A Software Quality Predictive Model

Elisabetta Ronchieri and Marco Canaparo
INFN CNAF, Viale Berti Pichat 6/2, Bologna, Italy

Keywords: Quality, Model, Software Construction.

Abstract: Software development is facing the problem of how to improve the quality of software products. The lack
of quality can easily lead to major costs and delays in the development and maintenance of the software. Its
improvement can be guaranteed by both the definition of a software quality model and the presence of metrics
that are designed and measured to plan and monitor productivity, effectiveness, quality and timing of software.
Integrating the metrics into the model contributes to collecting the right data for the handling of the analysis
process and to establishing a general view to the control of the overall state of the process. This paper aims at
introducing a mathematical model that links software best practices with a set of metrics to predict the quality
of software at any stage of development. Two software projects have been used to analyze the defined model
as a suitable predictive methodology in order to evaluate its results. The model can improve the level of the
software development process significantly and contribute to achieving a product of the highest standards. A
replication of this work on larger data sets is planned.

1 INTRODUCTION rics are input to control and management of general
planning activities. In this paper, we propose a gen-
eral approach and a particular solution to the prob-

The software development life cycle is often very ex- |em of improving the software quality. The main idea

pensive because of the growing overall complexity s to connect software best practices with a set of

and the average size of software products. Over themetrics into a mathematical model in such way that
past decades software engineering researchers havghe quality of software at any stage of development
put a lot of effort into software quality, being con- s well predicted. Best practices (Khoshgoftaar and
sidered as important as the delivery of the product Seliya, 2003) in this context refers to the software
within scheduled budget and time. Quality, in fact, structure, the construction of the code (McConnell,
represents the degree of excellence that is measurabla 996), deployment, testing, and configuration man-
in a given product (IEEE90, 1990). Quality require- agement (Wingerd and Seiwald, 1998) in order to ob-
ments are increasingly becoming determining factors tain a maximum of maintainability, in terms of adapt-
in selecting between design alternatives during soft- apility, portability and transferability, during the on-
ware development. In order to appraise the quality going product life cycle. As concerns metrics (Cole-
of any software project, quality estimation models are man et al., 1994), they derive from both best practices
necessary, which help the development team to trackand static analysis. The following categories have
and detect potential software defects during develop- heen taken into consideration: file and code conven-
ment process and to save effort that is later requiredtions, software portability and static analysis. As this
for the maintenance of the product (Khoshgoftaar and paper focused on the early phases of the software de-

Seliya, 2003). Furthermore, the presence of metrics isyelopment life cycle, only static metrics have been an-

recommended in order to plan and monitor productiv- alyzed (Chhabra and Gupta, 2010), leaving dynamic

ity, effectiveness, quality and timing of software. The ones (such as feasibility and NPATH evaluation) for
continuous application of measurement-based tech-future work since they concern the late stage (Deb-
niques to the software development process suppliesharma et al., 2012) and are based on the data collected
meaningful information to improve products and pro- during an actual execution of the system (Chhabra and

cess (DeMarco, 1982). Integrating the metrics into Gupta, 2010). Two software projects that we build
the model contributes to the assessment and the pre-

diction of software quality. In addition to that, met-

1 86 Ronchieri E. and Canaparo M..
A Software Quality Predictive Model.
DOI: 10.5220/0004492001860197
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 186-197
ISBN: 978-989-8565-68-6
Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

A Software Quality Predictive Model

daily, one on storage management system (StyRM et al., 1992), (Mengel and Tappan, 1995). Configu-
and another on virtual resource provisioning on de- ration management involves knowing the state of all
mand (WNoDe3), have been used to analyze the de- artifacts that make up a project, managing the state
fined model with a predictive technology called dis- of those artifacts, and releasing distinct versions of a
criminant analysis (Munson and Khoshgoftaar, 1992) system. Best practices for configuration management
and based on risk-threshold (Pighin and Zamolo, consider, for example, the application of change code
1997). Established this work, the model has been on a new branch, the creation of a branch only when
proving so far to have all the capabilities of enhanc- necessary, the application of change propagation, and
ing the development software process. We thereforethe usage of common build tools (Wingerd and Sei-
are confident that in the future project managers andwald, 1998). Construction of the code occupies the
developers adopt this solution as particularly helpful central role in software development and often rep-
for evaluating their projects and controlling the over- resents the only accurate description of the software;
all health of the process. This paper is an oppor- hence, it is imperative that code be of the highest pos-
tunity to expose our ideas and share our experiencesible quality (McConnell, 1996). Best practices for
with researchers that think and try out things in the the construction of the code include daily builds and
same area. We have reached a point where we needontinuous integration (Fawler et al., 1999). Testing
to involve others in a constructive manner in order to is anintegral part of software development. Best prac-
move forward in our understanding of software en- tices include the planning of test cases before cod-
gineering. The paper is organized as follows: Sec- ing starts and the development of test cases whilst the
tion 2 describes some of the software best practicesapplication is being designed and coded (Majchrzak,
that have contributed to define the core of the model, 2010). Deployment is the final stage of releasing an
whilst Section 3 summarizes the metrics considered. application for users. A best practice is the usage
Section 4 provides the definition of the mathematical of a deployment procedure (Jansen and Brinkkemper,
model that links software data entities to a set of well- 2006), (Flissi et al., 2008), (Elbaum, 2005).
known metrics. Section 5 illustrates the experimental By following these best practices that seem obvi-
results. Section 6 describes related works and Sec-ous once used, a software projectincreases its chances
tion 7 concludes with a brief of discussion of future of being completed successfully. However, adopting
work. some of them can be very challenging, especially in
relation to the construction of the code and testing:
the former because it requires a certain amount of ef-
fortin order to perform a good initial design; the latter
2 SOFTWARE BEST PRACTICES on the grounds that testing is time consuming, too in-

