Using Intentional and System Dynamics Modeling to Address WHYs in
Enterprise Architecture

Sagar Sunkle, Suman Roychoudhury and Vinay Kulkarni

Tata Research Development and Design Center, Tata Consultancy Services, 54B, Industrial Estate,
Hadapsar, Pune, 411013, India

Keywords:

Abstract:

Enterprise Architecture, Intentional Modeling, System Dynamics, Decision Making.

Taking and executing cost effective decisions in enterprises is becoming increasingly difficult due to multi-

ple change drivers that affect varied aspects of enterprise. Enterprise architecture (EA) frameworks provide
holistic treatment of whats and hows of enterprise but leave the important questions of whys unaddressed.
Intentional modeling and system dynamics modeling provide treatment of whys at a point in time and over
time respectively. We propose an approach where both intentional and system dynamics models are used in
conjunction with EA models for a more effective treatment of whys than provided by either. Initial results
with a case study suggest that best of both worlds may be obtained with such combined treatment of whys in

enterprise.

1 INTRODUCTION

It is becoming increasingly difficult to take and ex-
ecute cost effective decisions with regards to orga-
nizational changes in today’s enterprises. Change,
however small, to any entity in enterprise reverber-
ates across varied dimensions like business, IT sys-
tems, and infrastructure (Kulkarni et al., 2013). Like
other adopters we are exploring enterprise architec-
ture (EA) to get a holistic view of enterprise (Sunkle
et al., 2013a). We are also discovering that while EA
enables creating reference models of the workings of
enterprise, something more is needed to analyze these
models to help cost effective decision making in en-
terprises. Apart from whats and hows of enterprise,
mechanisms to explicate and analyze whys and ide-
ally, the ability to play out alternative scenarios based
on explicit whys are needed.

Two such mechanisms have been proposed earlier,
tackling whys for EA with intentional modeling (us-
ing i* intentional modeling language) (Yu et al., 2006)
and playing out EA scenarios using systems dynam-
ics (Golnam et al., 2010). While abstractions in i* are
close to abstractions in EA models, system dynamics
is more generic in how it addresses dynamic evolu-
tion of behavior of system structures using just a few
key abstractions namely, stocks, flows, and influenc-
ing variables (Sterman, 2000). Clearly, by combining
strengths of i* and system dynamics, it seems possi-

24 Sunkle S., Roychoudhury S. and Kulkarni V..

ble to get more in terms of resolving whys than either
can offer all by itself.

Instead of transforming EA models to system dy-
namics models as in (Golnam et al., 2010), we can
begin with EA models, get i* models via metamodel
mapping (Sunkle et al., 2013b), and then construct
system dynamics models over i* models with the help
of provided guidelines. This makes it possible to cap-
ture intentionality in addition to causality. This com-
plete process begins with an EA model of enterprise
and ends with an EA model which incorporates in-
sights obtained by analysis over intentional and sys-
tem dynamics models.

We illustrate this modeling and analysis process
using evolution of our model-driven software devel-
opment unit as a small case study. Instead of apply-
ing the process to evaluation of alternatives at a point
in time using intentional modeling as in (Yu et al.,
2006) or over time using system dynamics (Golnam
et al., 2010), we demonstrate the utility of this pro-
cess with the analysis of strategic vulnerability (Yu
and Mylopoulos, 1994) over time. Early results show
that this modeling process enables evolution of strate-
gic intentions in enterprise over time.

The rest of the paper is organized as follows. Sec-
tion 2 elaborates our motivation and presents key
ideas of our approach. Section 3 describes the map-
ping between generic EA and intentional metamodels
as well as interactive procedure used to create system

Using Intentional and System Dynamics Modeling to Address WHYs in Enterprise Architecture.

DOI: 10.5220/0004489200240031

In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 24-31

ISBN: 978-989-8565-68-6

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Using Intentional and System Dynamics Modeling to Address WHY s in Enterprise Architecture

Table 1: Comparison of Various Models.

