
A Software Quality Predictive Model

Elisabetta Ronchieri and Marco Canaparo
INFN CNAF, Viale Berti Pichat 6/2, Bologna, Italy

Keywords: Quality, Model, Software Construction.

Abstract: Software development is facing the problem of how to improve the quality of software products. The lack
of quality can easily lead to major costs and delays in the development and maintenance of the software. Its
improvement can be guaranteed by both the definition of a software quality model and the presence of metrics
that are designed and measured to plan and monitor productivity, effectiveness, quality and timing of software.
Integrating the metrics into the model contributes to collecting the right data for the handling of the analysis
process and to establishing a general view to the control of the overall state of the process. This paper aims at
introducing a mathematical model that links software best practices with a set of metrics to predict the quality
of software at any stage of development. Two software projects have been used to analyze the defined model
as a suitable predictive methodology in order to evaluate its results. The model can improve the level of the
software development process significantly and contribute to achieving a product of the highest standards. A
replication of this work on larger data sets is planned.

1 INTRODUCTION

The software development life cycle is often very ex-
pensive because of the growing overall complexity
and the average size of software products. Over the
past decades software engineering researchers have
put a lot of effort into software quality, being con-
sidered as important as the delivery of the product
within scheduled budget and time. Quality, in fact,
represents the degree of excellence that is measurable
in a given product (IEEE90, 1990). Quality require-
ments are increasingly becoming determining factors
in selecting between design alternatives during soft-
ware development. In order to appraise the quality
of any software project, quality estimation models are
necessary, which help the development team to track
and detect potential software defects during develop-
ment process and to save effort that is later required
for the maintenance of the product (Khoshgoftaar and
Seliya, 2003). Furthermore, the presence of metrics is
recommended in order to plan and monitor productiv-
ity, effectiveness, quality and timing of software. The
continuous application of measurement-based tech-
niques to the software development process supplies
meaningful information to improve products and pro-
cess (DeMarco, 1982). Integrating the metrics into
the model contributes to the assessment and the pre-
diction of software quality. In addition to that, met-

rics are input to control and management of general
planning activities. In this paper, we propose a gen-
eral approach and a particular solution to the prob-
lem of improving the software quality. The main idea
is to connect software best practices with a set of
metrics into a mathematical model in such way that
the quality of software at any stage of development
is well predicted. Best practices (Khoshgoftaar and
Seliya, 2003) in this context refers to the software
structure, the construction of the code (McConnell,
1996), deployment, testing, and configuration man-
agement (Wingerd and Seiwald, 1998) in order to ob-
tain a maximum of maintainability, in terms of adapt-
ability, portability and transferability, during the on-
going product life cycle. As concerns metrics (Cole-
man et al., 1994), they derive from both best practices
and static analysis. The following categories have
been taken into consideration: file and code conven-
tions, software portability and static analysis. As this
paper focused on the early phases of the software de-
velopment life cycle, only static metrics have been an-
alyzed (Chhabra and Gupta, 2010), leaving dynamic
ones (such as feasibility and NPATH evaluation) for
future work since they concern the late stage (Deb-
barma et al., 2012) and are based on the data collected
during an actual execution of the system (Chhabra and
Gupta, 2010). Two software projects that we build
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daily, one on storage management system (StoRM1)
and another on virtual resource provisioning on de-
mand (WNoDeS2), have been used to analyze the de-
fined model with a predictive technology called dis-
criminant analysis (Munson and Khoshgoftaar, 1992)
and based on risk-threshold (Pighin and Zamolo,
1997). Established this work, the model has been
proving so far to have all the capabilities of enhanc-
ing the development software process. We therefore
are confident that in the future project managers and
developers adopt this solution as particularly helpful
for evaluating their projects and controlling the over-
all health of the process. This paper is an oppor-
tunity to expose our ideas and share our experience
with researchers that think and try out things in the
same area. We have reached a point where we need
to involve others in a constructive manner in order to
move forward in our understanding of software en-
gineering. The paper is organized as follows: Sec-
tion 2 describes some of the software best practices
that have contributed to define the core of the model,
whilst Section 3 summarizes the metrics considered.
Section 4 provides the definition of the mathematical
model that links software data entities to a set of well-
known metrics. Section 5 illustrates the experimental
results. Section 6 describes related works and Sec-
tion 7 concludes with a brief of discussion of future
work.

2 SOFTWARE BEST PRACTICES

Developers have been striving to improve software
quality for decades. Despite this, projects keep fail-
ing from familiar causes as poor design and inade-
quate testing (Kopec and Tumang, 2007) as well as
the lack of a widespread well-known recipe (Brooks,
1995). From software development experience in sev-
eral projects (Ronchieri et al., 2009), a set of best
practices have been selected in relation to their capa-
bilities of determining projects’ success and offering
the greatest return, but that yet seem to be violated
more often than not. Some of the identified best prac-
tices have been denoted earlier either in different con-
texts or with different pre-requisites.

