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Abstract: Optimization plays a fundamental role in engineering design and in many other fields in applied science. An 
optimization process allows obtaining the best designs which maximize and/or minimize a number of 
objectives, satisfying at the same time certain constraints. Nowadays, design activities require a large use of 
computational models to simulate experiments, which are usually automated through the execution of the 
so-called scientific workflows. Even if there is a general agreement in both academy and industry on the use 
of scientific workflows for the representation of optimization processes, no single standard has arisen as a 
valid model to fully characterize it. A standard will facilitate collaboration between scientists and industrial 
designers, interaction between different fields and a common vocabulary in scientific and engineering 
publications. This paper proposes the use of BPMN 2.0, a well-defined standard from the area of business 
processes, as a formal representation for both the abstract and execution models for scientific workflows in 
the context of process optimization. Aspects like semantic expressiveness, representation efficiency and 
extensibility, as required by optimization in industrial applications, have been carefully considered in this 
research. Practical results of the implementation of an industrial-quality optimization workflow engine 
defined in terms of the BPMN 2.0 standard are also presented in the paper. 

1 INTRODUCTION 

Optimization is the process of finding the best 
solution for a problem given a set of restrictions or 
constraints. Typical problems faced nowadays in 
engineering and applied sciences, both in research 
and industry, are defined with multiple and possibly 
conflicting objectives. This class of problems, 
known as Multi-Objective Optimization (MOO) 
problems, usually do not have a single solution, but 
a set of trade-off solutions where no objective can be 
enhanced without a deterioration of at least one of 
the others. This set of compromise solutions, known 
as Pareto front, represents the output of an MOO 
process (Branke et al., 2008). 

Formally, an MOO problem is defined as 
follows: 

ሻݔሺࡲ	௫݁ݖ݅݉݅݊݅ܯ ൌ ሾܨଵሺݔሻ, ,ሻݔଶሺܨ … , 	ሻሿ்ݔ௞ሺܨ
ሻݔ௝ሺ݃	݋ݐ	ݐ݆ܾ݁ݑݏ ൑ 0, ݆ ൌ 1, 2, … ,݉	

݄௟ሺݔሻ ൌ 0, ݈ ൌ 1, 2, … , ݁ 

where k is the number of objective functions, m is 
the number of inequality constraints and e is the 
number of equality constraints. The vector ݔ ∈  is	௡ܧ

the vector of design variables while F corresponds 
to the objective vector function. 

In most engineering and applied sciences 
problems, the objective vector function F represents 
a physical problem, which is usually evaluated by a 
so-called solver defined in terms of simulated 
processes running on computer systems. This 
computational process can be rather complex, 
involving a large number of simulation steps, which 
need to exchange data between themselves and can 
require execution on distributed systems like a Grid 
or Cloud Computing system. The simulated process 
is usually represented with a formalism known as a 
scientific workflow (Lin et al., 2009), which 
provides both a representation for the abstract view 
(used by the engineer to represent the process) and 
the associated execution model (used for the real 
simulation). The abstract view is usually a human-
understandable graphic representation, while the 
execution model is usually represented with XML. 
This last model is used by a workflow engine in 
order to execute the workflow and perform the 
simulation.  

However, even if scientific workflows have been 
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used successfully since many years, most of the 
tools used for their definition and execution are not 
based on standard technologies. A large number of 
different graphic and execution formats are currently 
in use, and there is no clear signs of convergence till 
now. However, things are different in the area of 
business processes, where many standards have 
been defined for both the graphical and the 
execution representation of business process 
workflows. It is definitely true that most of the 
business process standards cannot be used to 
represent scientific workflows since they lack 
enough expressive power to support specific 
scientific workflow requirements. However, the 
recent BPMN 2.0 (OMG, 2011) standard allows the 
support of required characteristic for scientific 
workflows at both levels, particularly due to its 
powerful extension scheme, which can be used to 
define the missing features. From now on, all 
references with the acronym BPMN are intended as 
references to version 2.0 of the standard. 