Enterprise System Intentional
Architecture Dynamics Models
Models Models

1 Captures whats Captures whys Capture whys in

and hows of in addition to addition to
enterprise at a whats and whats and hows
point in time hows of enterprise at a

enterprise over point in time
time

2 Descriptive Prescriptive

Quantitative Mainly
Assessment Qualitative
Assessment
3 Informative Causal Intentional
4 Highly Low Highly
Comprehensible Comprehensibi Comprehensible
lity

5 Low Simulation Very High Average
Capability Simulation Simulation
Capability Capability

dynamics models from.i* models. In section 4 we re-
imagine our model-driven software development unit
as an enterprise and apply combined i* and system
dynamics modeling to ArchiMate-based model of this
enterprise. Section 5 reviews related and further work
and Section 6 concludes the paper.

2 MOTIVATION AND OUTLINE

EA is supposed to be the process of translating
business vision and strategy into effective enterprise
change. While EA models capture the working of
the enterprise or the whats and the hows, the treat-
ment of whys, even with the extended constructs for
motivation in them, has been found to be more of
blueprint nature (Wagter et al., 2012) and descriptive
rather than prescriptive (van Bommel et al., 2007).
The prescription of course of action in the face of
change is obtained using causal relationships in sys-
tem dynamics models, whereas in intentional models
it is obtained using intentional relationships as shown
in Table 1. Causality denotes that there is a evolution
relationship between two elements, i.e., if one entity
changes over time then there will be change in the en-
tity it is connected to. Intentionality on the other hand
implies actor autonomy, i.e., it is up to an actor to de-
liver the responsibility that it is assigned to. Also, the
nature of satisfaction of goals and soft goals in inten-
tional models is qualitative; in the intentional model-
ing literature this is denoted by word satisficed rather
than satisfied (Yu and Mylopoulos, 1994). Core ele-
ments in system dynamics such as stocks and flows

are meant to deal with quantities (Sterman, 2000).
Correspondingly, the course of action prescribed by
intentional modeling and system dynamics is respec-
tively qualitative and quantitative in nature.

Furthermore, EA models are specifically cre-
ated for communication and shared understanding of
whats and hows. They need to be highly compre-
hensible to be of any use at all. Intentional models
also capture whats and hows that are relevant to the
problem at hand in terms of strategic dependency di-
agrams and whys in terms of strategic rationale di-
agrams. System dynamics models on the other hand
are created with simulation purpose in mind. As such,
representation of problem, here in the context of EA,
in terms of stocks and flows is often not meant for
comprehension as much as for ease of simulation and
scenario playing.

From the comparison in Table 1, it is clear that in
order to apply intentional and system dynamics mod-
eling for decision making in EA, it is better to treat
EA models as the version of truth and use intentional
and system dynamics models only as techniques to
solve specific problems.

The process of modeling an EA problem and its
solution using intentional and system dynamics mod-
els consists of 4 steps as enlisted below:

1. In the first step an intentional model is derived
from the EA model using EA and i* metamodel
mapping (Sunkle et al., 2013b).

2. In the second step, key questions pertaining to
what stocks, flows, and variables in system dy-
namics models mean are used as described in Sec-
tion 3.2 and a system dynamics model is manually
arrived at from the intentional model.

3. Inthe third step, problem scenarios are played out
and the results of dynamics analyses are trans-
ferred back to intentional models, by modifying
original intentional models.

4. The changes in the intentional models are trans-
ferred back to original EA model. This revised
EA model is actionable in the sense that it models
the solution to the problem.

The next section begins with the description of EA
and intentional metamodel mapping. Then the pro-
cess of deriving system dynamics model from inten-
tional model is described.

