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Abstract: This paper presents a two-step optimization scheme developed to find the optimal operational settings of 
operational systems seeking to optimize their operations using multiple performance measures. The study 
focuses on two conflicting performance measures, the Throughput Rate (TR) and the Mean Flow Time 
(MFT). First an empirical approach is used to uncover the near optimal values of the performance measures 
using an experimental design procedure. Second, an analytical procedure is deployed to find the exact 
optima using values the near optima found in the first step as target. The analytical procedure uses a non-
linear regression meta-model derived from simulation outputs and compromises the two conflicting targets 
while minimizing the loss incurred to the overall system. This loss is expressed in the form of a multivariate 
version of the Taguchi quadratic loss function. Although the framework as presented in this paper is derived 
by analyzing a manufacturing system through discrete-event simulation, the procedure however, can 
successfully be applied to any processing system in various industries including food production, financial 
institutions, warehouse industry, and healthcare. 

1 INTRODUCTION 

The choice of performance measures in a processing 
system depends highly on management policy and 
decision-making. Multiple objective measures are 
needed to describe the dynamic nature of a 
production system. A single performance measure is 
not enough to capture and characterize the overall 
performance of a system. Also, optimizing a system 
with respect to one single objective only may lead to 
sacrificing other objective(s) of interest. For 
example the objective of minimizing in-process 
inventory might be in conflict with that of 
maximizing a production rate. Literature on the 
design and operation of flexible manufacturing 
systems has shown that most of the past research 
studies have used only a single performance measure 
in their objective functions (Blogun et al., 1999). 
From this point of view, the multi-objectives 
approach has recently been of interest in a wide 
range of design and control problems for 
manufacturing systems, such as machine selection, 
choice of the manufacturing or processing system 
configuration architecture, control of automated 
storage and retrieval systems, and overall scheduling 

scheme. 
The selection of the most appropriate setting of 

input factors in order to attain the required process 
objective/target (mean) is of major interest in a 
variety of production environments. The problem is 
referred to as the “optimal setting parameters” 
because it is concerned with selecting the best 
setting of parameters for an optimal operation of the 
system. It worth it to mention that the generic term 
of system is used in this study to designate a 
process-oriented infrastructure including a 
warehouse, a manufacturing system, or a operating 
theater in a hospital. Selecting the optimal setting is 
critically important since it affects not only 
performance measures, operations and/or production 
costs but also the loss incurred to the system in the 
event of a performance deviation from the company-
identified target values. On the other hand, these 
operational targets need to be frequently reviewed as 
a result of the unpredictable variations in the shop 
floor conditions and the fluctuating nature of the 
market place.  

Clearly, there is a true need and a real 
opportunity to apply a combined scheduling 
methodology to dynamic and stochastic scheduling 
problems with the objective of reducing the overall 
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production cost. 
This paper analyzes a hypothetical flexible 

manufacturing system using simulation and proposes 
a unique and robust scheme in designing, modeling 
and optimizing systems in a very effective way. The 
reader is referred to other author’s publications 
(Bardhan and Tshibangu, 2003), (Tshibangu, 2005), 
(Tshibangu, 2006) for a detailed description of the 
hypothetical manufacturing system considered in 
this study. The system is modeled with a total 
number of 9 workstations including a receiving and 
a shipping stations. These 9 stations process are 
served by a fleet of AGVs while processing fifteen 
part types, each with a different processing time. 
The optimization procedure as developed in this 
paper is carried out at two levels. First an empirical 
approach is used to uncover near-to-optimal values 
of the individual performance criteria of interest. 
These values are subsequently used as targets in the 
second and more analytical level of the optimization 
procedure during which a multi-criteria optimization 
technique eventually uncovers the true optimal 
setting of the system parameters. Specifically, the 
analytical optimization is applied to a regression 
model equation (meta-model) derived from 
simulation output results. The approach used in this 
study takes advantage of a robust experimental 
design methodology to render the system immune to 
noise. The purpose is to present a pragmatic 
approach that may enhance the overall performance 
of process-oriented systems including manufacturing 
systems, warehouse, airport traffic and hospitals. 

