
RTCAN
A Real-time CAN-bus Protocol for Robotic Applications

Martino Migliavacca, Andrea Bonarini and Matteo Matteucci
Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano, Milano, Italy

Keywords: Real-time Communication, CAN-bus, Robot Design, Distributed Architecture for Robots.

Abstract: Robots are distributed systems where different devices perform specific tasks and need to exchange data to
run the overall system. In this paper, the communication requirements of robotic systems are summarized,
highlighting which characteristics are relevant to the different tasks and showing the limits of the present com-
munication protocols. Then, RTCAN is presented: a new real-time CAN-Bus protocol for robotic applications,
which aims at combining the advantages of different approaches to communication scheduling. RTCAN takes
into account time-triggered communication derived from control loops, guaranteeing temporal determinism,
as well as event-triggered communication by sensors, which are transmitted with low latency. An implementa-
tion of the protocol is available as open-source software library, which can easily be ported to new platforms.
Finally, results from benchmarks performed on actual hardware are reported, showing the ability of RTCAN
in handling heterogeneous communications.

1 INTRODUCTION

Robots are distributed systems where different de-
vices perform specific tasks and need to exchange
data to run the overall system. The distributed ap-
proach is becoming common also to encourage hard-
ware reuse (Bonarini et al., 2012), thus speeding up
the development of new robotic systems, as it has
been done since years by software developers (Bruyn-
inckx, 2001; Quigley et al., 2009). In a distributed
architecture, a key aspect is how communication re-
quests are handled: should they be triggered by time
or by events? How priorities should be assigned to
different data sources? Do we need a static or a dy-
namic network configuration? There are many fields,
e.g., factory automation, automotive networking, or
sensor networks, where answers to these questions
can be easily picked out, and one approach to commu-
nication scheduling can be recognized as preferable.
It is not so for robotic applications, where it is hard
to define which communication paradigm is the best,
as different requirements are needed by the different
components of a complex robotic system.

In this paper, we present a new CAN-Bus protocol
focused on robotic applications, which aims at com-
bining the best characteristics of different approaches
to communication scheduling, taking in account time
determinism, fast event response, and flexibility.

2 TIME-TRIGGERED AND
EVENT-TRIGGERED
COMMUNICATION

The choice between time-triggered and event-
triggered communication paradigms to design real-
time systems has been subject to a long de-
bate (Kopetz, 1993; Obermaisser, 2004), which
highlighted advantages and drawbacks of both ap-
proaches.

A time-triggered design leads to predictable tem-
poral behavior, since each communication occurrence
is planned at design time. This requires a detailed
analysis of the overall system, which adds complexity
to its design and limits further system expansions. On
the other side, a-priori scheduling leads to temporal
determinism of communication, guaranteeing quality
of service. To improve flexibility, a centralized sched-
uler can be exploited performing online admissibility
control. Depending on the scheduling policy adopted,
an online scheduler can lead to high computational
requirements.

On the other hand, an event-triggered design does
not need a-priori knowledge about the system to
schedule communication, thus leading to a much
more flexible design. As a consequence of such a
flexibility, a much more extensive testing is required

353Migliavacca M., Bonarini A. and Matteucci M..
RTCAN - A Real-time CAN-bus Protocol for Robotic Applications.
DOI: 10.5220/0004484303530360
In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2013), pages 353-360
ISBN: 978-989-8565-71-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



to verify that the system can handle communication
requests under different load situations. An advan-
tage of event-triggered designs is, generally, a better
resource exploitation with respect to time-triggered
designs, with higher achievable throughputs (Albert,
2004).

2.1 Communication Requirements in
Robotic Systems

A first source of communication in a distributed
robotic system are control loops, which need to ex-
change data between sensors and actuators. These
data transfers are, generally, periodic, deterministic
and known at design time. Control loops are highly
affected by the presence of jitter (Pèrez et al., 2003),
which introduces variable delay and, thus, may in-
duce overshoots of the control action and instabil-
ity. Another common source of data transmission is
the broadcast of system status, like a heartbeat sig-
nal, to suddenly halt the system if a failure happens.
The system status could be updated asynchronously
on change, but updating it periodically is generally a
safer solution: if the status is not received, every com-
ponent of the system can enter a safe mode. This kind
of periodic communication are best handled in a time-
triggered way, to schedule transmission occurrences,
preventing collisions and reducing jitter.