3 COMBINED TREATMENT

3.1 From EA to i* Models

We presented metamodel mapping of ArchiMate’s ge-

25

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

neric metamodel (Group, 2012) with a metamodel of
i* (Lopez et al., 2011) in (Sunkle et al., 2013b). We
map the active structure elements (ASESs) in Archi-
Mate metamodel such as business actors, application
components, hardware and system software, as well
as interfaces to actors in i*. The behavior elements
(BEs) such as business processes, and business, ap-
plication, and infrastructure services are mapped to
tasks in i*. The passive structure elements (PSEs) are
mapped to resources in i*, which are essentially infor-
mational or physical entities used or created by actors.
This mapping enables the modeler to say that ASEs
use or create PSEs while performing BEs as means to
an end that is goal(s) and/or soft goal(s). For a de-
tailed account of this mapping, reader is referred to
(Sunkle et al., 2013b). Suffice it to say that with this
bidirectional mapping it is possible to perform inten-
tional what-if analyses on as-is EA model and use the
best alternatives to construct the to-be EA model.

3.2 From i* to System Dynamics

Whys are represented in i* using goals and soft
goals. Goals are considered to be ends which can be
achieved using tasks which may constitute alternative
means. All elements of an i* model contribute to soft
goals on varying level of positive or negative scale,
satisficing them to varying extent. Essentially, both
soft goals and goals may be considered stocks with
rising or falling levels or values of satisfaction level.

If we treat goals and soft goals as stocks then rest
of the elements in i* can be treated as variables that
affect the flow of achievement and satisfaction lev-
els of goals and soft goals. This process of map-
ping requires interaction of the modeler in the sense
that questions pertaining to general nature of stocks,
flows, and variables need to be asked of i* elements.
We enlist the pointers which may be used in doing so
below:

In the SR model of an actor, the goals and soft
goals are treated as stocks.

For stocks that were goals in i*, a generic flow
is to be considered and modeler should question
what affects this flow. For instance, means-ends
links in SR models indicate that tasks that are used
as means to achieve a goal and clearly affect the
flow of achievement as it were. In this case, the
alternatives become variables.

For stocks that were soft goals in i*, inflow and
outflow captures satisfaction input and output.
Modeler should question as to how these are af-
fected from other elements that are stocks and
flows in the system dynamics model being built

up.

26

r

Q> Teripiates

Function Implementation = Modelingand =
peciicat Ard Code Geneation
Created

X

D>, <ASTxT Choices

Solution <D Developer 0] CodeGenerationCollabor...TD)
(+Technical) [
Architect

AdexReflexive Mastercraft
Metamodeling Modeling Tools

SSSSSSS MDE Tooling Interface

Framework

nt relation
n relation
lation
elation
lation

IR EERRERD IR R
DfUH“—“—”a“—UUE%EESS&"-(&tE%-(-(
DEFPEIASHME S DRSO NN NANNNSY
Figure 1: As-Is Enterprise Architecture Model of a Model-

driven Software Development Unit.

An actor’s system dynamics model is to be en-
capsulated in some form. of container available
in the system dynamics modeling software being
used. We are using iThink’s evaluation versiont
to demonstrate current work. We use module con-
struct in iThink which are self contained mod-
els that can be connected to other models. Each
module in a given larger model defines a cohesive
model of its own which fits our purpose.
Strategic dependencies may be captured by mod-
ule connectors. We use assigned module inputs in
iThink which enable driving self contained mod-
ules to take input from and provide output to other
modules.

It is presumed that actors involved in the problem
with the as-is state of EA are already singled out in
the i* models. Given that i* models look at whys
qualitatively, we have chosen to represent satisfaction
level as the entity to be quantified. If actual quanti-
ties of i* elements are already available they may be
used as raising and lowering the satisfaction level in
specific ways and these may be accommodated in the
inflow and outflow equations. The above steps are re-
peated until all entities in SR and all dependencies in
SD models are covered. At the end, a system dynam-
ics model is obtained in which the whys that were at
a point in time can now be played out over time.

The next section presents the case study and ap-
plies the complete process specified in Section 2 to
the problem of addressing vulnerability of actors.

We use evaluation version of system dynamics
modeling software iThink http://www.iseesystems.com/
softwares/Business/ithinkSoftware.aspx.

Using Intentional and System Dynamics Modeling to Address WHY s in Enterprise Architecture

4 CASE STUDY

As the case study, we re-imagine our MDE-based
software development unit as an enterprise. For
the purposes of evaluation, we split the evolution of
MDE-based software development into two stages
and take them as as-is (before) and to-be (after) states.