2 RESEARCH METHODOLOGY 

The various phases of the robust design 
methodology as applied in this paper is the same as 
proposed in the literature (Montgomery 2012), 
(Taguchi, 1987) except that in this study, after 
completing the simulation experiments and 
collecting alll pertinent data the following additional 
steps are taken in order to accommodate the 
subsequent optimization procedures as proposed in 
this research: 
(1) Calculate the mean and the variance with respect 

to noise factors 2
wrtnf(i) for each treatment i (row 

of the inner array) and for each performance 
measure of interest; this variance measures the 
variation in the performance criterion when there 
is a change in noise factors. 

(2) Compute and use log 2
wrtnf(i) of each 

performance measure to improve statistical 
properties of analysis. 

(3) Apply the normal probability plotting technique 
to the calculated mean and the log 2

wrtnf of each 
control factor setting to determine the 
significance of the main factors and their 
interaction effects on each performance measure 
of interest. 

(4) Develop and implement the four-step 
optimization procedure to predict the factors and 
their associated settings that will simultaneously 
minimize 2

wrtnf and optimize the mean of the 
performance measures. Adjust and fine-tune the 
settings to the most appropriate economical 
levels. 

(5) Perfom a second analytical optimization 
procedure using a Bi-variate Quadratic Loss 
Funtion (BQLF) inspired from Taguchi 
Methodology 

(6) Run confirmatory simulation experiments. 
(7) Make the conclusions on the multi-criteria 

optimization procedure. 

2.1 The Robust Design Formulation 

Implementing the robust design formulation requires 
the following steps: 
 Define the response or dependent variables 

(performance measures of interest), the 
independent variables (including the controllable 
factors and the uncontrollable factors or source 
of noise ). 

 Plan the experiment by specifying how the 
control parameter settings will be varied and how 
the effect of noise will be measured. 

 Carry out the experiment and use the results to 
predict improved control parameter settings (e.g., 
by using the optimization procedure developed in 
this study). 

 Run a confirmation experiment to check the 
validity of the prediction. 

 

This study takes advantage of a robust design 
configuration inspired by the Taguchi robust design 
methodology. However, because of the high amount 
of criticism against Taguchi’s experimental design 
tools such as orthogonal arrays, linear graphs, and 
signal-to-noise ratios, this study avoids the use of 
Taguchi’s statistical methods but rather uses an 
empirical technique developed by the author. 

The paper develops and proposes an optimization 
scheme by studying an AGV-served FMS and 
evaluating its overall performance using the mean 
flow time (MFT) and the throughput rate (TR). The 
study considers as controllable variables 5 design 
parameters, designated by Xi (i=1…5), namely: i) the 
number of AGVs (X1), ii) the speed of AGV (X2), iii) 

A�Two-step�Empirical-analytical�Optimization�Scheme�-�A�Simulation�Metamodeling�Approach

559



the queue discipline (X3), iv) the AGV dispatching 
rule (X4), v) and the buffer size (X5). These variables 
have a direct impact on the performance of machines 
and material handling (AGVs) as they are 
considered in most literature not only as the most 
expensive (some even as the most sensitive) 
components of the overall system and also as 
potential sources of operational disturbances. The 
natural values assigned to these design variables are 
displayed in Table 1. In this study, the controllable 
parameters X1 through X5 to set and tested at two 
setting levels (min and max).  

The principal sources of noise tested in this study 
(and also considered as the most commonly 
investigated and documented in the reported 
literature (Montgomery, 2013) are: i) the arrival rate 
between parts (or orders), (X6), the mean time 
between failures of the machines (X7) and the 
associated mean time to repair (X8). These factors 
are also tested at two levels in combination with 
each control factor (X1 through X5) at each setting 
level. 

Table 1: Natural values and setting of control factors. 

Designation Control Factor 
Low 

Level (-1) 
High 

Level (+1) 

X1 Number of AGVs 2 9 
X2 Speed of AGV 100 200 
X3 Queue Discipline FIFO SPT 
X4 AGV Dispatching Rule FCFS SDT 
X5 Buffer Size 8 40 

Table 2 depicts settings and natural values for noise 
factors as assigned and simulated in the experiments. 
For both controllable and noise factors, the coded 
levels are (-1) and (+1) for the low and high level, 
respectively. 