The best practices considered in this paper are de-
scribed below. Software Structure is the initial stage
of developing an application. Best practice includes
the usage of one of the existing software structures
known in literature (Top et al., 2004) such as con-
trol flow, data flow, file and code conventions (Merlo

1http://storm.forge.cnaf.infn.it/
2http://web.infn.it/wnodes/

et al., 1992), (Mengel and Tappan, 1995). Configu-
ration management involves knowing the state of all
artifacts that make up a project, managing the state
of those artifacts, and releasing distinct versions of a
system. Best practices for configuration management
consider, for example, the application of change code
on a new branch, the creation of a branch only when
necessary, the application of change propagation, and
the usage of common build tools (Wingerd and Sei-
wald, 1998). Construction of the code occupies the
central role in software development and often rep-
resents the only accurate description of the software;
hence, it is imperative that code be of the highest pos-
sible quality (McConnell, 1996). Best practices for
the construction of the code include daily builds and
continuous integration (Fawler et al., 1999). Testing
is an integral part of software development. Best prac-
tices include the planning of test cases before cod-
ing starts and the development of test cases whilst the
application is being designed and coded (Majchrzak,
2010). Deployment is the final stage of releasing an
application for users. A best practice is the usage
of a deployment procedure (Jansen and Brinkkemper,
2006), (Flissi et al., 2008), (Elbaum, 2005).

By following these best practices that seem obvi-
ous once used, a software project increases its chances
of being completed successfully. However, adopting
some of them can be very challenging, especially in
relation to the construction of the code and testing:
the former because it requires a certain amount of ef-
fort in order to perform a good initial design; the latter
on the grounds that testing is time consuming, too in-
consistent to be effective, error prone and inaccurate.

3 METRICS DESCRIPTION

Numerous empirical studies confirm that many soft-
ware metrics can be used to evaluate quality aspects
of general interest, like maintainability and correct-
ness (Fenton, 1990). The metrics considered into this
paper derives from the best practices and static analy-
sis.

From the software structure best practice, the met-
rics of file and code conventions are considered. The
main purpose of these metrics is measuring how well
a project is organized, focusing on the files and di-
rectories structure. Every software project is charac-
terized by a main directory underneath which a num-
ber of files and folders are located. Some file names
well fit into every kind of project, such asAUTHORS
that contains the names of the authors of the project
with their roles such as developer, and project leader,
andCREDITS that contains a set of acknowledgments.
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Furthermore, the main directory can contain several
types of subdirectories, the most common of which
are named:bin for essential user command bina-
ries,doc for documentation files, andtests for code
to evaluate functionalities. Specific features can be
added according to the language by which the project
is implemented. For example, a software code that
needsautotools for the building could have a direc-
tory calledm4 with all the customized macros. In a
java web project theWEB-INF andMETA-INF directo-
ries might be found.

From the configuration management best prac-
tice, the software portability metric is considered that
refers to the software capability of being installed in
various platforms each of which is characterized by
a combination of operating system, kernel architec-
ture, and compiler version. Each platform can be
identified as a string of the formos_arch_compile:
the os substring is about the OS family e.g.slc5;
arch stands for CPU architecture e.g.ia32, x86_64;
finally, the compile substring provides information
about the type and version of the compiler used, e.g.
gcc346. The portability metric depends on how the
software project is distributed and their objective is to
measure the number of platforms on which a module
can be installed.

Finally, metrics about the static analysis of the
code are reckoned with (Chidamber and Kemerer,
1994): SLOCCount shows the number of lines of
code; Findbugs indicates the number of bugs found
during the build or test; Findbugs rate shows the per-
centage of modules that have successfully passed the
threshold defined by the user; WMC (Weighted Meth-
ods per Class) provides an index of the total complex-
ity of a class’ methods; DIT (Depth of Inheritance
Tree) provides for each class a measure of the inheri-
tance levels from the object hierarchy top (e.g., in Java
where all classes inherit Object the minimum value
of DIT is 1); NOC (Number of Children) measures
the number of immediate descendants of the class;
CBO (Coupling Between Object classes) represents
the number of classes coupled to a given class (effer-
ent couplings) that can occur through method calls,
field accesses, inheritances, arguments, return types,
and exceptions; NMP (Number of Public Methods)
counts all the methods in a class that are declared as
public. It can be used to measure the size of an API
provided by a package.

4 MODEL DEFINITION

The core of our approach is the model. In literature
UML diagrams, code, textual documents and mathe-

matical description (Harel and Rumpe, 2004) are for-
malisms to express models. This work has chosen to
only use the mathematical description formalism to
express various levels of abstraction the fundamental
concepts of software engineering, best practices, and
metrics, with a notation and concepts deriving mostly
from the set and graph theories. In the following sec-
tions a subset of the software best practices and met-
rics that are described in Section 2 and Section 3 are
taken into account for the construction of the model.

4.1 Fundamental Concepts

The fundamental concepts are file, directory, module,
and component, the hierarchy of which is shown in
Figure 1, according to which components can contain
files that are not in directories and modules, modules
can contain directories, and files cannot be contained
in either directories or modules.

Figure 1: Fundamental concepts.

