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Abstract: Large crowd simulation is becoming a very important field of study for many researchers. In this paper we 
endeavour to study large crowds and their interactions with each other and the environment. The interaction 
is based on a very simple Least Effort Model inspired from a real world pedestrian modelling scenario. The 
simulation of the crowd is computationally very expensive and GPU modelling and simulation is a viable 
alternative computational means to accelerate the simulation process. Compute Unified Device Architecture 
or CUDA is used for GPU implementation. 

1 INTRODUCTION 

Simulation of crowd movement is very important in 
the areas of traffic and pedestrian interaction, game 
design, animation and within crowd management 
industries. Pedestrian crowds are ubiquitous and can 
be observed in many different scenarios such as 
crosswalks, streets, sporting and other mass 
gathering events, etc. When crowd densities become 
very large the situation can become vulnerable to 
unpredictable behaviour with a chance for disaster 
and so it is very important to obtain knowledge of 
this type of situation. As it is not possible to emulate 
this situation in the real world, simulation is possibly 
the only solution for understanding behaviour of 
large crowds. Crisis situations such as building 
evacuation (Pelechano and Badler, 2006) are also 
very important areas of study with added difficulty 
due to the potential of panic. Researchers are finding 
simulation of pedestrian movement to be very 
promising and as such, there are several models to 
simulate the movement of pedestrians in routine 
and/or emergency situations. There are several 
pedestrian models such as, cellular automata (Blue 
and Alder, 2001; Weifeng and Hai, 2007), social 
force models (Helbing, 1991; Helbing et al., 2002) 
and agent based models (Cherif and Chighoub, 
2010) each having their own advantages and 
disadvantages. 

While modelling the movement of pedestrians 
there are several things that are important to keep in 

mind. Pedestrians in their movement typically have 
a goal towards which they move but at the same 
time they try to avoid collisions with other 
pedestrians. Taking these factors into account 
pedestrians often try to make least effort decisions to 
reach their goals or destinations. In this manner 
pedestrians are able to have a somewhat optimized 
path to their destination.  

In our model the environment is divided into 
regular cell grids and each agent or pedestrian 
occupies a cell grid. The model is based on Least 
Effort Model (LEM) (Sarmady et al., 2009). The 
agents move by minimizing deviation along an 
optimal path to their goal. In our model there are 
minor modifications to this basic model that are 
implemented. 

Modelling pedestrian movement is 
computationally expensive and the computation time 
increases with the number of agents. To gain an 
advantage in computation, a Graphics Processing 
Unit (GPU) (Sanders and Kandrot, 2010; Kirk and 
Hwu, 2010) is often used. GPU were developed for 
graphics purposes and take advantage of many 
processing cores. The introduction of Compute 
Unified Device Architecture or CUDA (NVIDIA, 
2012) by NVIDIA opened avenues for general 
purpose GPU (GPGPU) parallel programming. 
GPGPU programming is becoming a viable 
alternative in fields which are very computationally 
expensive. Modelling of crowds is one of those 
applications well suited to GPUs. This work 
addresses modelling difficulties and accelerated 
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crowd behaviour modelling using a GPU. 
Considerable emphasis is placed on attempting to 
make CPU and GPU ABMs match (Wilensky and 
Rand, 2007).  

The paper is organized as follows, in section 2 a 
discussion about the LEM is provided, in section 3 
there is a brief discussion about GPU and CUDA, in 
section 4 the detailed GPU implementation of the 
crowd model is given. Section 5 contains the 
speedup obtained using GPU and section 6 contains 
the simulation results. 

2 LEAST EFFORT ALGORITHM 
AND MODEL DESCRIPTION 

In our model, the environment is divided into a 
lattice of rigid regular cells. Pedestrians or agents 
(Hayes, 1999) are placed in the environment and 
occupy a single cell. For simplicity all agents are of 
same size. At the beginning of a simulation the 
agents have an initial position and also a target or 
goal. They move in the environment and try to reach 
their goal or destination using a least effort model 
(LEM).  
A situation is emulated where the agents are on one 
side of the environment and they are trying to reach 
the other side of the environment. Agents 
(pedestrians) have 8 neighbour cells as shown in 
Figure 1. 