2.2 Planning the Experiment 

Planning the experiment is a two-part step that 
involves deciding on how to vary the parameter 
settings and how to measure the effect of noise 
(Kacker and Shoemaker, 1986). Using a full 
factorial experimental design with the 5 controllable 
factors X1, X2, X3, X4, and X5 set at two levels in 
combination with three noise factors X6, X7, and X8, 
varied at two settings would require 25 x 23 = 256 
simulation runs.  

Two-level, full factorial or fractional factorial 
designs are the most common structures used in 
constructing experimental design plans for system 
design variables. Montgomery (2013) recommends 
appropriate fractional factorial designs of resolution 
IV or V in the design of robust manufacturing 

systems. In this study a two-level fractional factorial 
design of resolution V, denoted 2v 

5-1 has been used. 
This design requires only 16 runs. Across the full set 
of noise factors, the implemented robust design 
leads to a total of 16 x 8 = 128 simulation runs 
(instead of 256 as required by a full factorial 
design). The study also decides to use a robust 
design of resolution V in order to allow an 
estimation of both main factors and two-way 
interactions effects, as they are necessary and very 
crucial for the first step of the proposed optimization 
scheme, and referred to as the empirical step. 

A standard statistical experimental design, also 
known as a data collection plan is normally 
advocated and recommended when conducting 
simulation experiments. The data collection plan 
used in this study was inspired from Genichi 
Taguchi’s strategy for improving product and 
process quality in manufacturing (Taguchi, 1986). It 
has been first used and proposed by Wild and 
Pignatiello (Wild et al., 1991). Their proposed 
design strategy includes simultaneous changing of 
input parameter values. Therefore, the uncertainty 
(noise) associated with not knowing the effect of 
shifts in actual parameter values such as shifts in 
mean inter-arrival times, mean service times, or the 
effect of not knowing the accuracy of the estimates 
of the input parameter values, is introduced into the 
experimental design itself. Tshibangu, 2003, 2005 
provides detailed information about this specific 
data collection plan. This plan has been also used in 
this study to run the simulation experiments and 
effectively collect the statistics thereof.  

Table 2: Natural values and setting of noise factors. 

Designation Noise Factor Low Level (-1) High Level (+1)
X6 Inter-arrival EXPO(15) EXPO(5) 
X7 MTBF EXPO(300) EXPO(800) 
X8 MTTR EXPO(50) EXPO(90) 

3 EMPIRICAL OPTIMIZATION 

Because flexible manufacturing systems and any 
other process-oriented systems are subject to various 
uncontrollable factors that may adversely affect their 
performance, a robust design of such systems is 
crucial and unavoidable. The author has developed a 
four-step optimization procedure to be used 
simultaneously with the robust design as first step of 
the optimization scheme as proposed in this study: 

Let iy  represent the average performance 

measure across all the set of noise factors 
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combination, averaged across all the simulation 
replications for each treatment combination (or 
design configuration) i. Let log 2

wrtnf(i) be the 
associated logarithm of the variance with respect to 
noise for that particular treatment i. Kacker and 
Shoemaker, 1986 recommend to use the logarithm 
of the variance in order to improve statistical 
properties of the analysis, and to employ the 
“effects” values and/or graphs in association with 
normal probability plots and or ANOVA procedures 
to identify and partition the following three 
categories of control factor vectors: 

Assuming that we have partitioned three 
categories of control vectors as non-empty sets Xv

T 
containing the factors that have a significant effect 
on the variances, Xm

T containing factors significant 
on the means (and their interactions), and X0

T as the 
set of the factors that affect neither the mean nor the 
variance, respectively, then a four-step empirical 
optimization procedure may be implemented as 
follows: 
1. Step 1 
Identify the vector Xv

T and adjust the controllable 
factors members of this set to their values that 
minimize 2

wrtnf
. of the performance measure y. 