The first state in our MDE-based software devel-
opment unit was characterized by the use of a unified
metamodel for specifying application, database, and
GUI layers of an application, model-aware language
for the developers to write business logic (Kulkarni
et al., 2002), and separation of concerns in model-
driven development for design strategies, architec-
tural specifics, and technology platforms using as-
pects (Kulkarni and Reddy, 2003). The second state
was characterized by the use of multi-user multi-site
repositories for models and code with versioning and
configuration management support (Kulkarni et al.,
2010). The organizational change that prompted tran-
sition from the first state to second state was the de-
mand for onsite development of very large business
applications.

We capture the network of three roles namely, a
solution architect (SA), an MDE specialist (MDESp),
and a developer (D) in a given team. The current state
of the enterprise is captured in the EA model of Figure
1. Using the mapping summarized in Section 3.1 and
explained in detail in (Sunkle et al., 2013b), we obtain
an i* model of the current state of enterprise explained
above (Sunkle et al., 2013b, Figure 4).

As more and larger application requirements came
to us, we had to change the nature of teams work-
ing initially on small applications to number of sub-
teams performing several specialized tasks. These
sub-teams needed to share a single main version of
models and code in order to ensure that different mod-
els are consistent with each other and business logic
is consistent with the models. The problem that we
faced was how to enable secure and synchronized ac-
cess to models and code for large teams?.

MDESp, D, as well as SA teams need to make use
of models and code; MDESp needs access to mod-
els and metamodels, D needs to access code, and SA
can search models and metamodels to make informed
decision about choices of hDi, hAi, and hTi for cur-
rent application. We use this setting to review concept
of vulnerability which we analyze later using both in-
tentional and system dynamics models of the problem
stated above.

4.1 Analysis of Strategic Vulnerability

The concept of vulnerability was introduced in the

-, .
.\‘
Developer
- NS S,
Solution —
rite Business
Logic in Q++ n Q l MDE
++ Template Spemallst

Architect
s Flnd Swml\ar Sid ‘Generate Code !
Y A U N i ___{ Usngunified i
K Chm:es for — --—"‘ Metamedel and
‘-‘ Given <D> HoG P ——— -+ kS Buiding Blocks /4
N,
A:cesslme .

...........
,,,,,,,
~

Pruwde Access
Model toModes and .,
Repository] S,
System \.\

Multi-user
Operanuns be
Enabled

Use mdusma\
! S(vength Relational
i Database For Stunng
Models and Code

Create Fl\e based
Sturage Mechanism
Qurselves

e
Stovage

Support for
Models and

..........

Figure 2: Enabling Secure and Synchronized Access to
Models-Code for Large Teams.

context of intentional modeling in (Yu and Mylopou-
los, 1994). The basic idea is that a depender may be-
come vulnerable due to the failure of dependency. Of
particular importance is mechanism of assurance of
a commitment. Assurance means that there is some
evidence that a dependee will deliver apart from de-
pendee’s claim. An assurance mechanism does not
allow the depender to take action that can cause the
dependee to correct its behavior. Insurance mecha-
nisms on the other hand, reduce the vulnerability of
depender by having more than one dependee for the
same dependum. Apart from assurance and insurance
of a commitment, it is possible to make it enforce-
able, only if depender and dependee are reciprocally
dependent.

Intentional analysis of vulnerability (‘YYu, 2009)
may be performed by classifying dependencies as
open (failure does not affect depender), committed
(depender is significantly affected), and critical (de-
pender’s goals may fail) when dependee does not de-
liver. Critical dependencies may result in severe vul-
nerability on depender’s part.

We begin to investigate vulnerabilities of these ac-
tors with intentional model of the problem in the next
section.