 
 
 
 
 
 

 

Figure 1: Pedestrian agent with 8 neighbourhoods. 

The movement of the pedestrian is dependent on 
distance of the cell which is nearest to the target. 
The cell which is nearest to the target has the highest 
probability of becoming occupied and the cell which 
is farthest will have the lowest probability of next 
becoming occupied by the pedestrian. This is the 
basic mechanism that makes the agent move along a 
path which would take the least effort. In reality 
pedestrians are free to take a path which is not 
necessarily nearest to the target and so 
randomization is incorporated in the model.  
Prior to making a decision each pedestrian 
determines the distance of each unoccupied adjacent 

cell from the target and then ranks them according to 
their distance. The lowest rank denotes the adjacent 
cell which is nearest to the target and the highest 
rank is the adjacent cell which is farthest from the 
target. After that a random number is generated to 
decide which cell to select. The agent then moves to 
the cell chosen.  

Ci = (1- ni){Dmin/Di} 
 (1)

Dmin = Min(Di), n {0,1}, Di ≠ 0      

In equation (1) Di is the distance of all the 
neighbouring 8 cells from the target and Dmin is the 

minimum Di value. This distance only gets 
calculated for those cells which are empty as ni 
becomes 1 occupied cells and Ci evaluates to zero. 
So, essentially Ci gets calculated for the cells which 
are empty but becomes 0 for the occupied cells. 
Then all the calculated Ci  are ranked according to 
their distances in ascending order. A random number 
is generated for each of the agent to select a Ci. In 
order to generate a random number, a normal 
distribution is used with a mean value of 0 and a 
standard deviation of 3. By using the above 
configuration numbers from 0 to 7 are generated.  
Before calculating the Cis, a check is performed to 
determine whether the agent is already lying in the 
target column and if the cell in the next row is 
empty. If it is empty then there is no further 
checking is done and agent makes move forward 
towards their target. 
As mentioned earlier, in this model the pedestrians 
are placed on one side of the environment and try to 
move to the other side of the environment. In this 
scenario, the pedestrians have the goal to reach the 
other side of the environment only. So to achieve 
this goal the traditional LEM is modified and the 
target is simply the opposite side. As such, whenever 
they are in a certain column that column is their 
target column. 

3 OVERVIEW OF GPU 
ARCHITECTURE AND CUDA 
PROGRAMMING MODEL 

NVIDIA® introduced the first GPU in 1999. But 
endeavours to exploit the GPU for non-graphical 
purposes started in earnest from 2003. With the 
introduction of Compute Unified Device 
Architecture (CUDA) in 2007 NVIDIA® broadened 
their scope of general purpose GPU computing. 
GPUs are now used for many computationally 
intensive tasks. In this section we briefly discuss the 
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GPU features and CUDA architecture. Figure 2 
shows a modern CUDA capable GPU architecture. 
GPUs are mainly based on Single Instruction 
Multiple Data (SIMD) architecture massive numbers 
of threads for data level parallelism can be launched. 
GPUs are organized into highly threaded streaming 
multiprocessors (SMs) which are the building blocks 
of the device. 

The number of SMs varies from one GPU to 
another. This project is based on the FERMI™ 
architecture (GEFORCE™ 560ti). This particular 
card consists of 14 multiprocessing units, each 
consisting of 32 cores for a total of 448 cores. Each 
of these SIMD cores is capable of carrying out large 
data parallel applications. 

 

Figure 2: CUDA scalable GPU architecture (NVIDIA 
2012). 

Inside the GPU there is a 2 gigabytes of graphics 
double data rate (GDDR) DRAM memory which is 
an off chip memory also known as device or global 
memory. Apart from device memory there is other 
memory like shared memory which is much faster. 
This memory behaves like L1 cache on-chip 
memory and it is shared among the SIMD cores. 
Each multiprocessor has a fixed number of registers. 
There are also other memory like constant memory 
and texture memory used for specific applications. 