o) consistent to be effective, error prone and inaccurate.
Developers have been striving to improve software

quality for decades. Despite this, projects keep fail-
ing from familiar causes as poor design and inade-
guate testing (Kopec and Tumang, 2007) as well as3 METRICS DESCRIPTION
the lack of a widespread well-known recipe (Brooks,
1995). From software development experience in sev- Numerous empirical studies confirm that many soft-
eral projects (Ronchieri et al., 2009), a set of best ware metrics can be used to evaluate quality aspects
practices have been selected in relation to their capa-of general interest, like maintainability and correct-
bilities of determining projects’ success and offering ness (Fenton, 1990). The metrics considered into this
the greatest return, but that yet seem to be violated paper derives from the best practices and static analy-
more often than not. Some of the identified best prac- Sis.
tices have been denoted earlier either in differentcon- ~ From the software structure best practice, the met-
texts or with different pre-requisites. rics of file and code conventions are considered. The
The best practices considered in this paper are de-main purpose of these metrics is measuring how well
scribed below. Software Structure is the initial stage @ project is organized, focusing on the files and di-
of developing an application. Best practice includes rectories structure. Every software project is charac-
the usage of one of the existing software structures terized by a main directory underneath which a num-
known in literature (Top et al., 2004) such as con- ber of files and folders are located. Some file names
trol flow, data flow, file and code conventions (Merlo Well fit into every kind of project, such a&UTHORS
that contains the names of the authors of the project
Ihttp://stormforge. cnaf.infn.it/ with their roles such as developer, and project leader,
2http://web.infn.it/wnodes/ andCREDI TS that contains a set of acknowledgments.

187

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

Furthermore, the main directory can contain several matical description (Harel and Rumpe, 2004) are for-
types of subdirectories, the most common of which malisms to express models. This work has chosen to
are named:bi n for essential user command bina- only use the mathematical description formalism to
ries,doc for documentation files, artcest s for code express various levels of abstraction the fundamental
to evaluate functionalities. Specific features can be concepts of software engineering, best practices, and
added according to the language by which the project metrics, with a notation and concepts deriving mostly
is implemented. For example, a software code that from the set and graph theories. In the following sec-
needsut ot ool s for the building could have a direc- tions a subset of the software best practices and met-
tory calledm} with all the customized macros. In a rics that are described in Section 2 and Section 3 are
java web project th#EB- | NF andMVETA- | NF directo- taken into account for the construction of the model.
ries might be found.

From the configuration management best prac- 4.1 Fundamental Concepts
tice, the software portability metric is considered that
refers to the software capability of being installed in The fundamental concepts are file, directory, module,
various platforms each of which is characterized by and component, the hierarchy of which is shown in
a combination of operating system, kernel architec- Figure 1, according to which components can contain
ture, and compiler version. Each platform can be files that are not in directories and modules, modules

identified as a string of the forws_ar ch_conpi | e: can contain directories, and files cannot be contained
the os substring is about the OS family e.gl c5; in either directories or modules.

ar ch stands for CPU architecture eica32, x86_64;

finally, the conpi | e substring provides information Software Application

about the type and version of the compiler.used, e.g.
gcc346. The portability metric depends on how the
software project is distributed and their objective is to
measure the number of platforms on which a module
can be installed.

Finally, metrics about the static analysis of the
code are reckoned with (Chidamber and Kemerer, Figure 1: Fundamental concepts.
1994): SLOCCount shows the number of lines of
code; Findbugs indicates the number of bugs found A file f is a block of information, the block of
during the build or test; Findbugs rate shows the per- which is a set of text lines. Letbe a set of text lines
centage of modules that have successfully passed thef a given file. Consider the functiowumLines SA—
threshold defined by the user; WMC (Weighted Meth- N such that
ods per Class) provides an index of the total complex- NumLinegf)= Q)
ity of a class” methods; DIT (Depth of Inheritance returns the number of lindsof the file f. A software
Tree) provides for each class a measure of the inheri-applicationsA= {1y, f,, ..., fm} is a set of files withn =
tance levels from the object hierarchy top (e.g., in Java |sg andme N.
where all classes inherit Object the minimum value | et Sp = {dy,dp,....d} be a set of directories
the number of immediate descendants of the class;y is defined as a collection of some files and of
CBO (Coupling Between Object classes) representspther directories identified by a name - is a triple
the number of classes coupled to a given class (effer- nameD, {f,, 1,, ... f;}) where nameis the directory

ent couplings) that can occur through method calls, gentifier, and{f,,...f,} is a subset oA andD C
field accesses, inheritances, arguments, return typesgpnamg.

and exceptions; NMP (Number of Public Methods) A module m = {dy,dy,...,d;} - a logical collec-
counts all the methods in a class that are declared asjon of directories - is a subset &D. Let SM =
public. It can be used to measure the size of an APl ry m, .. m,} be a set of modules with= |SM| and
provided by a package. heN.

A component C SDUSA- a logical portion of the
overall software application - is a subset of directories

4 MODEL DEFINITION or files. LetSC= {c,c,...,cp} be a set of components
with b= |SQ andb € N.

The core of our approach is the model. In literature The functionCompToFiles SC— (SA such that
UML diagrams, code, textual documents and mathe- CompToFilesc) = {f1,..., fq} (2)

Modules

188

A Software Quality Predictive Model

gets the set of filegfy, ..., fq} that are in the compo- determines if the file is calledfn.

nentc. Whilst the functiorCompToDirs SC— P(SD) Furthermore, a component should contain at least
such that the following high-level directories with fixed names
CompToDirgc) = {dy, ..., dgq} (3) in relation to the used programming languagec

containing source code, replaced byb for Perl
modules and bypackage name> for Python mod-
ules;test containing test source code, replaced by
[ib for Perl modules;i nterface for public inter-
face files such as files with suffixeswsdl, or . h;