While it is mostly accepted that BPMN can be 
used to represent scientific workflows, this paper 
will go one step forward. It will show that BPMN 
can be used to represent a complete optimization 
workflow, which includes not only the scientific 
workflow used to represent the physical problem, 
but also the optimization cycle supporting the 
multiple patterns required by current optimization 
problems. In this way, BPMN is opening the path for 
the use of a single standard in optimization 
workflows for engineering and applied science 
applications, both in research and industrial fields. 

The paper is structured as follows: Section 2 
presents a short review of the state of the art, Section 
3 describes optimization problems and the most 
common optimization patterns in use today, Section 
4 presents our proposal for the use of a standard 
notations for optimization workflows and Section 5 
presents results on a standard implementation by 
considering specific requirements like execution 
efficiency. The paper ends with conclusion and 
references. 

2 STATE OF THE ART 

The use of scientific workflows for process 
automation has been widely analyzed in the 
literature (Lin et al., 2009). Many commercial and 
open source implementations do exist. The most 
widely used are Kepler (Ludascher et al., 2009), 
Triana (Taylor et al., 2007), Taverna (Missier et al.,, 
2010), Pegasus (Sonntag et al., 2010) and KNime 

(Berthold et al, 2008), with many new frameworks 
appearing continually. However, all these scientific 
workflow frameworks are based in proprietary non-
standard formats. Attempts have been made to 
represent scientific workflows by using standards; 
for example, BPEL was proposed as the execution 
representation for workflows using other models for 
graphical representation, like BPMN or Pegasus 
(Sonntag et al., 2010). However, the need to use two 
different models, one for the abstract or graphical 
representation, and the other for the execution 
representation, prevented its widespread use in 
industry.  

Standards coming from the business process 
area, like BPEL and the first version of BPMN had 
some strong limitations to support all required 
features. The latest release of the BPMN standard, 
however, has open the possibility to use a single 
standard in the context of scientific workflows due 
to its powerful extension mechanism (Abdelahad et 
al., 2012), even if in some cases the development 
efforts can be important (Sonntag et al., 2010). 

Concerning optimization workflows, there are 
specific workflow systems defined for optimization 
and also extensions of the previously mentioned 
frameworks which can include optimization 
components in them. As an example from the open 
source community, Kepler through its module 
Nimrod/OK, provides the possibility of defining 
optimization cycles (Abramson, 2010). In the area of 
commercial tools, there exists many options like for 
example modeFRONTIER (ESTECO, 2012), widely 
used in CAD/CAE engineering optimization. 
However, again, all of them are based in proprietary 
formats. 

To the best of our knowledge, no current tool, 
open source or commercial, can define optimization 
workflows by using a standard workflow notation.  

3 OPTIMIZATION PROBLEMS 

An optimization session is defined through what is 
usually know as an optimization plan (OP), which 
consists at least in the specification of the design of 
experiments strategy and the selection of the 
optimization algorithm. Other elements, like robust 
sampling or response surface models are usually 
required in industrial applications (Branke et al., 
2008). The following subsections provide a short 
description of these elements, together with an 
specification of the most common optimization 
patterns in use today. 
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Figure 1: The most common optimization patterns: (a) simple, (b) sequential, (c) nested, (d) robust and (e) mixed robust. 

3.1 Design of Experiments 

A Design of Experiments (DoE) session usually 
precedes the optimization stage. The aim of a DoE is 
to test specific configurations regardless of the 
objectives of the optimization run, but rather 
considering their pattern in the input parameters 
space. It provides an a-priori exploration and 
analysis which is of primary importance when a 
statistical analysis has to be performed later on. 
Moreover, most optimization algorithms require a 
starting population of designs to be considered 
initially, eventually generating random input values 
if no other preference has emerged yet. 

3.2 Optimization Algorithms 

The Optimization Algorithm (OA) implements the 
mathematical strategies, or heuristics, which are 
designed to obtain a good approximation of the 
actual Pareto front. It is important to stress that real-
world optimization problems are solved through 
rigorously proven converging methodologies only in 
a very few cases, since the high number of input 
parameters and the low smoothness of objective 
functions involved limit the possible usage of 
classical mathematical algorithms. 