Besides the sensors used in control loops, in a
robotic system, we find other kinds of data sources;
for instance, proximity sensors and bumpers produce
useful data only when triggered by some event, like
approaching an obstacle, and the most important fac-
tor is to react to new reading as quick as possible.
If sensor readings are transmitted periodically, the
only way to reduce the worst case latency is to in-
crease the update frequency, which leads to a waste of
bandwidth when data are not relevant. Using event-
triggered transmissions saves bandwidth and, gener-
ally, reduces latency. Other sources of non periodic
data are planners, which can be triggered by some
event (e.g., a new goal) and their execution may be
not constant in time. Again, to save bandwidth and re-
duce latency, an event-triggered messaging paradigm
is preferable to transmit the output of a planner.

As a conclusion, in robotic systems both peri-
odic, time-triggered, and sporadic, event-triggered,
data transmissions are needed, thus a protocol which
combines the two communication paradigms is desir-
able.

2.2 Scheduling Time- and Event-
Triggered Traffic on the CAN-bus

To connect the components of a distributed system a
bus approach is preferable with respect to point-to-
point architectures, reducing wiring complexity and
making it easy to add devices to the network (Bonar-
ini et al., 2011). Among the available bus commu-
nication standards, one of the most common is the
CAN-Bus, which has been developed for automotive
applications and is implemented by almost all micro-
controller manufacturers, making it a good choice for
distributed robotic systems.

The CAN-Bus features a carrier-sense multiple-
access (CSMA) media access control (MAC), which
is based on the ability of CAN controllers to detect
the bus status while transmitting. Data are transmit-
ted through a binary model of dominant and reces-
sive bits; during the transmission of the arbitration
field of a CAN frame, if the controller recognizes a
dominant bit while it was trying to transmit a reces-
sive one, it knows that the arbitration is lost and the
node becomes a receiver. The CAN-Bus also focuses
on fault detection and tolerance, providing hardware
CRC calculation, automatic retransmission and many
other features, as it was designed for automotive ap-
plications where reliability is a primary requirement.

Due to hardware arbitration, the CAN-Bus is well
suited for fixed-priority event-triggered communica-
tion, where high-priority messages win arbitration
on low-priority ones; moreover, latency depends on
bus load and a high-priority transmission can always
be preempted by a higher-priority one. In order to
extend CAN-Bus applications to distributed control
systems, where temporal determinism and low jitter
are mandatory, several protocols to schedule time-
triggered traffic on the CAN-Bus have been presented
and reviews are available (Almeida et al., 2002; Nolte
et al., 2003; Coronel et al., 2005).

As discussed in the previous section, in robotic
applications we must take into account both peri-
odic and sporadic communication, derived from dis-
tributed control loops and asynchronous events, re-
spectively. To effectively combine the two paradigms,
a key aspect is temporal isolation: event-triggered
traffic should not compromise time-triggered tasks.
For these reasons, in this paper we do not consider
the protocols without temporal isolation, e.g., De-
viceNET (Noonen et al., 1994).

Looking for a CAN-Bus protocol that satisfies
the requirements of robot developers, we find two
proposals that are still actively developed: TTCAN
(time-triggered CAN) (Leen and Heffernan, 2002),
which has been standardized by the ISO Techni-

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

354



cal Commitee (ISO 11898-4), and FTT-CAN (Flex-
ible Time-Triggered CAN) (Pedreiras and Almeida,
2000; Almeida et al., 2002), proposed to handle time-
triggered and event-triggered traffic without loosing
flexibility.

TTCAN uses a time-division multiple-access
(TDMA) approach: temporal windows are defined
at design time, and each window can be reserved to
a single node for time-triggered messages (exclusive
windows), or left available for event-triggered mes-
sages (arbitration windows) where nodes compete for
bus access using CAN-Bus CSMA arbitration. To
align the local clocks on all nodes, reference mes-
sages sent by a master node are used. The interval
between two reference messages is called basic cy-
cle, each containing several time slots. Basic cycles
are then organized in a static calendar, named sys-
tem matrix, which repeats periodically. The system
matrix has two main drawbacks that severely limit
TTCAN flexibility: first of all, it is static and must
be entirely known by all nodes at boot time, thus,
adding a message to the system means reprogram-
ming all the nodes; moreover, basic cycles are orga-
nized in columns, defining the length of time slots,
which must be shared by all cycles, limiting the max-
imum throughput.