 

2. Step 2 
Identify vector (Xm

T )1 of factors having a significant 
effect on the mean y and set the controllable factors 

members of this set to their level values that 
optimize the mean y  of the objective performance 

y. Also, identify (Xm
T)2 vector of factors having a 

significant effect on mean y  and on the variance 

2
wrtnf simultaneously and set the factor members of 

this set to their level values that optimize the mean 
y if this setting does not act in opposition with the 

minimization of the variance. Otherwise, find a 
compromise between minimizing the variance and 
optimizing the mean as suggested in Step 4 where 
the final setting is to be decided. 
 

3. Step 3 
Identify the vector X0

T and set the control factors 
members of this set to the values of their interaction 
with members of vector Xv

T that minimize the 
variance or log 2

wrtnf or the values of their 
interaction with members of Xm

T
 that optimize the 

mean y . Otherwise, set the factors at their 

economical settings. 
4. Step 4 
Conduct a small follow-up experiment to find trade-
off between members of (Xm

T)2
B containing factors 

with effects on variance and mean acting in 
opposition and or the overall economical settings. A 

suggestion from this study is that in finding the 
overall economical setting, the step involves only 
those factors that have the greatest effect on either 
the variance 2

wrtnf or the mean y . 

Using the above-developed procedure with 
related plots and tables, and applying it to the data as 
derived from the experiments for the two 
performance measures, i.e., Mean Flow Time (MFT) 
and Throughput Rate (TR) performance measures, 
the following coded results are obtained: MFT = 
0.3666 units time/part and TR = 3000 parts/month 
(100 parts/day). These values will be considered as 
the optimal target values to be achieved in the 
second level of the optimization procedure (multi-
criteria optimization).  

3.1 Simulation Meta-modeling 

Tshibangu (2005) redefines the purpose of meta-
modeling as the method by which to measure the 
sensitivity of the simulation response to various 
factors that may be either decision (controllable) 
variables or environmental (non-controllable) 
variables (Kleijnen, 1977).  

After completing the robust design process, the 
128 simulation experiments were carried out as 
initially recommended in the experiment plan and 
the main statistics describing the system were 
collected following the proposed data collection 
plan. These values were subsequently fed into a non-
linear regression meta-model to derive the estimate-

equations ˆTRy  and ˆMTFy  for the throughput rate 

(TR) and the mean flow time (MFT), respectively. 
Meta-models are usually constructed by running a 
special RSM (Response Surface Methodology) 
experiment and fitting a regression equation that 
relates the responses to the independent variables or 
factors. 

3.2 Determination of Variances, Main 
and Interaction Effects 

A well-planned experiment makes simple the 
analysis subsequently needed to predict the 
improved (optimal) parameter settings. In this study, 
for each of the simulated design configurations i, 
eight measurements (over the set of noise factor 
combinations) were taken for each performance 
measure of interest and averaged across the 

replications to obtain iy  for each ith row of the inner 

array. Sixteen design configurations and five center-
points (for a total of 21) designs were simulated over 
a set of eight noise factor combinations, leading to 

A�Two-step�Empirical-analytical�Optimization�Scheme�-�A�Simulation�Metamodeling�Approach

561



21x8 =128 runs. The results of these various 
simulation experiments, too large to be displayed in 
this paper, but available upon request, were 
subsequently averaged up across the three 
replications.  

This research intends to minimize the variances 
of the performance measures with respect to the 
noise factors for each run. The reported variances 

across the text, denoted [ 2  (wrtnf) ] is calculated as 
follows: 

2 (wrtnf)i  
2

1

1
, 1,2,... ,

1

f

ij i
j

y y j f
f 

  
   (1)

where yij is the observed value of a given 
performance measure for a particular design 
configuration i and a noise factor configuration j; 
y is the average value of a given performance 

criterion considering that particular design 
configuration i. In this study, f = 8 (eight noise 
combinations).  

Table 3: Effects of Control Factors MFT Variance. 

Control 
Factors 

Effect on MFT 
log 2

wrtnf 
at Level (+1) 

Effect on 
MFT log 
2

wrtnf 

at Level (-1) 

Absolute Value 
Difference 

between High 
and Low levels 

X1 1.6159 1.657502 0.04155 

X2 1.6081 1.558286 0.04982 

X3 1.4921 1.781325 0.28920 

X4 1.6338 1.639566 0.00568 

X5 1.6032 1.670230 0.06701 

Table 4: Effects of Control Factors on MFT Mean. 