4.2 Intentional Model

Evidently we needed to introduce a system whose

27

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

nommalized satistaction
of quick enablement

Secured Synchronize Aceess

0 Models and Code

Frovide Model Panitioning
Configuation Diff Merae abilties

Figure 3: System Dynamics Model for Model Repository
System’s SR Model.

main task is to provide access to models and code for
all these roles. Further requirement of this access are
that concurrent multi-user operations should be en-
abled.

Choosing either alternative in Figure 2 leads to
adding an actor in the form of a system, which is-a
(multi-user) model repository system (Kulkarni et al.,
2010). It can also be seen that the responsibility of
performing tasks that assure secure and synchronized
access to models and code is assigned to the actor
model repository system. The question with regards
to vulnerabilities of SA, D, and MDESp is, how would
it make them vulnerable from the as-is state in which
they were responsible for managing correct version
of models and code themselves to the to-be state in
which model repository system is responsible for the
same?.

From intentional model of Figure 2, it is clear
that with complete dependence on model repository
system for their respective core tasks, SA, D, and
MDESp are critically dependent on model repository
system. In other words, they are vulnerable in their
dependence on the model repository system. The
commitment is not enforceable since SA, D, MDESp
and model repository system do not depend on each
other for access to models and code. Yet, judgment
about dependence in this case is qualitative and there
is no way, due to the static nature of intentional mod-
els, to find out in what ways this vulnerability can be
removed and whether to apply some sort of assurance
mechanism or insurance mechanism. We could get
better idea about the scenario in Figure 2 if it was
played out. Next section describes how system dy-
namics modeling can be used for the same.

4.3 System Dynamics Model

We use the process described in Section 3.2 to manu-

28

ally arrive at system dynamics models from the inten-
tional models. Since the vulnerability analysis con-
cerns dependence of SA, D, and MDESp on model
repository system, we begin with the SR model of
model repository system shown in Figure 2 and we
obtain system dynamics model shown in Figure 3.
The goals and soft goals of Figure 2 are represented
using stocks and tasks are represented using vari-
ables that control inflow and outflows. For instance,
the goal Multiuser Operations be enabled and the
soft goal Secured Synchronized Access to Models and
Code are represented using stocks whereas the tasks
are shown using variables. The inflows or outflows
are programmed using a domain specific language
(DSL) in iThink that supports event based (discrete
or continuous) simulation.

Intentional model shown in Figure 2 also captures
individual actors along with their dependencies. The
system dynamics model shown in Figure 4 (Top) cap-
tures the notion of an actor in the form of a module,
e.g., SA, D, MDESp, and model repository system
are represented as modules: The directed arrows in
Top of Figure 4 show how each actor is dependent
on other actors. Note here that due to the modeling
software’s restrictions that modules can only commu-
nicate with modules, the mutual goal of Models and
Code Be Accessible is also represented as a module.
The directed arrow between ModelRepositorySystem
and Models and Code Be Accessible depicts how the
model repository system must provide access to mod-
els and code so that SA, D, and MDESp can do their
tasks.

The system dynamics models of Figures 3 and
Figure 4 (Top) help to analyze the vulnerability of
system over time instead of at a point in time. A sim-
ple step function is applied to the variable Provide ac-
cess to Models and Code in model repository system
module that simulates the scenario where the model
repository system cannot perform its core task during
certain part of the day.

By playing out this scenario, we see that the un-
derlying goals or soft goals of the model repository
system such as Facilitate Model manipulation and
Multiuser Operation be enabled fail resulting in non-
delivery of required dependum to other actors. For
instance, MDESp fails to perform its core tasks under
such conditions since it is dependent on accessibility
of models and code from the Model Repository Sys-
tem.

To actually see the evidence that using a backup
support system can remove the vulnerabilities of SA,
D, and MDESp, we create another module that repre-
sents such a system. Top of Figure 4 shows how this
new system tries to arrest any failure arising due to in-

Using Intentional and System Dynamics Modeling to Address WHY s in Enterprise Architecture

Solution Architect

Mde Specialist Dewveloper

NodelRepository Systep

®
13

ecured..els and Code 2: Quickly .. Code Storage 3: Multiuse. s be enabled 4: Facilitat...| Manipulation

1/ | |
A
et i
LA

0.00 6.00 12.00 18.00 24.0
Hours

BackupSytem
Figure 4: Top-Backup System as Insurance Mechanism
against Vulnerability of Model Repository System, Bottom-
Simulation of Backup System.