The selected best practices (as reported in Section 2)confl g for configuration and scripting files such as

are related to software structure, configuration man- files with suffixes. conf, . ini , . sh, . csh; doc con-

agement, construction of the code, testing and deploy-ta'_nmg documentation files such as release notes, and
ment. api references. The fixed structure allows the au-

tomation of tasks, such as directory creation, com-
4.2.1 Software Structure pliance monitoring, file collection, and packaging.
Let DN = {dm,dm,...,dnym} be a set of directory
Amongst the software structures file and code conven-names withmm= |DN| and mme N. The function
tions have been modeled. IsDirDnidentified: DN x SD— {0,1} by taking
The file structure expresses the structure of the 1 ifd(0) e dn
software design. It recommends putting files that are IsDirDnldentifieddn,d) = .)
associated with a component and work together into {0 otherwise
the same directory. determines if the name of the directat§0) is called
A component will often contain various file types dn.
for storing source code, object code, scripts, bi- Let PL = {java c,c + +, perl, python pythor} be a
nary executables, data, and documentation. Letset of programming languages that are considered in
FT = {executableobjectsource codgbatchtext,work the paper.

gets the set of directorie@l, ...,dqq} that are in the
component.

4.2 Best Practices Modeling

processalibrary, archive} be a set of file types. The code structure expresses the structure of the
File name extensions are commonly used to dis- software design. It recommends producing consis-
tinguish amongst different kinds of files (e.gh, . c, tent, clear code by using effective coding style (Oman
.hpp, .java, .sh). LetSE={se,...,sa} be asetof and Cook, 1988), following the conventions of
standard extensions (shown in Table 1) with |SE| the adopted programming language (Li and Prasad,
andn € N that are considered for the file types. 2005), (SunMicrosystems, 1997), (Butler, 2012),

Table 1: Standard extensions of a set of file types. (Fang, 2001), (Rossum and Warsaw, 2001), (GC-
CTeam, 2012) and using formatting rules to display

| E'X'Z;’izzle | ?:'}g?rso'i:ens“’" | the structure of the code.
object obj,o__ Let ST= {st,sb,...,st} be a set of styles with=
source code ghhc’s’r{ Java, wsdl, cpp. hpp |ST| ande € N. Here the functiorstyleO fLangToFiles
text doc, B, pdf, ps PL x ST — P(SA such that
vyord processor doc, tex, wp, rrf i
forary_ N StyleOfLangToFilg®l,st) = {fy,....fy} (6)

gets the set of filegfy, ..., fy} with y € N that follows

Let FN = {READMECHANGELOGINSTALL th_e correct stylest in accordance with the program-
LICENSEMAINTENANCE be a set of file names Ming languagepl.
that are recommended (i.eREADVE file describes L€t CT = {cti,ctp,....cty} be a set of conven-
the module and its use; &HANGELGG file lists ~ fions with w = |CT| and w e N. The function
what is finished and what needs to be done; an ConvOflLangToFilesPLxCT — ©(SA such that
INSTALL file explains how to install the module; ConvOflLangToFilegl,ct) = {f1,...,fo} (7)
a MAI NTENANCE file explains how to maintain
the module files; a.l CENSE file contains license
module information), the type of which isext
with txt as standard extension. The function
IsFileFnidentified: FN x SA— {0,1} by taking

gets the set of file$fy, ..., fo} with o € N that follows
the correct conventioat in accordance with the pro-
gramming languagpl.

Let FR= {fry, frp,..., fr{} be a set of formatting
rule witht = |FR| andt € N. Finally the function

1 iffefn FruleOfLangToFiles PL x FR— P(SA) such that

(4)

IsFileFnldentified fn, f) =
sFileFnidentified fn, f) {0 otherwise FruleOfLangToFilespl, ft) = {f1,....fp} (8)

189

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

gets the set of filegfy, ..., f} with p € N that follows determines if the componeotuses the build toabt.

a formatting rulefr in accordance with the program- Furthermore, the functioBuildtoolO fLangToComps
ming language!. PLx BT — P(SC) such that

4.2.2 Configuration Management BuildtoolOfLangToCompspl,bt) = {c1, ---ac%}i3)
gets the set of component&;,....cq} with g €
N that use the given build toobt with re-
spect to the programming language wherebt
LangToBuildtoolépl) (see Eg. 11). The function
CompWithTargetArchiveToArchiveBT x SC— P(SE)

For this best practice the concepts of branch and build
have been modeled.

A branchb - a variant of code lines - is an element
of SA LetSB= {by,by,...,ba} be a set of branches with
a=|SB andaeN.

Let CC = {ccy,Ce,..,ccs} be the set of code. compwithTargetArchiveToArchivis,c) = {sei, ..., sa}
changes withs = |CC| and s N. The function
IsChangecodeOnNewBrancEC — {0,1} such that (14)

gets the set of standard extensidng, ...,se,} of the
IsChangecodeOnBrangtr) — {1 if ccis on a branch archive file type withh e N that are provided by the

0 otherwise 9) component with respect to the target archive sup-
R . ported by its build toobt.
determines if the code changeis on new branch. Let OSbe the set of operating systems. 8P

Once branches are created to handle pe the set of compilers. Finally, I&1A be the set
code changes, the change propagation acrossof machine architecture®2LAT C OSx CMP x MA is

branches must be factored in. - The function g set of platforms. The functioBupportsCompPlat
ChangecodeOnBranchToBranchesCC x SB — P(SB) PLAT x SC— {0, 1} such that

such that
1 if crunsonplat
ChangecodeOnBranchToBranches = {b, ..., bss} SupportsCompPléplat,c) = . P
(10) 0 otherwise
gets the set of branchéds;, ...,bss} with sse N that (15)

gets the componetthat supports the platformiat,
A build is the business of constructing usable soft- Whilstthe functiorCompToPlats SC— # (PLAT) such

ware from original source files. It is based on source that

files and the tools to which they are input, and charac- CompToPlat&) = {platy, ..., plat,} (16)
terized by producing the same result. The build tools,

examples of which are shown in Table 2, are typically gets the set of platformgplaty, ..., plat,} with ve N
linked to the used programming language and are ablethat are supported by the component

to support several archive formats.

contains the code change

4.2.3 Construction of the Code
Table 2: Build tools.

[Tanguage [ool Here, the concepts of software dependency, class,
java maven, ant method, function and procedure have been modeled.
Cc++, C autotool, Cmake, make . . .
python, perl autotool, Scons The software dependencies considered in the pa-

per are amongst components (see Figure 2), inside a
given component (see Figure 3).