A file f is a block of information, the block of
which is a set of text lines. LetL be a set of text lines
of a given file. Consider the functionNumLines: SA→
N such that

NumLines( f )=l (1)

returns the number of linesl of the file f . A software
applicationSA= { f1, f2, ..., fm} is a set of files withm=

|SA| andm∈ N.
Let SD = {d1,d2, ...,dk} be a set of directories

with k = |SD| and k ∈ N, and where a directory
d is defined as a collection of some files and of
other directories identified by a name - is a triple
(name,D,{ f1, f2, ..., fl}) where name is the directory
identifier, and{ f1, ... fl} is a subset ofSA, and D ⊆

SD{name}.
A module m = {d1,d2, ...,d j} - a logical collec-

tion of directories - is a subset ofSD. Let SM =

{m1,m2, ...,mh} be a set of modules withh= |SM| and
h∈ N.

A componentc⊆ SD∪SA- a logical portion of the
overall software application - is a subset of directories
or files. LetSC= {c1,c2, ...,cb} be a set of components
with b= |SC| andb∈ N.

The functionCompToFiles: SC→ P (SA) such that

CompToFiles(c) = { f1, ..., fq} (2)
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gets the set of files{ f1, ..., fq} that are in the compo-
nentc. Whilst the functionCompToDirs: SC→ P (SD)
such that

CompToDirs(c) = {d1, ...,dqq} (3)

gets the set of directories{d1, ...,dqq} that are in the
componentc.

4.2 Best Practices Modeling

The selected best practices (as reported in Section 2)
are related to software structure, configuration man-
agement, construction of the code, testing and deploy-
ment.

4.2.1 Software Structure

Amongst the software structures file and code conven-
tions have been modeled.

The file structure expresses the structure of the
software design. It recommends putting files that are
associated with a component and work together into
the same directory.

A component will often contain various file types
for storing source code, object code, scripts, bi-
nary executables, data, and documentation. Let
FT = {executable,ob ject,source code,batch, text,work
processor, library,archive} be a set of file types.

File name extensions are commonly used to dis-
tinguish amongst different kinds of files (e.g.,.h, .c,
.hpp, .java, .sh). Let SE= {se1, ...,sen} be a set of
standard extensions (shown in Table 1) withn= |SE|
andn∈ N that are considered for the file types.

Table 1: Standard extensions of a set of file types.

File Type Standard Extension

executable bin, jar, none
object obj, o
source code c, h, py, java, wsdl, cpp, hpp
batch sh, csh
text doc, txt, pdf, ps
word processor doc, tex, wp, rrf
library a, so
archive tar, rpm, deb

Let FN = {README,CHANGELOG, INSTALL,
LICENSE,MAINTENANCE} be a set of file names
that are recommended (i.e.,README file describes
the module and its use; aCHANGELOG file lists
what is finished and what needs to be done; an
INSTALL file explains how to install the module;
a MAINTENANCE file explains how to maintain
the module files; aLICENSE file contains license
module information), the type of which istext
with txt as standard extension. The function
IsFileFnIdenti f ied: FN×SA→ {0,1} by taking

IsFileFnIdenti f ied( f n, f ) =

{

1 if f ∈ f n

0 otherwise
(4)

determines if the filef is called f n.
Furthermore, a component should contain at least

the following high-level directories with fixed names
in relation to the used programming language:src
containing source code, replaced bylib for Perl
modules and by<package name> for Python mod-
ules; test containing test source code, replaced by
lib for Perl modules;interface for public inter-
face files such as files with suffixes.wsdl, or .h;
config for configuration and scripting files such as
files with suffixes.conf, .ini, .sh, .csh; doc con-
taining documentation files such as release notes, and
api references. The fixed structure allows the au-
tomation of tasks, such as directory creation, com-
pliance monitoring, file collection, and packaging.
Let DN = {dn1,dn2, ...,dnmm} be a set of directory
names withmm= |DN| and mm∈ N. The function
IsDirDnIdenti f ied: DN×SD→{0,1} by taking

IsDirDnIdenti f ied(dn,d) =

{

1 if d(0) ∈ dn
0 otherwise

(5)

determines if the name of the directoryd(0) is called
dn.

Let PL = { java,c,c++, perl, python, python} be a
set of programming languages that are considered in
the paper.

The code structure expresses the structure of the
software design. It recommends producing consis-
tent, clear code by using effective coding style (Oman
and Cook, 1988), following the conventions of
the adopted programming language (Li and Prasad,
2005), (SunMicrosystems, 1997), (Butler, 2012),
(Fang, 2001), (Rossum and Warsaw, 2001), (GC-
CTeam, 2012) and using formatting rules to display
the structure of the code.

Let ST= {st1,st2, ...,ste} be a set of styles withe=
|ST| ande∈N. Here the functionStyleO f LangToFiles:
PL×ST→ P (SA) such that

StyleO f LangToFiles(pl,st) = { f1, ..., fy} (6)

gets the set of files{ f1, ..., fy} with y ∈ N that follows
the correct stylest in accordance with the program-
ming languagepl.

Let CT = {ct1,ct2, ...,ctw} be a set of conven-
tions with w = |CT| and w ∈ N. The function
ConvO f LangToFiles: PL×CT → P (SA) such that

ConvO f LangToFiles(pl,ct) = { f1, ..., fo} (7)

gets the set of files{ f1, ..., fo} with o∈ N that follows
the correct conventionct in accordance with the pro-
gramming languagepl.