3.1 CUDA Programming Model 

Figure 3 shows the CUDA programming model. 
CUDA is basically a C/C++ program with GPU 
extensions. The programming model of CUDA 
offers the GPU as data-parallel co-processor to the 
CPU. In the CUDA context, the GPU is called the 
device, whereas the CPU is called host. At first the 
data is copied to the global memory of the device 
and then kernel functions are launched from the host 
program and get executed on the GPU. The threads 

of the CUDA application are arranged into 3D 
blocks and the blocks are arranged into 3D grids. 
Each thread has their unique identity and they can be 
accessed based on their block identity and size. Each 
of these thread blocks is computed in one of the 
multiprocessors and multiple thread blocks can be 
executed on same multiprocessor. However, there is 
a limit to the maximum number of threads that can 
be launched. Threads in a thread block are arranged 
in a group of 32 threads which is known as warp. 
This is the smallest unit in which the threads are 
scheduled and executed on a multiprocessor. 

 

Figure 3: CUDA programming/memory model (iXBT 
Labs 2008). 

4 GPU IMPLEMENTATION 
OF LEAST EFFORT MODEL 

In our model the agents are placed on the sides of 
the environment and each tries to reach the opposite 
side of the environment. The whole environment is 
made up of rigid cells of the same size, dividing the 
whole environment into rows and columns. We have 
considered an environment which is square of size 
500x500 and the environment is divided into cells 
each of unit size. Each of agents is considered to 
occupy a space of 1 unit. Two cases are considered 
for simulation. In the first instance, the agents are 
placed on two opposite sides and in the second 
instance; the agents are placed on four opposite sides 
of the environment. In this section we briefly discuss 
the first case only as the basic implementation 
method remains same. 

4.1 Implementation Details  

At first the agents are placed in the environment in a 
random fashion up to a maximum number of rows. 
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Then the agents are updated with their target. For an 
agent placed in the bottom of the environment the 
initial target is the top row. In the CUDA program 
each agent is considered to be a single thread. The 
total number of threads launched is equal to total 
number of agents present in the environment. First, 
it is required to ensure that enough threads can be 
launched to cover all the agents present in the 
environment. Then the threads are arranged into 
grids and blocks. In each of the simulation steps a 
kernel function is launched which carries out the 
agent movement.  

Inside the kernel function, before carrying out 
the LEM algorithm, an agent checks whether it is 
placed in the target column. If true, then it verifies 
whether the immediate cell in the forward direction 
is empty or not. If empty then no further calculation 
is performed and the agent proceeds forward. 
Otherwise, a cell gets selected using LEM. The 
pseudo code is shown below:   

if(target_col == present column &&  
 forward_cell == 0) 

   move one cell forward 
else 
   Calculate LEM. 

No movement is observed when all neighbouring 
cells are occupied. 

4.1.1 Challenges in Implementation 

The primary motivation of the implementation of the 
model on the GPU was to gain speed in the 
simulation while emulating the situation where the 
pedestrians are capable of decision making. 
Decisions of each agent are considered to be 
independent of the other. The biggest challenge in 
implementation of the algorithm was to keep the 
total number of agents same, without any loss. As 
mentioned, each of the agents is launched as single 
thread and all of them are executed in parallel. So a 
situation could arise when two agents try to access 
the same environment position at the same time and 
a loss of agent could occur. To avoid this kind of 
scenario, atomic features of CUDA are used.  

In the atomic operations when one of the threads 
is performing an operation on a particular memory 
location, residing either in global or shared memory, 
then it does not get interfered with by operations of 
other threads. An atomic function performs a read-
modify-write operation on 32 or 64 bit word which 
is residing in global or shared memory. Inside the 
kernel function, the agent first finds out the number 
of neighbouring empty cells, calculates the distance 
of the empty cell from the target and arranges them 

in the ascending order. After that a random number 
is generated which decides the cell number to be 
selected. Once the cell is chosen, the movement of 
the agent is achieved by calling the atomicExch() 
function. In this way the numbers of agents are kept 
intact in every simulation step and no agent 
(memory) gets overwritten throughout the operation. 