Dependencies amongst componeg is a di-
rected graph composed of a set of vertices that repre-
sent components and a set of edges. Each edge con-

LangToBuildtoolépl) = {bty, ..., bt} (11) nects two components, c; and the sense of direction
)) from ¢; to c; is specified by an ordered pairci,cj >.
gets the set of build tOOISOtL ...,btx} with x € N that A path iNnDAC is a set of componentscy,cy, ...,Ch >
are associated to the program languggeThe func- such thak c;,cj_i;1 > for eachi from 1 tone Nis an
tion SupportsCompBuildtoolBT x SC— N such that edge inDAC.

_ Dependencies inside a componécC is a di-

1 ifcusesbt rected acyclic graph composed of a set of vertices that
0 otherwise represent files and a set of edges. Each edge connects
(12) two files f; and f; wheref; is adjacent tof;, and the

Let BT = {bty,bty,...,bt;;} be a set of build
tools with ff = |BT| and ff € N. The function
LangToBuildtools PL — ?(BT) such that

SupportsCompBuildtogbt,c) = {

190

CF=S

Figure 2: Dependencies amongst componegtslepends
oncj with j =i+1.

sense of direction fronf; to f; is specified by an or-
dered pair< fi, f; >. A path inDIC is a set of files
< f1,fo,..., fn > such thak f;, fi, ; > for eachi from 1
toneN, is an edge imIC. In this cases cycles are not

A Software Quality Predictive Model

gets the set of bugbu, ..., buyw} With wwe N that are
included in the filef. The functionisTestcaseForBug
BU x TC — {1,0} such that

1 iftcisforbu
0 otherwise
(19)
gets the test casethat is for the bugpu. Furthermore
the functionCompToBugsSC— 2 (BU) such that
CompToBug&) = {buy, ..., bupp} (20)

gets the set of bugébuy,...,buy} with bb € N that

IsTestcaseForBudu,tc) = {

as problematic as in the previous case, due to the factyq included in the componeat while the function

that all dependencies are internal and therefore do not

increase the overall complexity of the system. Fur-
thermore they are common; e.g. an I/O component
may have a fileF1 with routines that provide high-
level interfaces and anothEp that contains the low-
level implementation. In such a situation is it com-
mon that not onlyF1 depends oI 2, but also thatE2
depends oiF 1 to propagate common error situations.

N

Figure 3: Dependencies inside a componentepends on
fz andd;.

Circular dependencies unfortunately do happen in
real programs, and therefore they cannot be excluded
though they reduce maintainability of a software pro-
gram due to increase interrelations among compo-
nents.

4.2.4 Others

For the testing and deployment best practices the con

cepts of daily build, test cases and deployment proce-

dures have been modeled.
Let DH = {0,1,2,...,24} be a set of daily hours.
The functionNumBuilds DH — N such that
. dh
NumBuildgdh) = {numJ a7)
returns how many builds are run daily withme N.
Let DF andBU a set of defined functionalities and
a set of discovered bugs during the build or test activ-
ity respectively, thermrC = {tcy,tc,...,tc;} is a set of
test cases witk= [T > |DF|+|BU| andz€ N. The
functionFileToBugs SA— P (BU) such that

FileToBuggf) = {buy,....bum} (18)

ompToTestsSC— P (TS such that

CompToTes(§) = {tsy,...,tSc} (21)

gets the set of test casés;, ...,tsc} with cce N that
are included in the componetit

Let DP be a set of deployment procedures. The
function SupportsCompProcedureDP x SC — {1,0}
such that

1 if csupports ap
SupportsCompProcedui@p,c) = {0 otherwise
(22)
gets the component that supports the deployment
procedurel p, whilst the functiorCompToProcedures

SC— 2 (DP) such that
CompToProcedurégs) = {dp,...,d pw} (23)

gets the set of deployment procedufe®;,...,dpy}
with v e N that are supported by the component

4.3 Metrics Modeling

Here, a subset of the metrics introduced in Section 3
have been modeled.

4.3.1 Software Structure

As concerns the software structure category, a set of
metrics have been defined.

In relation to the file structure best practice two
metrics have been defined: the former is the Total
Number of File Names (TNFN) metric that returns the
number of the recommended filenames included in
SG the latter is the Total Number of Directory Names
(TNDN) metric that returns the number of the recom-
mended directory names includedsa.

TNFN relies on the functiorCompToFiles(see
Eq. 2) that returns the list of files included in a compo-
nent, and the functiorsFileFnidentified(see Eq. 4)
determines if the name of a given file is amongst
the recommended ones. The functimmFilenames
SC— N such that

191

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

NumFilenameg) =

|CompToFilet)|[FN|
Z IsFileFnldentified fn;,CompToFilesc)y)
J:

(24)

k=

returns the number of the recommended filenames

defined inFN that are included in the component
¢, the maximum value of which isFN|, where
CompToFilegc)k is thek-th file of the component,
andfn; is thej-th file name= FN. Therefore the func-
tion TNFN: N — N such that:

ISq

TNFN= ZlNumFiIename(s:i) (25)

=
returns the total number of the recommended file-
names that are i8C, wherec; is thei-th component
that belongs tsCandi = 1,...,|SQ.