Control 
Factors 

Effect on MFT 
Average 

Level (+1) 

Effect on MFT 
Average at Level 

(-1) 

Absolute 
Value 

Difference 
X1 8.238767 25.97234 17.73358 
X2 12.62954 20.89605 8.26650 
X3 13.86047 20.35063 6.49016 
X4 16.97108 17.24002 0.26893 

X5 17.61093 16.60017 1.01076 

The objective is to make the variances of the 
responses (performance measures) as small as 
possible while the means are brought to their 
optimum settings, which would consists of a 
minimum for the MFT and a maximum for the TR. 

The study then computes the values of iy  and log 

2
(wrtnf)i at each design configuration. Subsequently, 

the effects of each control factor on the overall mean 
and the variance (or log 2

wrtnf) are calculated by 
using the normal probability data plotting technique 

(Box et al., 1978). Tables 3 and 4 display the effects 
on the MFT variance and mean, respectively. 

As it can be seen, these effects on the mean and 
the variance are also partitioned into high level and 
low level effects. The same procedure is applied to 
the throughput rate TR and the results, not displayed 
in this paper, are available upon request. The process 
is conducted for all the control factors. Then each 
controllable factor is tested at two levels, the 
magnitude of its effect on variability is measured by 
the difference between the average values of log 
2

wrtnf at those settings. The computed effects at high 
and low levels will be used in identifying those 
controllable factor levels (settings) that have the 
largest effect on log 2

wrtnf. The same procedure is 
also applied to the mean values to determine the 
effects of the control parameters. Note that a visual 
summary of the magnitude of each control factor’s 
effect can also be used for analysis of various 
effects. From analysis of the results in Table 3 for 
example, it can be seen on one hand for instance (in 
bold) that the parameter X3 (queue discipline) has 
the most significant effect on the MFT variability. 
These results agree with previous findings (Egbelu 
and Tanchoco 1984); (Sabuncuoglu, 1989); 
(Bardhan and Tshibangu 2003). On the other hand, 
the effect at high level is compared to the effect at 
low level, and the better setting of each control 
parameter is the one that gives the smaller average 
value of log 2

wrtnf. Table 4 results indicate that 
factor X1 (the number of AGVs), when set at its high 
level, has the most significant effect on the mean 
value of the MFT (see results in bold). Once 
identified, these factors will be set at the settings 
(levels) that minimize log 2

wrtnf., i.e., X1 and X3 at 
high settings. Proceeding the same way for the TR 
similar results are obtained and the settings 
implemented. 

Now that the first empirical optimization step has 
revealed the near optimal settings of the system, it 
becomes appropriate to move to the second step of 
the optimization procedure, referred to in this study 
as the analytical phase of the proposed optimization 
scheme. For one to perform the analytical 
optimization step, a mathematical model of the 
system is required. This paper proposes to feed the 
simulation results into a non-linear regression meta-
model to derive the mathematical model. Applying 
the meta-modeling technique to the flexible 
manufacturing system under study in this research 
yield the following equations for the estimates of 

two performance measures of interest, ˆTRy and 

ˆMTFy . 
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1 2

2 2
3 5 1 2

2 2 2
3 4 5 1 2

1 3 2 3 3 4

ˆ 90.7617 20.6726 2.5357

2.6977 0.5617 4.712 9.042

8.732 4.712 7.923 7.458

3.5513 0.5315 0.3304

TRy x x

x x x x

x x x x x

x x x x x x

  

   

   
  

 
(2)

1 2

3 4 5

2 2 2
1 2 3

2 2
4 5 1 2

1 3 1 4 1 5

2 3 2 4 3 5

4 5

ˆ 4.6503 8.8668 4.4760

3.2451 0.1345 0.5054

14.1731 1.5309 1.3399

0.4519 1.4569 5.3816

0.7952 0.0335 0.504

0.1457 0.3251 0.4863

0.7655

MFTy x x

x x x

x x x

x x x x

x x x x x x

x x x x x x

x x

  
  

  

  
  
  


 
(3)

where 54321 ,,,, xxxxx are the coded units for the 

operating variables X1, X2, X3, X4, and X5, 
respectively.  