Let FR= { f r1, f r2, ..., f rt} be a set of formatting
rule with t = |FR| and t ∈ N. Finally the function
FruleO f LangToFiles: PL×FR→ P (SA) such that

FruleO f LangToFiles(pl, f t) = { f1, ..., fp} (8)
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gets the set of files{ f1, ..., fp} with p∈ N that follows
a formatting rulef r in accordance with the program-
ming languagepl.

4.2.2 Configuration Management

For this best practice the concepts of branch and build
have been modeled.

A branchb - a variant of code lines - is an element
of SA. LetSB= {b1,b2, ...,ba} be a set of branches with
a= |SB| anda∈ N.

Let CC = {cc1,cc2, ...,ccs} be the set of code
changes withs = |CC| and s ∈ N. The function
IsChangecodeOnNewBranch: CC→{0,1} such that

IsChangecodeOnBranch(cc) =

{

1 if cc is on a branch
0 otherwise (9)

determines if the code changecc is on new branch.
Once branches are created to handle

code changes, the change propagation across
branches must be factored in. The function
ChangecodeOnBranchToBranches: CC × SB → P (SB)
such that

ChangecodeOnBranchToBranches(cc)= {b1, ...,bss}
(10)

gets the set of branches{b1, ...,bss} with ss∈ N that
contains the code changecc.

A build is the business of constructing usable soft-
ware from original source files. It is based on source
files and the tools to which they are input, and charac-
terized by producing the same result. The build tools,
examples of which are shown in Table 2, are typically
linked to the used programming language and are able
to support several archive formats.

Table 2: Build tools.

Language Tool

java maven, ant
c++, c autotool, Cmake, make
python, perl autotool, Scons

Let BT = {bt1,bt2, ...,bt f f } be a set of build
tools with f f = |BT| and f f ∈ N. The function
LangToBuildtools: PL→ P (BT) such that

LangToBuildtools(pl) = {bt1, ...,btx} (11)

gets the set of build tools{bt1, ...,btx} with x ∈ N that
are associated to the program languagepl. The func-
tion SupportsCompBuildtool: BT×SC→ N such that

SupportsCompBuildtool(bt,c)=

{

1 if c usesbt
0 otherwise

(12)

determines if the componentc uses the build toolbt.
Furthermore, the functionBuildtoolO f LangToComps:
PL×BT → P (SC) such that

BuildtoolO f LangToComps(pl,bt) = {c1, ...,cg}
(13)

gets the set of components{c1, ...,cg} with g ∈

N that use the given build toolbt with re-
spect to the programming languagepl, wherebt ∈
LangToBuildtools(pl) (see Eq. 11). The function
CompWithTargetArchiveToArchives: BT×SC→ P (SE)

CompWithTargetArchiveToArchives(bt,c) = {se1, ...,seh}

(14)

gets the set of standard extensions{se1, ...,seh} of the
archive file type withh ∈ N that are provided by the
componentc with respect to the target archive sup-
ported by its build toolbt.

Let OSbe the set of operating systems. LetCMP
be the set of compilers. Finally, letMA be the set
of machine architectures.PLAT ⊆ OS×CMP×MA is
a set of platforms. The functionSupportsCompPlat:
PLAT×SC→ {0,1} such that

SupportsCompPlat(plat,c)=

{

1 if c runs onplat
0 otherwise.

(15)
gets the componentc that supports the platformplat,
whilst the functionCompToPlats: SC→ P (PLAT) such
that

CompToPlats(c) = {plat1, ..., platv} (16)

gets the set of platforms{plat1, ..., platv} with v ∈ N

that are supported by the componentc.

4.2.3 Construction of the Code

Here, the concepts of software dependency, class,
method, function and procedure have been modeled.

The software dependencies considered in the pa-
per are amongst components (see Figure 2), inside a
given component (see Figure 3).

Dependencies amongst componentsDAC is a di-
rected graph composed of a set of vertices that repre-
sent components and a set of edges. Each edge con-
nects two componentsci , c j and the sense of direction
from ci to c j is specified by an ordered pair< ci ,c j >.
A path inDAC is a set of components< c1,c2, ...,cn >

such that< ci ,c j=i+1 > for eachi from 1 ton∈ N is an
edge inDAC.

Dependencies inside a componentDIC is a di-
rected acyclic graph composed of a set of vertices that
represent files and a set of edges. Each edge connects
two files fi and f j where f j is adjacent tofi , and the
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Figure 2: Dependencies amongst components:ci depends
on c j with j = i+1.

sense of direction fromfi to f j is specified by an or-
dered pair< fi , f j >. A path in DIC is a set of files
< f1, f2, ..., fn > such that< fi , fi+1 > for eachi from 1
to n∈N, is an edge inDIC. In this cases cycles are not
as problematic as in the previous case, due to the fact
that all dependencies are internal and therefore do not
increase the overall complexity of the system. Fur-
thermore they are common; e.g. an I/O component
may have a fileF1 with routines that provide high-
level interfaces and anotherF2 that contains the low-
level implementation. In such a situation is it com-
mon that not onlyF1 depends onF2, but also thatF2
depends onF1 to propagate common error situations.