4.1.2 Generation of Random Numbers 

Inside the kernel function, after the agents calculates 
the distance of the available neighbouring empty 
cells to the target and arranging them in the 
ascending order, a random number is generated. 
Random numbers are generated from a normal 
distribution. A separate random number is obtained 
for each agent. This is obtained by using cuRAND 
library of which comes with the CUDA SDK. 
Before the start of the simulation, a setup kernel is 
launched once for the total number of pedestrians 
present in the environment.  Inside this setup kernel 
there is the cuRAND application programming 
interface (api) curand_init(). This kernel function is 
essentially responsible to generate a seed which is 
later fed to the main random number generator. The 
random number from the normal distribution is 
generated by using the curand_normal() api. This 
normal distribution api is responsible for generating 
a random number having a mean of 0 and standard 
deviation of 1. But the result is multiplied by 3 to 
obtain the desired standard deviation. 

5 SPEEDUP 

Simulation of the LEM for a large number of agents 
is very computationally intensive. The primary 
motivation of using GPU for the implementation of 
the LEM algorithm is to accelerate the simulation 
process. The time for the simulation process is 
measured for both the CPU and GPU 
implementations. The time is only measured for the 
simulation and not for any memory transaction in 
case of the GPU. As mentioned, the GPU used is 
NVIDIA® GEFORCE™ 560ti and CPU used is 
CPU is Intel Xeon E3-1280 (server grade). 

For the GPU, time for the simulation process is 
measured by using cudaevent functions. The 
computation time both for CPU and GPU is given in 
the Figure 4a and the speedup for the simulation is 
provided in the Figure 4b. In Figure 4a the time is 
measured in seconds along the Y-axis with the the 
number of agents along the X-axis. This speedup is 
measured using two groups of agents only (bi-
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directional movement). The measurement of the 
computation speed is initalized with 1,000 agents 
and it is measured up to 100,000 agents with an 
increment of 1,000 agents in each comparison. 
In Figure 4b illustrates the speedup graph. When the 
number of agents is 1000 the speedup is 1x. A 
speedup of 10x is achieved when the number of 
agents is 7000. The typical speedup is approximately 
8x as the agent population increases further. 

 

Figure 4a: Time computation of CPU and GPU. 

 

Figure 4b: Speedup graph. 

6 SIMULATION AND RESULTS 

In this section, a brief discussion of the simulation is 
provided followed by a discussion about the results. 

6.1 Simulation 

The visualization of the simulation is performed 
using MATLAB™. In Figure 5a the scenario depicts 
the initial situation of agents placed at opposite ends 
of the environment. In this instance, the total number 
of agents in the environment is 100,000. The 
objective of black agents is to move to the bottom 
and blues objective is to do the opposite. Figure 5b 

and c depicts the simulation in the time step of 3,000 
and 6,000 respectively. 

The asymmetry seen is somewhat disconcerting 
as similar results were not apparent from simulations 
when run on the CPU. At this time suspicions are on 
synchronization issues associated with each agent 
being run as a thread. Although difficult to debug on 
the GPU it may also be implementation of the next 
cell that is providing a directional bias. 

 

Figure 5a: Initial placement of 100, 000 agents. 

 

Figure 5b: Simulation of 100,000 agents in time step 
3,000. 

 

Figure 5c: Simulation of 100,000 agents in time step 
6,000. 

More interesting dynamics are shown in Figures 
6a, 6b and 6c when agents are placed on 4 sides of 
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the environment. Figure 6a is the initial position of 
the agents; Figure 6b and 6c are the simulation of 
agents in time step of 3,000 and 6,000 respectively. 
The total number of agents placed on 4 sides of the 
environment in this scenario is 160,796. The 
asymmetry of the flow is apparent resulting from the 
asymmetry of the initial conditions as well as from 
the underlying model implementation. 

 

Figure 6a: Initial placement of 160,796 agents. 

 

Figure 6b: Simulation step 3,000. 

 

Figure 6c: Simulation step 6,000. 