4 ANALYTICAL APPROACH 

The Taguchi’s loss function discussed in the 
literature (Montgomery, 2013) for a single objective 
criterion can be extended to the case of multiple 
quality characteristics or objective performances, 
and then referred to as a “multivariate quality loss 
function”. The author (Tshibangu, 2006) shows how 
the traditional and simple QLF can be extended to a 
multivariate QLF.  

Let yj, and Tj be the performance measures of 
interest (j =1 to Q, where Q is the total number of 
performance measures), and the target for objective 

performance jy , respectively, and be denoted by y = 

(y1, y2,…, yQ)T and T = (T1, T2,…, TQ)T under the 
assumption that L(y) is a twice-differentiable 
function in the neighborhood of T.  

Assuming that each objective performance has a 
mean (x)i and a variance (x)i

2, then, after some 
mathematical developments and manipulations 
(Tshibangu, 2005), (Ribeiro and Elsayed, 1995) the 
expected value of the quadratic loss function for a 
bivariate QLF can be derived and written as follows: 

   

  

2
2 2

1 2
1

12 1 1 2 2

( , ) i i i i
i

E L y y T

y T y T



       

    

  (4)

The first term of the second hand side of Eqn. (4) is 
known as a weighted sum of mean squares, while 
the second term is called the gradient term. It is 

important to note that three aspects are of interest in 
formulating robust design systems: 

(i) deviation from targets; (ii) robustness to 
noise; (iii) robustness to process parameters 
fluctuations. A weighted sum of mean squares is 
appropriate to capture (i) and (ii), while gradient 
information is necessary to capture (iii). This 
research is particularly interested in deviation from 
target and robustness to noise. Therefore, only the 
first term of Equation (9) is needed.  

The next step consists of applying the derived 
QLF to the FMS meta-models Eqns. (2) and (3) 
obtained from simulation outputs. In order to 
determine the optimal input parameters, an objective 
function is developed from Eqn. (4), following a 
framework adopted by Ribeiro and Elsayed (1995).  

Because of the robust design configuration 
adopted during the experiments, it can be assumed 
that the variability of the system due to fluctuations 
of the operating parameters is negligible, then, for a 
given treatment, the loss incurred to a system as the 

result of a departure of the system performance jy


 

from the target Tj can be estimated as: 

 2

1

ˆ ˆ( )
Q

j j j yj
i i

L i w y T 



       (5)

where ( )L i is the loss at treatment i; jw  is a weight 

to take into account in order to consider the relative 
importance of a individual performance measure 

jy (j=1,2,…Q), ˆ ,j yjy  are respectively the 

predicted (estimate) mean and standard deviation of 

the performance measures of interest jy , and jT is 

the target for the system performance measure jy . 

L(i) is the objective function to be minimized. In this 
particular form, the objective function has two 
terms. The first term of the objective 

function,  2
ˆ j jy T , accounts for deviations from 

target values. The second term, 2ˆ yj  accounts for 

the source of variability due to non-controllable 
factors (noise).  

5 RESULTS 

For the twenty-one treatment combinations 
simulated in this study, the resulting normalized 
values are displayed in Table 5 showing the values 
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of jy


 and 2log yj  at each design configuration 

for each of the two primary performance criteria of 
interest in this study. Note that only the throughput 
rate (TR) seeks a maximization. The mean flow time 
(MFT) and the variances of both TR and MFT need 
be minimized. Therefore, the normalization 
procedure of these values will consist of maximizing 
the inverse. Further analysis of output results 
indicates that design configurations labeled #3, 7, 
16, 20, and 21 are the most cost effective as they 
yield the least cost. This finding suggests that 
operating the studied system under any of these 
design settings would be far more economically 
attractive than operating the same system under 
other design settings even when they are also 
identified as the most robust designs. For example, 
the difference between the most cost-effective 
design (configuration design #3) and the most 
expensive one (design #13) represents 
approximately 56 monetary units in normalized 
values. This may represent a significant amount of 
money if the value of the monetary loss coefficient 
factor is important. Using for example $10.00 value 
for the loss coefficient will lead to a difference of 
$123.00 in expected losses between design # 3 and 

design # 13 representing 
38

(1 )*100 76%
161

  of 

savings when operating under design # 3 setting 
parameters. Design #13 has been used for the 
comparison because it is among the strongest design 
candidates in terms of robustness of the system (i.e., 
insensitivity to noise factors). This example shows 
that significant savings (e.g. 76%) can be generated 
when switching ample from design #13 to design #3.  