Figure 3: Dependencies inside a component:di depends on
fz andd j .

Circular dependencies unfortunately do happen in
real programs, and therefore they cannot be excluded,
though they reduce maintainability of a software pro-
gram due to increase interrelations among compo-
nents.

4.2.4 Others

For the testing and deployment best practices the con-
cepts of daily build, test cases and deployment proce-
dures have been modeled.

Let DH = {0,1,2, ...,24} be a set of daily hours.
The functionNumBuilds: DH → N such that

NumBuilds(dh) =

⌊

dh
num

⌋

(17)

returns how many builds are run daily withnum∈ N.
Let DF andBU a set of defined functionalities and

a set of discovered bugs during the build or test activ-
ity respectively, thenTC= {tc1, tc2, ..., tcz} is a set of
test cases withz= |TS| ≥ |DF|+ |BU| andz∈ N. The
functionFileToBugs: SA→ P (BU) such that

FileToBugs( f ) = {bu1, ...,buww} (18)

gets the set of bugs{bu1, ...,buww} with ww∈N that are
included in the filef . The functionIsTestcaseForBug:
BU×TC→ {1,0} such that

IsTestcaseForBug(bu, tc) =

{

1 if tc is for bu

0 otherwise.
(19)

gets the test casetc that is for the bugbu. Furthermore
the functionCompToBugs: SC→ P (BU) such that

CompToBugs(c) = {bu1, ...,bubb} (20)

gets the set of bugs{bu1, ...,bubb} with bb ∈ N that
are included in the componentc, while the function
CompToTests: SC→ P (TS) such that

CompToTests(c) = {ts1, ..., tscc} (21)

gets the set of test cases{ts1, ..., tscc} with cc∈ N that
are included in the componentc.

Let DP be a set of deployment procedures. The
function SupportsCompProcedure: DP× SC → {1,0}
such that

SupportsCompProcedure(dp,c) =

{

1 if c supports adp
0 otherwise.

(22)
gets the componentc that supports the deployment
proceduredp, whilst the functionCompToProcedures:
SC→ P (DP) such that

CompToProcedures(c) = {dp1, ...,dpvv} (23)

gets the set of deployment procedures{dp1, ...,dpvv}

with vv∈ N that are supported by the componentc.

4.3 Metrics Modeling

Here, a subset of the metrics introduced in Section 3
have been modeled.

4.3.1 Software Structure

As concerns the software structure category, a set of
metrics have been defined.

In relation to the file structure best practice two
metrics have been defined: the former is the Total
Number of File Names (TNFN) metric that returns the
number of the recommended filenames included in
SC; the latter is the Total Number of Directory Names
(TNDN) metric that returns the number of the recom-
mended directory names included inSC.

TNFN relies on the functionCompToFiles(see
Eq. 2) that returns the list of files included in a compo-
nent, and the functionIsFileFnIdenti f ied(see Eq. 4)
determines if the name of a given file is amongst
the recommended ones. The functionNumFilenames:
SC→ N such that
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NumFilenames(c) =

|CompToFiles(c)|

∑
k=1

|FN|

∑
j=1

IsFileFnIdenti f ied( f nj ,CompToFiles(c)k)

(24)

returns the number of the recommended filenames
defined in FN that are included in the component
c, the maximum value of which is|FN|, where
CompToFiles(c)k is the k-th file of the componentc,
and f n j is the j-th file name∈FN. Therefore the func-
tion TNFN : N→ N such that:

TNFN=
|SC|

∑
i=1

NumFilenames(ci) (25)

returns the total number of the recommended file-
names that are inSC, whereci is the i-th component
that belongs toSCandi = 1, ..., |SC|.

TNDN relies on the functionCompToDirs (see
Eq. 3) that returns the list of directories included in
a component, and the functionIsDirDnIdenti f ied (see
Eq. 5) determines if the name of a given directory
is amongst the recommended ones. The function
NumDirnames: SD→ N such that

NumDirnames(c) =

|CompToDirs(c)|

∑
k=1

|DN|

∑
j=1

IsDirDnIdenti f ied(dnj ,CompToDirs(c)k)

(26)

returns the number of the recommended directories
defined inDN that are included in the component
c, the maximum value of which is≥ |DN|, where
CompToDirs(c)k is thek-th directory of the component
c, anddnj is the j-th directory name∈ DN. Therefore
the functionTNDN : N→ N such that:

TNDN=
|SC|

∑
i=1

NumDirnames(ci) (27)

returns the total number of the recommended direc-
tory names that are inSC, whereci is thei-th compo-
nent that belongs toSCandi = 1, ..., |SC|.

In relation to the code conventions structure best
practice the defined metrics focus on determining
if files included in a component follow code styles
(IsCST), conventions (IsCCT), and formatting rules
(IsCFR). They relies on the functionCompToFiles(see
Eq. 2) that returns the list of files included in a com-
ponent, the functionStyleOFLangToFiles(see Eq. 6)
that returns the files that follows a given style for a
specified language, the functionConvOFLangToFiles
(see Eq. 7) that returns the files that follows a given
convention for a specified language, the function
FruleOFLangToFiles(see Eq. 8) that returns the files
that follows a given formatting rule for a specified lan-
guage.