TNDN relies on the functiorCompTaDirs (see
Eq. 3) that returns the list of directories included in
a component, and the functiesDirDnldentified (see
Eqg. 5) determines if the name of a given directory
is amongst the recommended ones.
NumDirnames SD— N such that

NumDirnameg) =

|CompToDirgc)||DN|

Z IsDirDnldentifieddn;,CompToDirgc))
(26)

k=1

returns the number of the recommended directories

defined inDN that are included in the component
¢, the maximum value of which is> |IDN|, where
CompToDirgc)y is thek-th directory of the component
¢, anddn; is the j-th directory name= DN. Therefore
the functionTNDN: N — N such that:

ISq

TNDN= ZNumDirnames:i) (27)

1=
returns the total number of the recommended direc-
tory names that are i8C, whereg; is thei-th compo-
nent that belongs téCandi = 1,...,SQ.

In relation to the code conventions structure best
practice the defined metrics focus on determining
if files included in a component follow code styles
(IsCST), conventions (IsCCT), and formatting rules
(IsCFR). They relies on the functi@@mpToFilefsee
Eq. 2) that returns the list of files included in a com-
ponent, the functiorstyleOFLangToFile{see Eq. 6)
that returns the files that follows a given style for a
specified language, the functi@onvOFLangToFiles
(see Eq. 7) that returns the files that follows a given
convention for a specified language, the function
FruleOFLangToFiles(see Eg. 8) that returns the files
that follows a given formatting rule for a specified lan-
guage.

192

The function {

The functionlsCST: SC— {1,0}, given the pro-
gramming languagpl and the code stylst, such that
1

IsCST(c) =
{ if CompToFileéc) € StyleOfLangToFilg9l, st)
0 otherwise
(28)
determinesif the files included in the componefut-
low the code stylat in accordance with the program-

ming language!. Therefore the functiolMST: N — N

such that:
ISq)
TST= Y IsCSTc;
2,

returns the total number of the files that follow the
code stylestin accordance with the programming lan-
guagepl and that are ir8C, whereg; is thei-th com-
ponent that belongs t8Candi = 1,...,|SQ.

The functionIsCCT: SC— {1,0}, given the pro-
gramming languagpl and the code stylet, such that

(29)

ISCCT(c) =

1 if CompToFilet) € ConvO fLangToFilegl,ct)
0 otherwise
(30)

determinesif the files included in the componefat-
low the conventioret in accordance with the program-
ming languagel. Therefore the functioMCT: N — N

such that:

ISq

TCT= ZlIsCCT(ci) (31)

i=
returns the total number of the files that follow the
conventionct in accordance with the programming
languagepl and that are ir8C, whereg; is thei-th
component that belongs &Candi =1,...,|SC.

The functionlsCFR: SC— {1,0}, given the pro-
gramming languagel and the formatting rulefr,

such that
{1 if CompToFileéc) € FruleOfLangToFileépl, fr)
0 otherwise
(32)

determines if the files included in the component
follow the formatting rulefr in accordance with the
programming languagel. Therefore the function
TFR:N— N such that:

e
TFR= Y ISCFRG)
2,!5FRe

returns the total number of the files that follow the for-
matting rulefr in accordance with the programming
languagepl and that are ir8C, whereg; is thei-th
component that belongs 8Candi =1,...,|SC.

ISCFR(C) =

(33)

4.3.2 Configuration Management

A Software Quality Predictive Model

5 EVALUATION

As concerns the configuration management category,The described model can be verified with the usage

the total number of platforms (TNP) metric is defined
relying on the functioompToPlat{see Eq. 16) that
returns the list of platforms supported by a compo-
nent. The functiom NP: N — N such that:
TNP= | n*SCompToPlate)| (34)
returns the total number of platforms supported.

4.3.3 Static

For the static category, a subset of the metrics de-

scribed in Section 3 are modeled below.

The Total SLOCCount (TSLOCCount) metric re-
lies on the functiorNumLines(see Eq. 1) that returns
the number of lines for a given file at@bmpToFiles
(see Eg. 2) that returns the list of files included in a
component. The functioBLOCCount SC— N such
that:

|CompToFiletc)|

2

k=1

SLOCCounfc) = NumLine$CompToFilegc)y)

(39)

returns the code lines of the componentvhere
CompToFiletc)i is thek-th file of the component:
therefore the functiom SC: N — N such that:
ISQ
TSC= Z SLOCCoun(ci) (36)
k=1
returns the total code lines that aresa
The Total Findbugs (TF) metric relies on the set
BU that contains the discovered bugs, the function
CompToFiles(see Eq. 2) that returns the list of files
included in a component, and the functi®iteToBugs

of a risk-threshold discriminant analysis, the starting
point of which is the measurement of a set of param-
eters connected to the software products. In our study
the parameters are basically best practices and met-
rics that can identify faults in software components
and can be defined as risky parameters for that reason.
The identification of these risky parameters and the
components which have a high risk to contain faults
can be used to process the components before their
releasing. The validation steps of the model are spec-
ified below.

The process starts with a set of best pract&@Band
metricsSMT.

Each best practiceand metricu have been verified

in each componentasx j (1<i<t, 1< j< p)and

Yuj (1<u<r,1<j<p), beingt = |SBR the number

of best practices,= |SMT| the number of metrics and
p=|Sq the number of components.

For each best practicethe mean valusPM and the
standard deviatioBPS estimated on values obtained
for all components has been computed as

BPS = \/szl(xi,j p— BPM)?

(39)

whereBPM = %z?zl(xi,j).