FTT-CAN is a CAN-Bus protocol which com-
bines TDMA and CSMA techniques to handle both
time triggered and event triggered traffic. FTT-CAN
takes also into account dynamic scheduling, allow-
ing online admission control and centralized schedul-
ing on the master node, which can be useful when
working with dynamic network configurations. In
FTT-CAN, a master node transmits periodic trigger
messages, aligning the local clocks on all nodes and
defining communication rounds called elementary cy-
cles (ECs). Within each EC the protocol defines
two consecutive, distinct communication phases: the
asynchronous window first, followed by the syn-
cronous window. During the asynchronous window,
event-triggered messages compete for the bus as soon
as they request a transmission, using the CAN-Bus
CSMA arbitration. The synchronous window is re-
served for time-triggered messages, and its duration
varies depending on the traffic scheduled within that
EC. Within the synchronous window, time-triggered
messages still use CSMA arbitration, meaning that
there is no predefined delivery order, but the syn-
chronous window length guarantees that all scheduled
messages will be delivered during the current EC. To
compute the length of the synchronous window, the
master node runs a scheduler at the beginning of each
EC and broadcasts the resulting duration in the pay-
load of the trigger message. In this way, temporal

isolation between event-triggered and time-triggered
communication is achieved. A limit of this approach
is that the minimum period for time-triggered mes-
sages is the period of the trigger message, limiting
the maximum frequency of periodic traffic. Reducing
the period of trigger messages leads to higher proto-
col overhead and lower throughput. Moreover, us-
ing CSMA arbitration within the synchronous win-
dow, the jitter of time-triggered messages is bounded
only by the duration of the synchronous windows they
are scheduled in, which can be long and may vary
at each communication cycle. FTT-CAN is designed
to allow different priority policies for CSMA arbitra-
tion (e.g., rate monotonic, deadline monotonic, earli-
est deadline first), but it is still not possible to achieve
high temporal determinism. The windowing mech-
anism increases the latency of event-triggered trans-
missions too, as grouping together the periodic mes-
sages means that all events occurred during a syn-
chronous windows will be delayed to the next com-
munication cycle.

2.3 Combining Flexibility, Low jitter
and Low Latency

From the analysis of TTCAN and FTT-CAN, we can
conclude that TTCAN achieves better temporal de-
terminism, transmitting time-triggered data in a pure
TDMA approach, while FTT-CAN is much more flex-
ible, with no shared and static schedule. On the other
hand, TTCAN requires a rigid and static schedule
which must be known by all nodes, sacrificing flexi-
bility, while FTT-CAN is affected by jitter and latency
due to the windowing system. From the point of view
of robot designers, we would like to exploit the best
of the two, which leads us to the proposal of a new
CAN-Bus protocol: RTCAN.

3 RTCAN

RTCAN is a real-time protocol for the CAN-Bus fo-
cused on the communication requirements of a dis-
tributed robotic system: limited jitter for control
loops, low latency to quickly react to events, and flex-
ibility to easily add features, thus networked nodes, to
an existing systems.

3.1 RTCAN Message Types

To support the requirements of a robotic system,
which have been pointed out in Section 2.1, in RT-
CAN we define three distinct types of messages, each

RTCAN�-�A�Real-time�CAN-bus�Protocol�for�Robotic�Applications

355



focused on the specific characteristics of their appli-
cation area:

• Hard real-time messages (HRT) are periodic mes-
sages, e.g., from distributed control loops; they
are deterministic, their deadlines are absolute in
time and should never be missed.

• Soft real-time messages (SRT) are triggered by
events, e.g. new sensor readings; they are not
periodic neither deterministic, but they need to
be transmitted with the lowest possible latency.
Deadlines are relative and if missed the system
can still operate.

• Non real-time messages (NRT) do not expire in
time, e.g., logging messages; they can be deliv-
ered without any latency constraints, exploiting
free resources when available.

HRT messages transmission is time-triggered, in a
pure TDMA approach, and bus access is reserved in a
calendar for each message occurrence. SRT messages
are transmitted only when the bus is not reserved, not
to interfere with HRT communication. Concurrent
SRT messages compete using the hardware CSMA
arbitration of CAN controllers, with priority assigned
by Earliest Deadline First scheduling. NRT messages
are handled as soft real-time ones, but their priority is
fixed and always lower than SRT messages.