PRSI

———
____.
= e
e

hwhoms

-k
‘ﬁ

i::
Ll

accessibility of models and code in the model reposi-
tory system. The backup system only takes over dur-
ing those intervals when the main model repository
system fails to operate.

The simulation of the backup system is shown
at bottom of Figure 4 that clearly displays the inter-
vals and duration when the backup system operates.
With this new arrangement, the backup system and
the model repository system become complimentary
to each other. Consequently, actors whose reliance
on the model repository system was critical can now
perform their tasks without failure due to stoppage of
work.

4.4 Getting Back To EA Model

The scenario played out using backup system indi-
cates that it is beneficial to implement a backup sys-
tem that takes over when model repository system is
down. This is an insurance mechanism as we have
introduced another dependee, backup system, for the
delivery of the same dependum, (access to) models
and code. With the evidence that substantiates choice
of an insurance mechanism, it is time to reflect the
same in the original intentional model of Figure 2.
The process described in Section 3.2 is used to ob-
tain the corresponding intentional model. Figure 5
shows addition of backup system in the original set-
ting. SA, D, and MDESp are dependent on model

Genelate Code! I

|
: 1 ~ % ‘ Using Unified
i F\nd S\mia\ _| b 4 —\ Metamodel and
5 _, | Buidling Blocks. t
kY Chm(es for 4 I — ~. Vi
A Gven <D> [g~ ~ " Models and S o
., and <A> ey
hC (Clioks Accessble Z)\
’..»\ ‘_.‘.
Backup ‘-
System Provide Backup
A for Models and
1 Code.
Monitor Model)(

Repositon
R "/ Uninterrupt

Sefen FEE{ od Access
i— be \ded
Control be \ (Overtake) Work in
Transfered Background Once
Model Repository

Systern is Onle.

Figure 5: Intentional Model with Addition of Backup Sys-
tem.

repository system which is monitored by the backup
system. Model repository system is dependent on
backup system during downtime for the control to be
transferred. At such time only SA, D, and MDESp
become dependent on the backup system which pro-
vides access to models and code.

We can now use metamodel mapping in (Sunkle
et al., 2013b) to get to EA model which captures the
state that employs the solutions to the main problem
of being able to support large development teams.

The EA model shown in Figure 6 builds on the
model illustrated in Figure 1. Solution to the ba-
sic problem adds an actor, multi-user repository sys-
tem. This is represented as an application component
in Figure 6 via actor-ASE mapping. This applica-
tion component is assigned to the application function
that carries out model-code storage and model ma-
nipulation and realizes the application service which
is used by SA, D, and MDESp via repository inter-
face (shown as (1)). In the event of model reposi-
tory system not working, the control is transferred to
backup system which becomes responsible for pro-
viding SA, D, and MDESp with access to models and
code (shown as (2)).

The newly constructed EA model is actionable in
the sense that it can be used for clarifying the fo-
cus with regards to ASEs that are responsible to im-
plement the solutions to problem(s) caused by the
change, in what ways the solution impacts the way
ASEs interact and how BEs to which they are as-
signed get affected in turn. Both target architectures
of business and application layers are captured along

29

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

Function
Specification
Created

Implementation =>»
Architecture
Generation

~
N
O
N
~

b Pt
I T ‘«T> Choices

Modeling and =
Code Generation
A <.,
= e
s JUPUPES! Sh

-
-

L ~

-

e =
e

-
Q++ Templates

A

Solution o0
{+Technical)
Architect

Medel Repository

MDE Specialist <2

CodeGenerationCollaborati.. 08 Developer <

>

i T

3

/

Multi-user
Model Repository Repository
Data Service

Interface

Model Repository —2

Adex Reflexive

MDE Toolset D
9 Metamodeling

MDE Tocling
Interface

Framework

Model
Repository

Manipulation System

; . @$
Model-Code ()

i
'
:
! Storage and Model
'
'
'
'

Mastercraft
Modeling
Tools

Model-driven ([}
Engineering

CADETUUS SENI(?