For each metrig, the mean valumT M, and the stan-
dard deviatiorMT §, estimated on values obtained for
all components has been computed as

MTS, — \/szl(yU,j ; MT My)?

(40)

whereMT M, = % s a(Yuj)-
For each best practidgeand each componeijt the

(see Eq. 18) that returns the list of bugs included in a \5),es

file. The functionFindbugs: SC— N such that

|CompToFilegc)|

2

k=1

Findbuggc) = |FileToBuggCompToFiletc)y)|
(37)

returns the number of bugs found in the comporent
whereCompToFilegc), is thek-th file of the compo-
nentc: therefore the functiomF : N — N such that:
ISq
TF= Z Findbuggci) (38)
K=1

returns the total code lines that areSa

_ % —BPM|
BPS = BPS (41)

have been considered as the offset of the best practice
evaluated on thg-th component from the best prac-
tice mean valu8PM, normalized on the standard de-
viation of the best practicBPS.

For each metric and each componeiptthe values

_ Yo —MTM|
N MTS,
have been considered as the offset of the metric eval-
uated on thej-th component from the metric mean
valueMT My, normalized on the standard deviation of
the metricMT S,.

The risk level of best practidas calculated as

MT (42)

p
BPRL = § R;-BPS; (43)
JZ]_ J 3|

193

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

beingR; considered 1 if the componejhas reported Table 3: Measured best practices per componentbttfie
faults, 0 else. All the risk values have been normal- Eqg. 12 isautotool the values of Eq. 14 armandtar; the
ized with respect to the sum of @&PRL values of Eq. 16 arsl5, sl6 anddely the values of Eq. 23 are

The risk level of metria is calculated as bgsicallysIS, ands!6 with the peculiarity of the component
cli that also containdeh

p
MT RLU — Z RJ -MT SJ,J (44) [:Zsolyé)’jlnents 1EqA122|Eq.14?|, |Eq.l:| Eq.lZ0 |Eq. 221| [E§. 23|
=1 sensor-api 1 2 3 2 2 2
. . R . sensor-common 1 2 3 2 0 2
beingR; considered 1 if the componejihas reported sensor-host 12 3 2 2 2
. sensor-run 1 2 3 2 0 2
faults, .0 else. All the risk values have been normal- consor-service 1 5 3 5 o 5
ized with respect to the sum of M T RL Rypervisor T 2 3 2 0 2
H gt bait 1 2 3 2 0 2
The risk level of componerijtis computed as nameserver 1) 3) o 2
manager 1 2 3 2 0 2
t r accounting 1 2 3 2 2 2
R RV . cli 1 2 3 4 8 3
CRLJ - ZprRhX'J + Z MRLuyu’J (45) site-specific 1 2 3 2 0 2
i= u=1 utils 1 2 3 2 1 2
cachemanager 1 2 3 2 1 2

the sum of the best practice value with its risk level,
and the metric value with its risk level. All the risk

values have been normalized with respect to the sum Table 4. Measured Metrics per component,

of all CRL [Components Eq.26 E@? Eq.28 Eq.30 Eq.32 Eq.35 Eq.p7
The risk levels for each metriITRL, and best o | ——e— e
practiceBPRL are calculated on the basis of the ex- sensor-common 3 1 1 1 1 158 3
. . . sensor-host 3 1 1 1 1 166 1
amined components, whilst the risk level of compo- sensor-run G lpmel gasies gylse p 4020 w0
nentCRL; is calculated on'the basis of the risk levels ==esevee = - - - - =2
. . % ervisor ’
of metric MTRL, and best practicBPRL. The risk- bt 30 5 1 i1 ioo4 14
thresholdRT has been taken in the middle of the av- ool y z . 1 1 s
erage values of the risk level of componebRLwith accounting F : @ p oo
faults and components without faults, defined as ite-specific 3 2 1 1 1 w2 2
utils 3 3 1 1 1 2,265 26
RT=avg(CRL}) jc ault +quCR|—j)jEnomfaults (46) cachemanager 3 3 1 1 1 2558 20
= jefaults™T————— 2 -

. . hypervi sor that contains code to interact with the

5.1 Experiment Data Sets Description virtualization systembait that requests the instan-
tiation of virtual machines if enough resources are

The experiments have been carried out processingayailable,naneser ver that is a sort of information
sources from two software projects: StoRM (STOr- managementanager that is an administrative com-
age Resource Manager), an implementation of the mand lineaccount i ng that is responsible for provid-
standard SRM interface for generic disk based on jng accounting information of the provided resources,
storage system (Zappi et al., 2011), and WNoDeS ¢| | that is the cloud command lineachenanager
(Worker Nodes on Demand Service), a solutionto vir- that takes care of the cloud resources provision-
tualize computing resources and to make them avail-jng sjt e- speci fi ¢ that is the site administrator re-
able through local, Grid and Cloud interfaces (Sa- solver, anditi | s that contains common code shared
lomonietal., 2011). These projects present files com- gmongst the other WNoDeS components.
ing from the same environment of development and 1o experimental data set (see Table 3, Table 4,

application fields (that are mainly related to the High 54 Taple 5) have been collected with heterogeneous
Energy Physics community). StoRM is a medium

sized system written in different programming lan-

guages (i.e.j ava, c++, ¢, python, andsh), whilst Table 5: Parameters and basic statistical data.