In many cases, the most widely used 
optimization techniques tend to “over-optimize”, 
producing solutions that perform well at the design 
point but may have poor off-design characteristics. It 
is important, therefore, that the designer ensures 
robustness of the solution, defined as the system 
insensitivity to any variation of the design 
parameters. This effect is achieved through the use 
of Robust Sampling (RS), which searches for the 
optima of the mean and standard deviation of a 
stochastic response rather than the optima of the 
deterministic response (Bertsimas et al, 2010). 

 
 
 

3.3 Response Surface Models 

In real applications, the required simulation process 
is usually computationally expensive since every 
single execution can require hours if not days. 
Therefore, multi objective optimization algorithms 
are required to face the demanding issue of finding a 
satisfactory set of optimal solutions within a reduced 
number of evaluations. Response Surface Models 
(RSM), can help in tackling this situation by 
speeding up the optimization process (Voutchkov 
and Keane, 2010). Previously evaluated designs can 
be used as a training set for building surrogate 
models, allowing a subsequent inexpensive virtual 
optimization to be performed over these meta-
models of the original problem. 

3.4 Optimization Patterns 

The specification of an optimization problem in 
terms of the interaction between the solver and the 
optimization algorithm can follow different patterns. 
The Optimization Patterns (OP) most widely used  
nowadays in industrial and research applications are 
presented in Figure 1 and described below:  
1. Simple Optimization: The simplest pattern 

which consists on a single optimization loop (see 
Figure 1.a). The optimization algorithm (OA) 
sends design patterns to the solver (S) for 
evaluation, which in turn returns the computed 
values for the objectives.  

2. Sequential optimization: A sequence of two 
simple Optimizations (see Figure 1.b). Usually, 
the second optimization starts by considering the 
best designs obtained by the first optimization. In 
many cases, both solvers are the same, i.e. S’=S, 
corresponding to a situation where two different 
optimization strategies are applied to the same 
physical problem. A typical use case is when the 
first algorithm performs a rough and fast  
optimization step, reducing the search space for a 
second more precise but slower optimization.  

(a) (b) (c) (d) (e) 
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3. Nested Optimization: The optimization cycle 
includes two optimization algorithms (see Figure 
1.c). A typical use case consists in a main 
optimization algorithm (OA) generating designs, 
which are evaluated by using a solver and a 
secondary optimization algorithm (NOA). This 
last optimization cycle performs a kind of local 
optimization in a fixed context defined by the 
design provided by the first algorithm. The 
design evaluation results are sent back to the 
main algorithm only after this secondary 
optimization has finished.  

4. Robust Optimization: In this pattern, the 
designs generated from the external optimization 
loop are not sent directly to the solver (see 
Figure 1.d). Instead, an internal loop performs 
robust sampling (RS) by sending for evaluation a 
fixed number of designs for each original design 
submitted from the external loop, randomly 
perturbed by following a probability distribution.  

5. Mixed Robust Optimization: The designs 
generated by the optimizer and perturbed by a 
robust sampling algorithm, are evaluated with 
the real solver or with a synthetic response 
surface model (RSM) depending on a 
probabilistic distribution. The objective is to use 
an approximation of the real solver which can 
help to reduce the computation time, without 
losing precision (see Figure 1.e).  

Note that there are no restrictions on the number of 
designs to be evaluated concurrently if the 
optimization algorithm allows it. 

4 STANDARD OPTIMIZATION 
WORKFLOWS  

This section will show that BPMN can be used to 
represent optimization workflows, supporting the 
multiple patterns required nowadays by current 
applications in engineering and applied sciences. 

4.1 Requirements 

Required features that are not directly supported by 
BPMN can be defined through the standard 
extension mechanism. Therefore, this section will 
consider only the aspects that are required to fully 
support optimization workflows. These specific 
features are the following: 
1. Optimization Data handling: The workflow 

notation needs to support data objects that can 
adequately represent the DoE, optimization plan, 

design database, and subsets of it (like the Pareto 
front for example). Also, suitable support for 
data transformations must be provided (for 
example, in order to filter a set of designs or 
select the Pareto front). 