3.2 RTCAN Communication Cycle

As in TTCAN and FTT-CAN, RTCAN exploits peri-
odic messages, named sync messages, sent by a mas-
ter node to align the local clocks on all nodes. This
is needed by the TDMA approach used to trigger the
transmission of HRT messages. The time between
two sync messages defines a communication cycle,
which is in turn divided in several time slots. Each
time slot can be reserved for the transmission of a
HRT message (or a part of it, if fragmentation is
needed) or can be available for SRT and NRT mes-
sages. Time slots are reserved by a centralized sched-
uler running on the master node (see Section 3.3),
which sends the reservation plan for the beginning cy-
cle to all nodes, in the payload of the sync message.
The reservation plan is a simple bit mask where a 1
denotes a slot reserved to a HRT message, while a 0
means that the slot is free for the CSMA arbitration
of other messages. In this way, HRT and SRT/NRT
messages are handled with temporal isolation, result-
ing in temporal determinism. Time slots length is ap-
plication dependent: it should be at least as long as an
empty CAN 2.0B frame, and no longer than a full one
(from 64 to 128 bit-times, plus the overhead of bit
stuffing imposed by the CAN-Bus). The maximum

number of time slots within each cycle is limited by
the 8 bytes payload of CAN frames, which gives a
temporal horizon of 64 time slots for the reservation
mask. The choice of slots per cycle determines the
maximum throughput: smaller slots give higher band-
width if many small messages are sent on the bus, but
as the reservation mask is limited in size the frequency
of the sync messages must be increased, wasting some
bandwidth.

3.3 HRT Message Scheduling

HRT messages are time-triggered, they must be al-
ways delivered in time with the lowest possible jitter.
To guarantee bus access to all HRT message occur-
rences, time slots are reserved in a calendar by a cen-
tralized scheduler which runs on the master node. In
RTCAN, HRT messages are periodic, future transmis-
sion occurrences are known a-priori, and the schedul-
ing process reduces to admission control and phase
displacement, assigning the first transmission slot to
each message, to avoid temporal overlaps.

Admission control is done by checking that the re-
quested transmission period is not relatively prime to
other scheduled transmission periods. Then, an initial
phase displacement, which determines the time slot
for the first transmission, is assigned by the sched-
uler to the HRT message. Messages sent at higher
rate, i.e., with lower period, limit the number of avail-
able phase displacements, thus reducing the number
of schedulable messages. This simple approach to
HRT messages scheduling restricts the range of con-
current scheduled periods, but removes transmission
jitter (besides variable latency of the communication
media, which is negligible on the CAN-Bus). More-
over, having control loops which run at periods which
are relatively multiple is common on robotic systems,
then such a limitation is, generally, not a problem.

Given the initial phase displacement, each node
can compute the next reserved time slot for a HRT
message simply adding the period. In other words,
the scheduler and the admission control are central-
ized on the master node, but the reservation calendars
are local. Only the master node needs to know all
HRT message reservations, updating the global cal-
endar to generate the reservation mask sent with the
sync message; this is required to avoid event-triggered
transmission attempts in reserved time slots. Using a
centralized scheduler also facilitates online dynamic
scheduling, preserving flexibility.

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

356



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

000000 HRT Message ID Fragment #

Laxity SRT Message ID Fragment #

111111 NRT Message ID Fragment #

Figure 1: RTCAN priority and message ID encoded into the
CAN bus 29-bit Extended ID.

3.4 SRT and NRT Message Arbitration

SRT messages are triggered by events, their deliv-
ery latency should be low but they must not inter-
fere with HRT communication. They are sent only
in slots marked as available in the reservation mask,
and compete for the bus using the CAN hardware ar-
bitration. In order to reduce latency, while enhancing
resource exploitation, deadline-based dynamic sched-
ulers are preferable with respect to fixed priority
schedulers or Rate Monotonic schedulers (Buttazzo,
2005; Lu et al., 2002). The scheduling policy we
have adopted for soft real-time messages is inspired
by Earliest Deadline First (EDF) and Least Laxity
First (LLF) schedulers: a SRT message increases its
priority while it is approaching its deadline (Livani
and Kaiser, 1998; Kaiser and Livani, 1998). To ex-
ploit the CAN-Bus carrier-sense multiple-arbitration,
the laxity of the message is encoded in the first bits
of the CAN frame arbitration field, as shown in Fig-
ure 1. In this way messages near their deadline have
higher chances to be transmitted with respect to mes-
sages with far deadlines thanks the hardware arbitra-
tion. Laxity can be encoded linearly or using a loga-
rithmic scale, resulting in a finer resolution for nearer
deadlines, and a coarser resolution for further dead-
lines (Natale, 2000). The remaining bits of the arbi-
tration field include an ID to identify RTCAN mes-
sages, and a fragment counter used to handle mes-
sages longer than the payload of a CAN frame, as ex-
plained in Section 3.5.