6 CONCLUSIONS 

This stud first uses an empirical optimization 
procedure to avoid the controversial Taguchi 
statistical tools. Then a metamodel is derived from 
the simulation outputs. The study also derives a 
multivariate quadratic loss function (QLF) from the 
traditional Taguchi loss function in order to capture 
the loss incurred to the overall system when 
attempting to optimize a set of two objective 
performances (throughput rate TR and mean flow 
time MFT). Hence, the QLF is referred in this study 
to as a bivariate quadratic loss function (BQLF).  

Table 5: Normalized input data and predicted loss. 

Design 
Configuration 

TR 
TR log 
(Var) 

MFT 
MFT 
log 

(Var) 

Pred. 
Loss 

e.g. K=
$10.00

 Norm Norm Norm Norm L(i) 
Loss in 

$ 
Design 1 0.056 -0.001 0.034 0.008 21.158 212 
Design 2 0.020 0.845 0.009 0.032 59.481 594 
Design 3 0.068 -0.007 0.079 0.075 3.792 38 
Design 4 0.018 -0.212 0.012 0.007 57.632 576 
Design 5 0.056 -0.002 0.036 0.010 18.947 189 
Design 6 0.032 -0.097 0.030 0.013 54.482 545 
Design 7 0.068 -0.007 0.079 0.075 3.792 38 
Design 8 0.034 -0.795 0.021 0.046 53.631 536 
Design 9 0.035 -0.299 0.020 0.051 52.277 522 
Design 10 0.065 -0.004 0.095 0.114 6.142 61 
Design 11 0.019 0.477 0.011 0.010 58.599 586 
Design 12 0.033 1.429 0.023 0.026 54.035 540 
Design 13 0.057 -0.002 0.087 0.088 16.118 161 
Design 14 0.049 -0.001 0.026 0.006 31.707 317 
Design 15 0.066 -0.005 0.081 0.076 4.958 50 

Des 16 0.068 -0.007 0.079 0.075 3.792 38 
Design 17 0.058 -0.002 0.087 0.088 15.599 156 
Design 18 0.049 -0.001 0.026 0.006 31.137 311 
Design 19 0.019 -0.295 0.009 0.043 59.900 599 
Design 20 0.068 -0.007 0.079 0.075 3.792 38 
Design 21 0.068 -0.007 0.079 0.075 3.792 38 

Next (second level of the optimization scheme), the 
BQLF is analytically applied to the metamodel 
derived from the simulation outputs to fine-tune the 
ptimization process em with respect to the two 
objective performances. From the results obtained in 
step 1 of the optimization scheme as developed in 
this paper, optimum/target values of 100 parts/day 
and 0.3666 units time/part (in coded data) have been 
fixed for the TR, and MFT, respectively.This two-
level optimization procedure lead to a solution that 
yield a minimum cost to be incurred to the overall 
system as a penalty for missing the objective targets. 
The values of 98 parts/day (-2% from target) and 
0.3459 units time/part (+5.6% from target) are 
obtained as optima, for TR and MFT, respectively. 
These maximum outputs will be otained under a 
overal system configuration that is considered to be 
the most robust and economical, leading to the 
following settings in natural values: Number of 
AGVs (X1): 6; Speed of AGV (X2): 150 feet/min; 
Queue discipline (machine rule) (X3): SPT; AGV 
dispatching rule (X4): STD; Buffer size: (X5): 4. 
Although, conceptually validated on a flexible 
manufacturing system, the above-developed and 
proposed optimization scheme can be easily 
extended to other process-oriented industries 
including banks, warehouse, ticketing lines at 
airports, restaurants, healthcare facilities, 
phamaceutical industries, and others.  
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