2. Asynchronous Communication: Optimization 
algorithms and related components like robust 
optimization activities, require the evaluation of 
designs in asynchronous terms, in such a way 
that evaluation of a number of designs can be 
requested without blocking the execution of the 
algorithms. 

3. Concurrent Execution: mechanisms must be 
provided to support parallel execution of the 
solver and other components, like response 
surface models and robust optimization. 

4. Instance Routing: Since there will be many 
instances of the same process running 
concurrently, the messaging system has to 
deliver the messages to the particular instance to 
which is addressed. This can be handled through 
an adequate correlation model which can ensure 
that data will flow between the components as 
required. 

Complete support for all these required features, 
however, is not enough, since a standard workflow 
model used for optimization needs to address also 
execution efficiency both in terms of memory and 
processing time. Next sections will show that BPMN 
supports not only the required features, but also 
allows specifying elements to guarantee efficiency 
through its extension mechanism.  

4.2 BPMN Support 

The BPMN standard provides elements which can 
support the requirements identified in previous 
section. In particular: 
1. Data Objects: The construction used to 

represent data within the process, which can also 
represent a collection of objects, as required for a 
DoE or design databases. Transformation 
expressions are allowed in data associations, 
which are used to transfer data between data 
objects and inputs/outputs of activities and 
processes.  

2. Messages: BPMN coordinates process 
interaction by using the so-called conversations 
and choreography processes. Coordination is 
reached through asynchronous message 
exchange between activities defined in different 
pools.  

3. Message-triggered Start event: A process with 
a message start event will start its execution as 
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soon as a message of the appropriate type will be 
received. In this way, the optimization algorithm 
task can start many instances of the solver by 
sending the appropriate number of messages to 
the solver process. 

4. Correlation keys: BPMN supports instance 
routing by associating a particular message to an 
ongoing conversation between two particular 
process instances by using a correlation 
mechanism defined in terms of correlation keys. 

4.3 Optimization Patterns Support 

With the appropriate elements identified in the 
previous section, BPMN can support the most 
widely used optimization patterns, as it will be 
shown below.  

 

Figure 2: Simple optimization pattern in BPMN. 

A BPMN diagram with two pools representing two 
participants, the optimization algorithm and the 
solver respectively, can be used to model the simple 
optimization pattern, as shown in Figure 2. The 
optimization algorithm is defined with a process 
with three nodes: a start event, a task that 
implements the optimization algorithm itself, and an 
end event that are executed in sequence. The 
optimization task (labeled as OA) gets the initial set 
of designs to evaluate from a data object (DoE) and 
produce the final Pareto front in a second data object 
(Pareto). The solver is implemented also by a three 
nodes process: a message triggered start event, a task 
that implements the solver itself and an end event 
that generates a message. When the OA task 
generates a message with the design to be evaluated 
as payload, an instance of the second process is 
started. The solver (S) evaluates the design and 
generates a message with the corresponding metrics 
as payload, which is sent to the optimization task 
(OA) through the conversation defined between the 
two participants. Multiple instances of the solver can 

be run in parallel, each one of them started when 
triggered by  the message from the optimization 
task. 

A sequential optimization pattern can be 
represented by adding a second optimization 
algorithm task in the first process, as shown in 
Figure  3.   The  first   optimization  task  (labeled  as 

 

Figure 3: Sequential optimization pattern in BPMN. 

OA1) gets the initial set of designs to evaluate from a 
data object (DoE), performs the evaluation using the 
first solver (S), producing as output a set of designs 
which are assigned to a data object (Best designs). 
The second optimization algorithm (OA2) uses this 
data object as the initial population for the second 
optimization loop, which in turn produces the final 
Pareto front in a third data object (Pareto) by 
repeatedly evaluating designs by using the second 
solver (S’). Note that multiple instances of the solver 
can be run in parallel for each optimization cycle. 

Figure 4 presents the nested optimization 
pattern represented in BPMN. The two optimization  

 

Figure 4: Nested optimization pattern in BPMN. 