Code Storage
Backup

'
Model Storage,
Models, Update
Metamodels, Code

Model and [~

Repository
Interface

Backup
System
Infrastructure

PCs *

(FINode [Artifact
¥ System Software &3 Communication Path
[T Device 279 Network
— Infrastructure Interface

() Infrastructure Function

[] Backup System

> Infrastructure Service

Figure 6: To-be EA Model of a Model-driven Software Development Unit. (For legends other than technology layer, please

refer to Figure 1.)

with technology (hardware infrastructure) necessary
to support these architectures as shown in Figure 6.

The way we have approached the combined usage
of the EA, intentional, and system dynamics model-
ing languages is to restrict the scope of the problem
to be solved from EA to i* and then from i* to sys-
tem dynamics. With this arrangement, even though
EA model is substantially large, latter models are cre-
ated for specific problems to begin with. We suggest
that modeler should scope the problem to be solved in
terms of which actors’ tasks and outputs are affected
by given change and therefore should be involved in
further modeling.

The total effect of using intentional and system
dynamics models in concert is that cause-effect re-
lationship between source and destination elements
(from system dynamics models) may or may not take
place depending on the intention of the owning actor
(from the intentional models). Our approach brings
together intentional and system dynamics models and
initial results suggest that shortcomings of either ap-
proach mentioned above are addressed to some extent
by their combined use.

30

5 RELATED AND FURTHER
WORK

Intentional models lack sequential time based evolu-
tion of strategic rationale. They are also not good at
reasoning about consequences of non-delivery of de-
pendum. When a dependum is not delivered, the re-
sponsibility of serving the dependum to the depender
may be delegated to another dependee. This delega-
tion aspect is also less explored in intentional mod-
eling, referred to as second and third level of actor
autonomy (Du, 2007). System dynamics models on
the other hand lack basic or first level of actor auton-
omy in the sense that freedom of actors in choosing
alternative course of action cannot be represented out
of the box.

The treatment of vulnerability aspect generally
considers SD models as primary artifacts of analy-
sis (Yu and Mylopoulos, 1994; Yu, 2009). We found
in our experiments that the operationalization of the
process of achieving the dependum captured in the
SR model should also be included in the analysis
since vulnerability arises from the possibility of non-
delivery of dependum.

The combined usage of intentional and system dy-
namics models for treatment of whys suggested here
is unique and to the best of our knowledge has not

Using Intentional and System Dynamics Modeling to Address WHY s in Enterprise Architecture

been studied earlier in the context of enterprise mod-
eling.

The core of our work is applying purpose-
specific techniques (Sunkle et al., 2013b) to machine-
manipulable and analyzable enterprise models (Sun-
kle et al., 2013a). Further work is therefore imagined
in being able to express intentions and system dynam-
ics not only in models of enterprise but also in models
of actual systems and processes of enterprise and au-
tomating the bidirectional traceability between these.

6 CONCLUSIONS

Current enterprises face the daunting task of manag-
ing several aspects like business, IT systems, and in-
frastructure when responding to a change. While EA
frameworks provide descriptive treatment of all these
aspects, intentional and system dynamics models pro-
vide prescriptive treatment, suggesting courses of ac-
tion so that desirable qualities are maintained as enter-
prise implements change. By combining intentional
and system dynamics modeling and using them in the
context of EA, we have shown that their respective
shortcoming are addressed to some extent and a more
rounded treatment of whys of enterprise is obtained.
Starting with an EA model of the as-is state of enter-
prise, an actionable to-be state model is obtained via
intermediate intentional and system dynamics mod-
els. While scalability can be major concern, our ex-
periments suggest that by scoping the modeling activ-
ity at each subsequent transition, it is possible to make
use of decision making capabilities of both intentional
and system dynamics models.