The functionIsCST : SC→ {1,0}, given the pro-
gramming languagepl and the code stylest, such that

IsCST(c) =
{

1 if CompToFiles(c) ∈ StyleO f LangToFiles(pl,st)

0 otherwise
(28)

determines if the files included in the componentc fol-
low the code stylest in accordance with the program-
ming languagepl. Therefore the functionTST:N→N

such that:

TST=
|SC|

∑
i=1

IsCST(ci) (29)

returns the total number of the files that follow the
code stylest in accordance with the programming lan-
guagepl and that are inSC, whereci is thei-th com-
ponent that belongs toSCandi = 1, ..., |SC|.

The functionIsCCT : SC→ {1,0}, given the pro-
gramming languagepl and the code stylect, such that

IsCCT(c) =
{

1 if CompToFiles(c) ∈ConvO f LangToFiles(pl,ct)

0 otherwise.
(30)

determines if the files included in the componentc fol-
low the conventionct in accordance with the program-
ming languagepl. Therefore the functionTCT :N→N

such that:

TCT=
|SC|

∑
i=1

IsCCT(ci) (31)

returns the total number of the files that follow the
conventionct in accordance with the programming
languagepl and that are inSC, whereci is the i-th
component that belongs toSCandi = 1, ..., |SC|.

The functionIsCFR: SC→ {1,0}, given the pro-
gramming languagepl and the formatting rulef r,
such that

IsCFR(c) =
{

1 if CompToFiles(c) ∈ FruleO f LangToFiles(pl, f r)

0 otherwise.
(32)

determines if the files included in the componentc
follow the formatting rulef r in accordance with the
programming languagepl. Therefore the function
TFR: N→ N such that:

TFR=
|SC|

∑
i=1

IsCFR(ci) (33)

returns the total number of the files that follow the for-
matting rule f r in accordance with the programming
languagepl and that are inSC, whereci is the i-th
component that belongs toSCandi = 1, ..., |SC|.
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4.3.2 Configuration Management

As concerns the configuration management category,
the total number of platforms (TNP) metric is defined
relying on the functionCompToPlats(see Eq. 16) that
returns the list of platforms supported by a compo-
nent. The functionTNP: N→ N such that:

TNP= ‖∩
|SC|
i=1 CompToPlats(ci)‖ (34)

returns the total number of platforms supported.

4.3.3 Static

For the static category, a subset of the metrics de-
scribed in Section 3 are modeled below.

The Total SLOCCount (TSLOCCount) metric re-
lies on the functionNumLines(see Eq. 1) that returns
the number of lines for a given file andCompToFiles
(see Eq. 2) that returns the list of files included in a
component. The functionSLOCCount: SC→ N such
that:

SLOCCount(c) =
|CompToFiles(c)|

∑
k=1

NumLines(CompToFiles(c)k)

(35)

returns the code lines of the componentc, where
CompToFiles(c)k is the k-th file of the componentc:
therefore the functionTSC: N→ N such that:

TSC=
|SC|

∑
k=1

SLOCCount(ci) (36)

returns the total code lines that are inSC.
The Total Findbugs (TF) metric relies on the set

BU that contains the discovered bugs, the function
CompToFiles(see Eq. 2) that returns the list of files
included in a component, and the functionFileToBugs
(see Eq. 18) that returns the list of bugs included in a
file. The functionFindbugs: SC→ N such that

Findbugs(c) =
|CompToFiles(c)|

∑
k=1

|FileToBugs(CompToFiles(c)k)|

(37)

returns the number of bugs found in the componentc,
whereCompToFiles(c)k is thek-th file of the compo-
nentc: therefore the functionTF : N→ N such that:

TF =
|SC|

∑
k=1

Findbugs(ci) (38)

returns the total code lines that are inSC.

5 EVALUATION

The described model can be verified with the usage
of a risk-threshold discriminant analysis, the starting
point of which is the measurement of a set of param-
eters connected to the software products. In our study
the parameters are basically best practices and met-
rics that can identify faults in software components
and can be defined as risky parameters for that reason.
The identification of these risky parameters and the
components which have a high risk to contain faults
can be used to process the components before their
releasing. The validation steps of the model are spec-
ified below.
The process starts with a set of best practicesSBPand
metricsSMT.
Each best practicei and metricu have been verified
in each componentj asxi, j (1 ≤ i ≤ t, 1 ≤ j ≤ p) and
yu, j (1≤ u≤ r, 1≤ j ≤ p), beingt = |SBP| the number
of best practices,r = |SMT| the number of metrics and
p= |SC| the number of components.
For each best practicei, the mean valueBPMi and the
standard deviationBPSi estimated on values obtained
for all components has been computed as

BPSi =

√

∑p
j=1(xi, j −BPMi)2

p
(39)

whereBPMi =
1
p ∑p

j=1(xi, j ).
For each metricu, the mean valueMTMu and the stan-
dard deviationMT Su estimated on values obtained for
all components has been computed as