6.2 Results 

In this section a brief discussion of throughput of the

 agents is provided. The throughput is measured by 
considering only two groups of pedestrians at 
opposite sides. The number of rows up to which the 
agents would occupy the environment initially is 
kept fixed. The time required for the throughput i.e. 
the agents to cross the other side of the environment 
is measured. The total number of time steps is also 
kept fixed at a maximum of 6000. Initially the 
throughput results are obtained for only 1000 agents 
(500 agents on each side). Then the next result is 
carried out for 2000 agents (1000 agents on each 
side) so on and so forth until the number of agents 
reaches to 100,000. Figure 7a depicts the throughput 
when the number of agents is 1000. 

In Figure 7a, when the number of agents is 1000 
the distribution seems to be almost uniform. All the 
agents are seen to cross the environment between 
time steps of 290 to 390. In Figure 7b, c, d and e the 
number of agents are 25,000, 50,000, 75,000 and 
100,000 respectively. 

In Figure 7b, when the number of agents is 25, 
000 a peak is observed between the time steps of 
935 and 945 with a maximum throughput of 
approximately 1,100. When the number of agents 
increased to 50,000 the peak is observed between the 
time steps of 2020 and 2030 with a maximum 
throughput of approximately 1,250.  

 

Figure 7a: Throughput of 1000 agents. 

From Figure 7e, when the number of agents 
increased to 100,000 the throughput takes an almost 
a steady rise with the peek at the time step of 3,990 
and then a sudden fall. There are 918 agents who are 
not able to cross the environment within the given 
time step of 6,000.  

Figure 8a shows the mean of the throughput of 
the agents. The x-axis on the graph is the increase in 
the number of agents starting from 1,000 up to 
100,000 with an increment of 1,000 in each step and 
y-axis the average time taken. Figure 8b shows a

390
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Figure 7b: Throughput of 25,000 agents. 

 

Figure 7c: Throughput of 50,000 agents. 

 

Figure 7d: Throughput of 75,000 agents. 

heat  map  surface  plot.  From  the  surface  plot, the 
mean plot of Figure 8a is clearly seen. From the top 
view it is clear that when the density is low then the 
throughput of the agents is concentrated in a small 
region which spreads in a non-Gaussian manner as 
the density increases. 

The periodic behaviour of the throughput is 
believed to be an artefact of the computation on the 
GPU. The  cause  of these phenomena  is  still  being  

 
Figure 7e: Throughput of 100,000 agents. 

 

 

Figure 8a: Mean of throughput time for all agents. 
 

 
Figure 8b: Top view of the 3D surface plot. 

investigated. From Figure 8b it is observed that the 
distribution  spreads  along  x-axis, with the increase 
in the number of agents. This spread however is 
heavily skewed.  With  the increase of the number of 
agents (measured along y-axis) the peak throughput 
values in some cases occurs at lower time (measure 
on the x-axis). This causes the graph of Figures 8a 
and 8b to take an unexpected and artificial periodic 
shape. One of such instance is shown in Figure 9. In 
Figure 9 peak of the throughput of 43,000 agents is 
less than that of 35,000 agents illustrating the 
periodic nature of Figure 8a and 8b. 
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These anomalies are systematic computation 
artefacts and would not seem to be real phenomena 
associated with crowd movement. We are again 
attempting to resolve this issue. Even in light of the 
anomalies and model discrepancies agent based 
modelling of pedestrians appears to be well suited to 
GPGPUs. 

 

Figure 9: Comparing throughput of 35,000 and 43,000 
agents 

7 FUTURE WORK 

In future work, in addition to concentrating on 
model matching and validation, it would be 
desirable to incorporate some psychological state in 
each agent to achieve a more realistic world 
scenario. There would also be some changes in the 
implementation of the CPU where we would utilize 
all the cores available on the CPU. The latest release 
of CUDA 5 also has dynamic parallelism that can be 
implemented on the KEPLER architecture. The GPU 
that has been used here has the FERMI architecture. 
As such, there are plans to use a GPU card with the 
KEPLER architecture. In addition, the obvious 
asymmetries in the simulations require further 
investigation. 
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