REFERENCES

Du, Y. (2007). Incorporating system dynamics model-
ing into goal-oriented adaptive requirements engineer-
ing. In Proceedings of the 2007 International Confer-
ence of the System Dynamics Society, Boston, Mas-
sachusetts, USA.

Golnam, A., Van Ackere, A., and Wegmann, A. (2010). In-
tegrating system dynamics and enterprise modeling to
address dynamic and structural complexities of choice
situations. In Proceedings of The 28th International
Conference of The System Dynamics Society.

Group, O. (2012). ArchiMate 2. 0 Specification. Van Haren
Publishing Series. Bernan Assoc.

Kulkarni, V. and Reddy, S. (2003). Separation of con-
cerns in model-driven development. IEEE Software,
20(5):64-69.

Kulkarni, V., Reddy, S., and Rajbhoj, A. (2010). Scaling
up model driven engineering - experience and lessons

learnt. In Petriu, D. C., Rouquette, N., and Haugen,
@., editors, MoDELS (2), volume 6395 of Lecture
Notes in Computer Science, pages 331-345. Springer.

Kulkarni, V., Roychoudhury, S., Sunkle, S., Clark, T., and
Barn, B. (2013). Modeling and enterprises - the past,
the present, and the future. In MODELSWARD’13.
Accepted.

Kulkarni, V., Venkatesh, R., and Reddy, S. (2002). Gener-
ating enterprise applications from models. In Bruel,
J.-M. and Bellahsene, Z., editors, Advances in Object-
Oriented Information Systems, volume 2426 of Lec-
ture Notes in Computer Science, pages 309-315.
Springer Berlin / Heidelberg.

Lopez, L., Franch, X., and Marco, J. (2011). Making ex-
plicit some implicit i* language decisions. In Jeusfeld,
M. A., Delcambre, L. M. L., and Ling, T. W., editors,
ER, volume 6998 of Lecture Notes in Computer Sci-
ence, pages 62-77. Springer.

Sterman, J. D. (2000). Business Dynamics: Sys-
tems Thinking and Modeling for a Complex World.
Irwin/McGraw-Hill.

Sunkle, S., Kulkarni, V., and Roychoudhury, S. (2013a).
Analyzable enterprise models using ontology. In Pro-
ceedings of CAISE Forum. Accepted.

Sunkle, S., Kulkarni, V., and Roychoudhury, S. (2013b). In-
tentional modeling for problem solving in enterprise
architecture. In Proceedings of International Confer-
ence on Enterprise Information Systems (ICEIS). Ac-
cepted.

van Bommel, P., Buitenhuis, P., Hoppenbrouwers, S., and
Proper, E. (2007). Architecture principles - a regu-
lative perspective on enterprise architecture. In Re-
ichert, M., Strecker, S., and Turowski, K., editors,
EMISA, volume P-119 of LNI, pages 47-60. Gl.

Wagter, R., Proper, E., and Witte, D. (2012). A practice-
based framework for enterprise coherence. In Proper,
E., Gaaloul, K., Harmsen, F., and Wrycza, S., editors,
PRET, volume 120 of Lecture Notes in Business In-
formation Processing, pages 77-95. Springer.

Yu, E. S. K. (2009). Social modeling and i*. In Borgida, A.,
Chaudhri, V. K., Giorgini, P., and Yu, E. S. K., editors,
Conceptual Modeling: Foundations and Applications,
volume 5600 of Lecture Notes in Computer Science,
pages 99-121. Springer.

Yu, E. S. K. and Mylopoulos, J. (1994). Understanding
“why” in software process modelling, analysis, and
design. In Fadini, B., editor, Proceedings of the 16th
International Conference on Software Engineering,
pages 159-168, Sorrento, Italy. IEEE Computer So-
ciety Press.

Yu, E. S. K., Strohmaier, M., and Deng, X. (2006). Explor-
ing intentional modeling and analysis for enterprise
architecture. In Tenth IEEE International Enterprise
Distributed Object Computing Conference (EDOC)
Workshops, page 32.

31