MTSu =

√

∑p
j=1(yu, j −MTMu)2

p
(40)

whereMTMu =
1
p ∑p

j=1(yu, j ).
For each best practicei and each componentj, the
values

BPSi, j =
|xi, j −BPMi|

BPSi
(41)

have been considered as the offset of the best practice
evaluated on thej-th component from the best prac-
tice mean valueBPMi , normalized on the standard de-
viation of the best practiceBPSi .
For each metricu and each componentj, the values

MT Su, j =
|yu, j −MTMu|

MTSu
(42)

have been considered as the offset of the metric eval-
uated on thej-th component from the metric mean
valueMTMu, normalized on the standard deviation of
the metricMTSu.
The risk level of best practicei is calculated as

BPRLi =
p

∑
j=1

Rj ·BPSi, j (43)
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beingRj considered 1 if the componentj has reported
faults, 0 else. All the risk values have been normal-
ized with respect to the sum of allBPRL.
The risk level of metricu is calculated as

MTRLu =
p

∑
j=1

Rj ·MTSu, j (44)

beingRj considered 1 if the componentj has reported
faults, 0 else. All the risk values have been normal-
ized with respect to the sum of allMTRL.
The risk level of componentj is computed as

CRLj =
t

∑
i=1

BPRLixi, j +
r

∑
u=1

MRLuyu, j (45)

the sum of the best practice value with its risk level,
and the metric value with its risk level. All the risk
values have been normalized with respect to the sum
of all CRL.

The risk levels for each metricMTRLu and best
practiceBPRLi are calculated on the basis of the ex-
amined components, whilst the risk level of compo-
nentCRLj is calculated on the basis of the risk levels
of metric MTRLu and best practiceBPRLi. The risk-
thresholdRT has been taken in the middle of the av-
erage values of the risk level of componentsCRLwith
faults and components without faults, defined as

RT=avg(CRLj ) j∈ f aults+
avg(CRLj ) j∈non− f aults

2 . (46)

5.1 Experiment Data Sets Description

The experiments have been carried out processing
sources from two software projects: StoRM (STOr-
age Resource Manager), an implementation of the
standard SRM interface for generic disk based on
storage system (Zappi et al., 2011), and WNoDeS
(Worker Nodes on Demand Service), a solution to vir-
tualize computing resources and to make them avail-
able through local, Grid and Cloud interfaces (Sa-
lomoni et al., 2011). These projects present files com-
ing from the same environment of development and
application fields (that are mainly related to the High
Energy Physics community). StoRM is a medium
sized system written in different programming lan-
guages (i.e.,java, c++, c, python, andsh), whilst
WNoDeS is a small system wholly written inpython
andsh. Both projects are composed of several soft-
ware components included in EMI3 Monte Bianco
distribution (Aiftimiei et al., 2012): 10 for WN-
oDeS and 21 for StoRM. For StoRM the following
components have been considred:tStoRM (Ronchieri
et al., 2012) that is a StoRM testing framework,
and fivesensor components that are StoRM mon-
itoring framework. Whilst for WNoDeS there are:

Table 3: Measured best practices per component: thebt in
Eq. 12 isautotool; the values of Eq. 14 arerpmandtar; the
values of Eq. 16 aresl5,sl6 anddeb; the values of Eq. 23 are
basicallysl5, andsl6 with the peculiarity of the component
cli that also containsdeb.

Components Eq. 12 |Eq. 14| |Eq. 16| Eq. 17 |Eq. 21| |Eq. 23|

tStoRM 1 2 3 5 10 2
sensor-api 1 2 3 2 2 2
sensor-common 1 2 3 2 0 2
sensor-host 1 2 3 2 2 2
sensor-run 1 2 3 2 0 2
sensor-service 1 2 3 2 0 2

hypervisor 1 2 3 2 0 2
bait 1 2 3 2 0 2
nameserver 1 2 3 2 0 2
manager 1 2 3 2 0 2
accounting 1 2 3 2 2 2
cli 1 2 3 4 8 3
site-specific 1 2 3 2 0 2
utils 1 2 3 2 1 2
cachemanager 1 2 3 2 1 2

Table 4: Measured Metrics per component.

Components Eq. 26 Eq.?? Eq. 28 Eq. 30 Eq. 32 Eq. 35 Eq. 37

tStoRM 4 3 1 1 1 14,011 97
sensor-api 3 0 1 1 1 233 0
sensor-common 3 1 1 1 1 158 3
sensor-host 3 1 1 1 1 166 1
sensor-run 3 1 1 1 1 192 0
sensor-service 3 1 1 1 1 191 6

hypervisor 3 2 1 1 1 1,635 12
bait 3 2 1 1 1 1,924 14
nameserver 3 2 1 1 1 1,094 12
manager 3 2 1 1 1 859 12
accounting 3 3 1 1 1 382 0
cli 4 3 1 1 1 1,386 1
site-specific 3 2 1 1 1 352 2
utils 3 3 1 1 1 2,265 26
cachemanager 3 3 1 1 1 2,558 20

hypervisor that contains code to interact with the
virtualization system,bait that requests the instan-
tiation of virtual machines if enough resources are
available,nameserver that is a sort of information
management,manager that is an administrative com-
mand line,accounting that is responsible for provid-
ing accounting information of the provided resources,
cli that is the cloud command line,cachemanager
that takes care of the cloud resources provision-
ing, site-specific that is the site administrator re-
solver, andutils that contains common code shared
amongst the other WNoDeS components.