WNoDeS is a small system wholly written pyt hon [_Parameters Total Mean |
andsh. Both projeqts are composed of severa] soft- mfﬂgﬁl g - 2 s
ware components included in EMI3 Monte Bianco TNumTestCases 26 1.733
distribution (Aiftimiei et al., 2012): 10 for WN- e 2 =
oDeS and 21 for StoRM. For StoRM the following TNDN 29 1.933
components have been considrest oRM(Ronchieri ToR » !

et al., 2012) that is a StoRM testing framework, mg ig é

and fivesensor components that are StoRM mon- TSC 27406 1827.06q

itoring framework. Whilst for WNoDeS there are:

194

A Software Quality Predictive Model

source types in order to highlight similarities and dif- number and low risk level of some metrics and best
ferences amongst development scenarios. Thereforepractices.

we have selected software components mainly written

in pyt hon andsh for each project that have been pro-

duced over a period of five years. The analysis have 6 RELATED WORKS

been done on,b13filesin 15 components amounting
to a total code line§ SCof 27,406. The considered
best practices and metrics to create the data sets hav
been estimated by using a prototype tool that COOIesthe construction of a modeling process aiming at pre-
the presented model. The data (elated to faults htlalvedicting which components of a software project are
been used as the dependent variable of the following o1 to contain the highest concentration of faults.

Study. Here, a software model has been consideredg, -, 5 modeling process is based on the Optimized

f"’]‘cu:: if at Iealst a fal}flthhas bze? rec?rdﬁd. Qn accpuntSet Reduction (OSR) approach. With respect to this
of the complexity of the model, no further inspection work, ours leverages not only on measurements re-

on the relationships amongst faulty component, met- lated to the code but also on best practices. (Khosh-

rics and best practices have been carried out. goftaar and Seliya, 2003) introduced two new estima-
tion procedures for regression modeling, comparing
5.2 Experimental Results their performance in the modeling of software qual-
ity in terms of predictive quality and the quality of fit

In this section, a short description of the procedures With the more traditional least square and least abso-
adopted for the data analysis is reported. The ob- lute values estimation. The major difference between
jective has been to validate our model with exist- Our research and thi§ onei;inthe uselof best practices,
ing software projects in order to estimate their fault- as already noticed in Section 2. (Kim et al., 2007)
proneness. The main idea is to start from the analysisProposed a model to predict the most fault prone en-
of the whole set of best practices and metrics so as!ities and files. Caching the location yvhere faults are
to identify the most important ones, relying on their discovered a developer can detect likely fault-prone
contribution in estimating component concentration !0cations. This is used in order to prioritize veri-
of failures. At this stage, all the best practices and fication and validation resources on the most fault
metrics measured in Table 3 and Table 4 have beenProne files or entities. With respect to this work, ours
considered. However, no limitation on their number US€S best practices and metrics to build the predictive
has been adopted. Experiments have been performednodel.
by using the parameters mentioned in Table 5, for
which the total number of occurrences, and the mean
value have been calculated. 7 CONCLUSIONS

The followed steps are specified below: the risk-
coefficient has been calculated for each component of Over the last years we have been gathering concep-
the set; the mean values have been computed for faultual elements that helped us in facing the complex-
and no-fault; the risk-threshold has been fixed be- ity of the activity of making software. We have dis-
tween the two means with a "neutral" range centeredtilled our insights and by trying to invent as less
in the threshold value so to exclude critical value from as possible we have stabilized relationships amongst
the classification; the set has been grouped accordingsome basic concepts of software engineering. In this
to the same nature on the basis of complexity and size;paper we have presented a model to predict soft-
the discriminant analysis has been performed on bestware quality, which has been designed leveraging on
practice and metric groups and results have been pro-our experience on software development in European
duced, the model identified by discriminant analysis projects (Ronchieri et al., 2009). As a peculiarity of
has been evaluated. the model, we have combined best practices with met-

The best practices and metrics have been consid-rics in order to contrive the improvement of software
ered as the main subject of the analysis in order to pro- development process focusing on the early planning
duce an acceptable rate for fault-proneness estimationphases. The described best practices and metrics con-
(about 85%). By using the whole best practices and sider several aspects of the software life cycle such
metrics set contribution, the model classified all the as configuration management and testing belonging
components in the groups with a correctness of aboutto the best practices, and static analysis metrics. Our
83%. In this case our set partly failed in producing approach has consisted of evaluating a subset of those
a suitable fault proneness prediction due to both the best practices and metrics that have been assessed as

A number of useful related projects have been re-
f)orted in the literature. (Briand etal., 1993) proposed

195

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

crucial for achieving our fulfillment. Furthermore, Computer Communication and Informatics (ICCCI)
we have analyzed the quality model by using simi- Coimbatore, India. IEEE, IEEE.

lar modules of StoRM and WNoDeS projects charac- DeMarco, T. (1982)Controlling Software ProjectPrentice
terized by having in common programming language Hall.

and build tool. We have decided to present our work Elbaum, S. (2005). Profiling deployed software: Assessing
at this stage to share our thoughts with researchersin- strategies and testing opportunitie$£EE Transac-

terested in modeling. We hope that some parts of our tions on Software Engineering1. .
works might help to understand the evolution of soft- Fang, X. (2001). Using a coding standard to improve pro-
ware engineering models. In the near future this work gram %”Z“t,y- F')”Q‘f'@’ Sfoftware 20017.3P;%ceed|ngs
should be repeated by involving more heterogeneous econd Asta-Facilic Lonferengages /5-1o.
modules of the stated projects, and, hence, increasing” a"""g' '\ﬁg’g%ecé’ f"tBr.am_' |J Opqyket,hwb and RobeertS’
the validity of the described model. By doing this, isiirgg C())de e[:;gggge'r_]mggg;ggn_vﬁesg;ggrgfes)f'
larger data sets could be produced leading to a better sional.
estimation of our work. To enlarge the input data of Fenton, N. (1990). Software metrics: theory, tools and val-
the used predicting technology, on one hand the set " jyation. Software Engineerings(1):65—78.
of metrics will be extended with t_he dynamlc or_1e; on_ Flissi, A., Dubus, J., Dolet, N., and Merle, P. (2008). De-
the other hand other best practices included in their ploying on the grid with deployware. i@luster Com-
set will be modelled. puting and the Grid, 2008. CCGRID '08. 8th IEEE

International Symposiuppages 177-184.