ParetoO
A

S

OA

S

DoE

DoE Pareto

O
A

S

OA1

S

Best designs

OA2

S' S'

N
O
A

S'

S

S'

NOA

O
A

OA

ParetoDoE

Towards�a�Standard�Approach�for�Optimization�in�Science�and�Engineering

173



loops are implemented in different processes. The 
first process (OA) implements the outer optimization 
loop in the same terms as the loop in the simple 
optimization pattern, sending designs for evaluation 
to the inner optimization loop (NOA). An instance 
of this process is started for every message  

 

Figure 5: Robust optimization pattern in BPMN. 

received, meaning that multiple inner optimizations 
can be evaluated concurrently. The internal 
optimization executes a solver (S), and based on 
their output and the design sent from the external 
optimizer, performs a local optimization by using 
the nested algorithm (NOA). The nested algorithm 
evaluates designs by using the second solver defined 
in the third process (S’). Note that evaluations of the 
this process can also be run concurrently. 

Figure 5 shows the robust optimization pattern 
in BPMN, which represents a very usual pattern in 
industrial design. There is an optimization algorithm 
task (OA) which sends through messages the designs 
for evaluation to the second process. One instance of 
this process is started for each design that is 
received.  

The robust sampling task (RS) generates a 
number of messages for each design received from 
the top level, which are in turn sent as messages to 
the third process for evaluation by using the solver 
(S). Note that if the first process generates n 
messages for concurrent evaluation, n process for 
robust sampling will be started concurrently, and if 
the RS processes send each one m messages for 
concurrent evaluation, a total of ݊ ൈ݉	solver 
instances could eventually be run concurrently. 

The mixed robust optimization pattern in 
BPMN is shown in Figure 6. In this patter there is an 
external optimization loop which send designs for 
evaluation to the robust sampling process as in the 
previous pattern (see Figure 5). This process 
performs evaluations by using the real solver (S) or a 
synthetic model of it (RSM) depending on a 
probabilistic distribution, a decision that is 
represented with the decision exclusive gateway 
node in the second process. 

4.4 Efficiency Considerations 

The previous section has shown that BPMN can be 
used to represent the most widely used patterns in 
optimization. However, in order to use it effectively 
in a real environment, execution efficiency has also 
to be considered. Many aspects in the BPMN 
specification can introduce execution difficulties for 
optimization workflows. Nevertheless, the BPMN 
extension mechanisms allows defining new elements 
to effectively handle them. Since it is not possible to 
describe all situations that have been considered, this 
section presents a representative example that 
shows how a typical problem with efficiency can be 
handled with appropriate extensions. The next 
section will present experimental results by using the 
extension proposed. 

As  shown    before,   optimization   patterns   are 

 

Figure 6: Mixed robust optimization pattern in BPMN. 

heavily based on asynchronous communication. This 
puts a strong pressure on the messaging system, 
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since optimization processes typically run for a long 
time, with days or weeks being a common duration, 
involving also a large number of task evaluations. 
Hundreds of thousands of messages could be 
exchanged in a single run. In a typical robust 
optimization problem (as show in Figure 1.d), if the 
optimization algorithm (OA) sends n designs for 
evaluations, n concurrent instances of the robust 
sampling  (RS) process will be started (ܴ ௜ܵ, 1 ൑ ݅ ൑
݊). If each one of these instances send m randomly 
perturbed designs for evaluation, then nൈm 
concurrent solver (S) instances will be started 
௜ܵ௝ , 1 ൑ ݅ ൑ ݊, 1 ൑ ݆ ൑ ݉). Messages sent back 

from the Sij instance need to be addressed to the 
correct RSi instance, and messages sent back from 
the RS instances has be addressed to the correct OA 
instance. 

BPMN uses a correlation mechanism to 
associate messages to particular instances involved 
in a conversation (OMG, 2011). Exchanged 
messages are correlated through the so-called 
correlation keys, which are defined as a set of 
name-value pairs. In simplified terms, when the first 
message in a conversation is received, the receiver 
process stores the correlation values for the key, 
which must match in future interchange of 
messages. In this way, messages can be routed to the 
appropriate instance responsible for receiving the 
message. For the robust optimization pattern (see 
Figure 5), two correlation keys are required, one to 
correlate messages between OA and RO, and other 
to correlate messages between RO and S. The first 
key can be the design ID, while the second can be a 
combination of the design ID and the sequence 
number of the perturbed design.  