The experimental data set (see Table 3, Table 4,
and Table 5) have been collected with heterogeneous

Table 5: Parameters and basic statistical data.

Parameters Total Mean

TArchives 30 2
TNumBuild 35 2.333
TNumTestCases 26 1.733
TProcedures 31 2.066

TNFN 47 3.133
TNDN 29 1.933
TST 15 1
TCR 15 1
TFR 15 1
TNP 45 3
TSC 27,406 1,827.066
TF 206 13.733
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source types in order to highlight similarities and dif-
ferences amongst development scenarios. Therefore
we have selected software components mainly written
in python andsh for each project that have been pro-
duced over a period of five years. The analysis have
been done on 1,513 files in 15 components amounting
to a total code linesTSCof 27,406. The considered
best practices and metrics to create the data sets have
been estimated by using a prototype tool that codes
the presented model. The data related to faults have
been used as the dependent variable of the following
study. Here, a software model has been considered
fault if at least a fault has been recorded. On account
of the complexity of the model, no further inspection
on the relationships amongst faulty component, met-
rics and best practices have been carried out.

5.2 Experimental Results

In this section, a short description of the procedures
adopted for the data analysis is reported. The ob-
jective has been to validate our model with exist-
ing software projects in order to estimate their fault-
proneness. The main idea is to start from the analysis
of the whole set of best practices and metrics so as
to identify the most important ones, relying on their
contribution in estimating component concentration
of failures. At this stage, all the best practices and
metrics measured in Table 3 and Table 4 have been
considered. However, no limitation on their number
has been adopted. Experiments have been performed
by using the parameters mentioned in Table 5, for
which the total number of occurrences, and the mean
value have been calculated.

The followed steps are specified below: the risk-
coefficient has been calculated for each component of
the set; the mean values have been computed for fault
and no-fault; the risk-threshold has been fixed be-
tween the two means with a "neutral" range centered
in the threshold value so to exclude critical value from
the classification; the set has been grouped according
to the same nature on the basis of complexity and size;
the discriminant analysis has been performed on best
practice and metric groups and results have been pro-
duced; the model identified by discriminant analysis
has been evaluated.

The best practices and metrics have been consid-
ered as the main subject of the analysis in order to pro-
duce an acceptable rate for fault-proneness estimation
(about 85%). By using the whole best practices and
metrics set contribution, the model classified all the
components in the groups with a correctness of about
83%. In this case our set partly failed in producing
a suitable fault proneness prediction due to both the

number and low risk level of some metrics and best
practices.

6 RELATED WORKS

A number of useful related projects have been re-
ported in the literature. (Briand et al., 1993) proposed
the construction of a modeling process aiming at pre-
dicting which components of a software project are
likely to contain the highest concentration of faults.
Such a modeling process is based on the Optimized
Set Reduction (OSR) approach. With respect to this
work, ours leverages not only on measurements re-
lated to the code but also on best practices. (Khosh-
goftaar and Seliya, 2003) introduced two new estima-
tion procedures for regression modeling, comparing
their performance in the modeling of software qual-
ity in terms of predictive quality and the quality of fit
with the more traditional least square and least abso-
lute values estimation. The major difference between
our research and this one is in the use of best practices,
as already noticed in Section 2. (Kim et al., 2007)
proposed a model to predict the most fault prone en-
tities and files. Caching the location where faults are
discovered a developer can detect likely fault-prone
locations. This is used in order to prioritize veri-
fication and validation resources on the most fault
prone files or entities. With respect to this work, ours
uses best practices and metrics to build the predictive
model.

7 CONCLUSIONS

Over the last years we have been gathering concep-
tual elements that helped us in facing the complex-
ity of the activity of making software. We have dis-
tilled our insights and by trying to invent as less
as possible we have stabilized relationships amongst
some basic concepts of software engineering. In this
paper we have presented a model to predict soft-
ware quality, which has been designed leveraging on
our experience on software development in European
projects (Ronchieri et al., 2009). As a peculiarity of
the model, we have combined best practices with met-
rics in order to contrive the improvement of software
development process focusing on the early planning
phases. The described best practices and metrics con-
sider several aspects of the software life cycle such
as configuration management and testing belonging
to the best practices, and static analysis metrics. Our
approach has consisted of evaluating a subset of those
best practices and metrics that have been assessed as
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crucial for achieving our fulfillment. Furthermore,
we have analyzed the quality model by using simi-
lar modules of StoRM and WNoDeS projects charac-
terized by having in common programming language
and build tool. We have decided to present our work
at this stage to share our thoughts with researchers in-
terested in modeling. We hope that some parts of our
works might help to understand the evolution of soft-
ware engineering models. In the near future this work
should be repeated by involving more heterogeneous
modules of the stated projects, and, hence, increasing
the validity of the described model. By doing this,
larger data sets could be produced leading to a better
estimation of our work. To enlarge the input data of
the used predicting technology, on one hand the set
of metrics will be extended with the dynamic one; on
the other hand other best practices included in their
set will be modelled.
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