GCCTeam (2012). Gcc coding conventions.

ACKNOWLEDGEMENTS Harel, D. and Rumpe, B. (2004). Meaningful modeling:

What's the semantics of "semantics"?Computer
37(10):64-72.

This research was supported by INFN CNAF. The
IEEE90 (1990). IEEE Standard Glossary of Software En-

findings and opinions in this study belong solely to . : - ; L
the augthors anF()JI are not necessari)lly thosegof the);pon- gineering Terminologyieee std 610.12-1990, institute
’ of electrical and electronic engineers, inc., new york,

SOrs. ny, edition.
Jansen, S. and Brinkkemper, S. (2006). Evaluating the
release, delivery, and deployment processes of eight

REFERENCES large product software vendors applying the customer
configuration update model. WISER '06 Proceed-

e ings of the 2006 international workshop on interdisci-
Aiftimiei, C., Ceccanti, A., Dongiovanni, D., Meglio, A. D. b - - .
and Giacomini, F. (2012). Improving the quality of plinary software englne.erlng reseaighages 65-68.
emi releases by leveraging the emi testing infrastruc- Khoshgoftaar, T. M. and Seliya, N. (2003). Analogy-based
ture. Journal of Physics: Conference Seri@96(5). practical classification rules for software quality es-
Briand, L. C., Basili, V. R., and Hetmanski, C. J. (1993). timation. Empirical Software Engineering Journal

Developing interpretable mmodel with optimized set 8(4):.325_350'
reduction for identifying high-risk software compo- Kim, S., Zimmermann, T., Jr, E. W., and Zeller, A. (2007).

nents. IEEE TRANSACTIONS ON SOFTWARE EN- Predicting faults from cached history. pages 489—-498.

GINEERING 19. IEEE Computer Society Washington DC, USA.
Brooks, F. P. (1995).The mythical man-monthAddison- Kopec, D. and Tumang, S. (2007). Failures in complex

Wesley Boston. systems: case studies, causes, and possible remedies.
Butler, S. (2012). Mining java class identifier naming con- SIGCSE Bulletin39(2):180-184.

ventions. InSoftware Engineering (ICSE), 2012 34th Li, X. S. and Prasad, C. (2005). Effectively teaching coding

International Conferencepages 1641-1643. standards in programming. BIGITE'05 pages 239-
Chhabra, J. and Gupta, V. (2010). A survey of dynamic 244, Newark, New Jersey, US. ACM New York, NY,

software metric. Journal of Computer Science and USA.

Technology25:1016-1029. Majchrzak, T. A. (2010). Best practices for technical as-
Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite pects of software testing in enterprises. Ifforma-

for object oriented designTransactions on Software tion Society (i-Society), 2010 International Confer-

Engineering 20(6):476—493. ence pages 195-202.
Coleman, D., Ash, D., Lowther, B., and Auman, P. (1994). McConnell, S. (1996). Who cares about software construc-

Using metrics to evaluate software system maintain- tion? IEEE Software13(1):127-128.

ability. IEEE Computer27(8):44-49. Mengel, S. A. and Tappan, D. A. (1995). Program de-
Debbarma, M. K., Kar, N., and Saha, A. (2012). Static sign in file structures. liFrontiers in Education Con-

and dynamic software metrics complexity analysis in ference, 1995. Proceedings., 199%ages 4b2.11 —

regression testing. Ilinternational Conference on 4b2.16 vol.2.

196

Merlo, E., Kontogiannis, K., and Girard, J. (1992). Struc-
tural and behavioral code representation for pro-
gram understanding. I€omputer-Aided Software
Engineering, 1992. Proceedings., Fifth International
Workshop pages 106-108.

Munson, J. C. and Khoshgoftaar, T. M. (1992). The detec-
tion of fault-prone programsIEEE Transactions on
Software Engineeringl8(5):423-432.

Oman, P. W. and Cook, C.-P. (1988). A paradigm for pro-
gramming style researchACM SINGPLAN Notices
23(12):69-78.

Pighin, M. and Zamolo, R. (1997). A predictive met-
ric based on discriminant statistical analysis. Tine
19th International Conference on Software Engineer-
ing, ICSE’97 pages 262-270, Boston, Massachusetts,
USA.

Ronchieri, E., Dibenedetto, M., Zappi, R., Aiftimiei, C.,
Vagnoni, V., and Venturi, V. (2012). T-storm: a storm
testing framework. IfP0S(EGICF12-EMITC2)num-
ber 088, pages 1-11.

Ronchieri, E., Meglio, A. D., Venturi, V., and Muller-Wilm,
U. (2009). Guidelines for adopting etics as build and
test system.

Rossum, G. V. and Warsaw, B. (2001). Style guide for
python code.

Salomoni, D, ltaliano, A., and Ronchieri, E. (2011). Wn-
odes, a tool for integrated grid and cloud access and
computing farm virtualization. Journal of Physics:
Conference Serie831(331).

SunMicrosystems (1997). Java code conventions.

Top, S., Nørgaard, H. J., Krogsgaard, B., and
Jørgensen, B. N. (2004). The sandwich code
file structure - an architectural support for software en-
gineering in simulation based development of embed-
ded control applications. In Press, A., edité&¢STED
International Conference on Software Engineering

Wingerd, L. and Seiwald, C. (1998). High-level best
practices in software configuration management. In
Eighth International Workshop on Software Configu-
ration Management Brussels

Zappi, R., Ronchieri, E., Forti, A., and Ghiselli, A. (2011)
An Efficient Grid Data Access with StoRMLin,
Simon C. and Yen, Eirc, Data Driven e-Schience.
Springer New York.

A Software Quality Predictive Model

197