Note that a process needs to keep information 
about all keys that are used in order to eventually 
match future messages. This implies an extra 
memory requirement to store the keys and 
additionally, extra processing time to  perform the 
matching process every time a new message is 
received. These problems can be easily solved by 
adding an extension element to indicate the time to 
live (TTL) for messages, representing the number of 
steps expected in a conversation that uses a 
particular correlation key. As can be noted from the 
selected pattern, single request-response means that 
the key can be discarded as soon as an answer 
message is received, removing the need to store the 
keys for checking future matching since there will 
never be other answer. The following XML code 
shows an example of the use of the extension TTL 
added to the conversation element of BPMN: 

<conversation id="_11"> 

  <extensionElements> 
    <optimization:TTL value="1"/> 
  </extensionElements> 
  . . . 
<conversation id="_11"> 

Of course, the TTL extension can be used at 
workflow designer discretion, meaning that he or 
she should include it only when it is clear from the 
communication pattern.  

5 IMPLEMENTATION 

In order to demonstrate practically the effect of 
efficiency enhancement by using the extension 
mechanism, this section presents the experimental 
results of the TTL extension presented in previous 
section. The pattern considered is the robust 
optimization flow, which has been presented in 
Figure 5. In order  to make more evident the effect 
of the TTL enhancement, an  unlimited value of ݉ 
as perturbation for robust optimization was selected.  

Figure 7 presents the results of the execution in  

 
Figure 7: Memory usage for a robust optimization 
execution with TTL (continuous line) and without TTL 
(dotted line). 

terms of memory consumption. Memory usage 
without TTL is plotted with a dotted line, while 
memory usage with the TTL extension is plotted 
with a continuous line. As it can be appreciated, 
memory requested from the heap grows 
continuously due to the need to store the correlation 
keys when TTL is not used. The problem arises 
because the RS process cannot discard a  key, even 
if its associated message has been received, since the 
standard specifies that other messages with the same 
key can eventually arrive. The optimizer workflow 
designer knows by sure that this will never happen, 
but there is no way in which he or she can specify it. 
The continuous line plot in Figure 7 shows that with 
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the TTL extension, the use of memory is stable, 
updated only at regular intervals by the execution of 
the garbage collector. This happens because 
correlation keys are disposed as soon as a message 
that matches the corresponding key is received, 
releasing the memory that was occupied by the key. 

A similar effect can be appreciated with the 
processing time. Figure 8 presents the results of the 
delay in the execution of the solver process over 
time. Delay without TTL is plotted with a dotted 
line, while delay with the TTL extension is plotted  

 

Figure 8: Delay to start the solver with the TTL extension 
(continuous line) and without it (dotted line). 

with a continuous line. With the no-TLL approach,  
every time a message arrives, the matching process 
has to consider all correlation keys, including the 
values that have successfully matched a message 
before. The TTL approach instead presents no delay, 
since correlation keys are removed as soon as the 
message has been processed, with no need to include 
them in the matching process. 

6 CONCLUSIONS 

Optimization workflows have been used 
successfully over many years; however, the 
currently available tools used for their definition and 
execution are not based on standard technologies. A 
large number of different graphic and execution 
formats are currently in use, and there is no clear 
signs of convergence until to date. This paper has 
proposed the use of BPMN 2.0, a well-defined 
standard from the area of business processes, as a 
formal representation for both the abstract and the 
execution model for optimization workflows. In 
particular, it was shown that BPMN 2.0 can support 
the most widely used optimization patterns required 
today in industry. An implementation example that 

illustrates the use of BPMN 2.0 extensions to solve a 
representative execution efficiency problem has also 
been presented. 

It is expected that the use of a standard for 
optimization workflows will facilitate the 
collaboration between scientists and industrial 
designers, enhance the interaction between different 
engineering and scientific fields, providing also a 
common vocabulary in scientific and engineering 
publications. 
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