work). However, when the decision ta-
ble system has been created no much effort is needed
to maintain it, due to the availability of mature tool
support for decision table modeling.

REFERENCES

Auechaikul, T. and Vatanawood, W. (2007). A develop-
ment of business rules with decision tables for busi-
ness processes. In TENCON 2007 - 2007 IEEE Region
10 Conference, pages 1 –4.

Bayer, J., Kose, M., and Ocampo, A. (2006). Improving
the development of e-business systems by introduc-
ing process-based software product lines. In Proceed-
ings of the 7th international conference on Product-
Focused Software Process Improvement, PROFES’06,
pages 348–361, Berlin, Heidelberg. Springer-Verlag.

Bernardi, M. L., Cimitile, M., Lucca, G. A. D., and Maggi,
F. M. (2012a). M3d: a tool for the model driven devel-
opment of web applications. In WIDM, pages 73–80.

Bernardi, M. L., Cimitile, M., Lucca, G. A. D., and Maggi,
F. M. (2012b). Using declarative workflow languages
to develop process-centric web applications. In EDOC
Workshops, pages 56–65.

Bernardi, M. L., Cimitile, M., and Maggi, F. M. (2012c).
Model driven development of process-centric web ap-
plications. In ICSOFT, pages 340–346.

Boffoli, N., Cimitile, M., and Maggi, F. M. (2009). Man-
aging business process flexibility and reuse through
business process lines. In ICSOFT (2), pages 61–68.

Costello, C. and Molloy, O. (2004). Orchestrating supply
chain interactions using emerging process description
languages and business rules. In Proceedings of the
6th international conference on Electronic commerce,
ICEC ’04, pages 21–30, New York, NY, USA. ACM.

Dijkman, R. M., Hofstetter, J., and Koehler, J., editors
(2011). Business Process Model and Notation -
Third International Workshop, BPMN 2011, Lucerne,
Switzerland, November 21-22, 2011. Proceedings,
volume 95 of Lecture Notes in Business Information
Processing. Springer.

Gimenes, I., Fantinato, M., and Toledo, M. (2008). A prod-
uct line for business process management. In Software
Product Line Conference, 2008. SPLC ’08. 12th Inter-
national, pages 265 –274.

Hong, T.-P., Wang, S.-L., and Tsai, J.-S. (1999). Inte-
grating multiple knowledge sources using decision ta-
bles. In Systems, Man, and Cybernetics, 1999. IEEE
SMC ’99 Conference Proceedings. 1999 IEEE Inter-
national Conference on, volume 2, pages 142 –147
vol.2.

Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rick-
ayzen, A., von Riegen, C., Schmidt, P., and Trickovic,
I. (2005). Ws-bpel extension for people–bpel4people.
Joint white paper, IBM and SAP, 183:184.

Malone, T. W., Crowston, K., and Herman, G. A., editors

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

48



(2003). Organizing Business Knowledge: The MIT
Process Handbook. The MIT Press, 1st edition.

Mohammadi, M. and Mukhtar, M. (2011). Soa-based
business process for supply chain management. In
Software Engineering (MySEC), 2011 5th Malaysian
Conference in, pages 213 –216.

Ouyang, C., Dumas, M., ter Hofstede, A. H. M., and van der
Aalst, W. M. P. (2006). From bpmn process models to
bpel web services. In Proceedings of the IEEE In-
ternational Conference on Web Services, ICWS ’06,
pages 285–292, Washington, DC, USA. IEEE Com-
puter Society.

Ouyang, C., Verbeek, E., van der Aalst, W. M. P., Breutel,
S., Dumas, M., and ter Hofstede, A. H. M. (2007).
Formal semantics and analysis of control flow in ws-
bpel. Sci. Comput. Program., 67(2-3):162–198.

Rolland, C. and Nurcan, S. (2010). Business process lines to
deal with the variability. In System Sciences (HICSS),
2010 43rd Hawaii International Conference on, pages
1 –10.

Schnieders, A. and Puhlmann, F. (2006). Variability mech-
anisms in e-business process families. In Proc. Inter-
national Conference on Business Information Systems
(BIS 2006, pages 583–601.

Vanthienen, J. and Wets, G. (1995). Integration of the de-
cision table formalism with a relational database envi-
ronment. Inf. Syst., 20(7):595–616.

Welke, R., Hirschheim, R., and Schwarz, A. (2011).
Service-oriented architecture maturity. Computer,
44(2):61 –67.

Zhao, W., Huang, Y., Yuan, C., and Wang, L. (2010). For-
malizing business process execution language based
on petri nets. In Intelligent Systems and Applications
(ISA), 2010 2nd International Workshop on, pages 1
–8.

Process�Lines�for�Automatic�Workflow�Development

49