NRT messages are handled as SRT ones, but their
transmission priority is always lower (the laxity bits
are all recessive) and it is never increased, thus they
always loose the arbitration against SRT messages.

3.5 Fragmentation

Fragmentation is handled by RTCAN as well; pay-
loads longer than 8 bytes, which is the maximum pay-
load of CAN frames, are fragmented and transmitted
in sequence. A fragment counter in the CAN arbi-
tration field identifies fragmented messages, and they
are concatenated during the reception. This simple

approach exploits the CAN-Bus guarantee that pack-
ets are received in the same order as they are transmit-
ted. All RTCAN messages can be fragmented: HRT
ones will span over more reserved time slots, while
SRT ones must deliver the last fragment before their
deadline.

RTCAN is focused on real-time communication
and not on fault tolerance: receive errors (e.g., over-
runs or checksum mismatches) are not handled by
RTCAN: the message is just signed as corrupt and
retransmission requests should be implemented by a
higher layer protocol.

3.6 Open Source Implementation

RTCAN has been implemented as an open source
software library, with particular attention to portabil-
ity, in order to facilitate its extension to new plat-
forms. The library is organized in two layers: the
high level sources provide the API and implement the
HRT scheduler, the fragmentation mechanism and the
platform-independent code of interrupt handlers; the
low level drivers interface with the peripherals and
abstract interrupt requests. To port RTCAN to new
platforms, only the low level layer needs to be im-
plemented, writing the drivers for the specific CAN
controller and for the hardware timer used to handle
time-triggered operations.

RTCAN open source library is available on
http://github.com/openrobots-dev/RTCAN;
current implementation supports STM32 ARM
Cortex-Mx microcontrollers and the ChibiOS/RT
real-time operating system (Di-Sirio, 2007).

4 BENCHMARKS

RTCAN have been tested on the hardware nodes
shown in Figure 2 and some benchmarks have been
produced to evaluate its communication performance.
In the following sections, the experimental setup is
described and benchmark results are reported.

4.1 Experimental Setup

RTCAN tests have been conducted on custom mod-
ules featuring STM32F103RET6 microcontrollers
(ARM Cortex-M3 at 72Mhz, 20kb of RAM). To eval-
uate the protocol, four nodes have been used: three
of them communicate using RTCAN, while one more
module captures and timestamps with microsecond
precision all transmitted packets. During the tests the
cycle period is set to 10 ms and the number of slots
per cycle is 60. The CAN controllers are configured

RTCAN�-�A�Real-time�CAN-bus�Protocol�for�Robotic�Applications

357

http://github.com/openrobots-dev/RTCAN


0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 � � � 57 58 59 0

Node 1 S HA HB HA HC HA HA : : : S

Node 2 HA HB HA HC HA HA � � �

Node 3 HA HB HA HC HA HA � � � HA

Reservation
mask

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 � � � 1 0 0 1

Figure 3: The HRT calendar returned by the scheduler with messages used in the benchmarks and the respective reservation
mask. HA messages have 1 ms transmission period, HB 5 ms and HC 10 ms. S is the sync message from the master node.

Figure 2: The custom hardware modules used in the bench-
marks.

for 1 Mbit data rate. As a consequence, each time
slot lasts 166 µs, which can contain a 8 byte CAN
frame with worst case bit stuffing (158 bit times), plus
the CAN intermission field (3 bit times) and 5 µs of
slots separation. A fixed slot length of 166 µs intro-
duces a discretization of admissible frequencies, thus
the actual frequency obtained could be slightly dif-
ferent from the required one (e.g., 1000 Hz is trans-
lated to a period of 6 time slots, which leads to an
actual frequency of 996 Hz). Anyway, differences
are, generally, small, and we are much more inter-
ested in guaranteeing temporal determinism and low
jitter than precise transmission frequencies.

Table 1: HRT time-triggered messages scheduled on each
node.

Period Payload Throughput
ID # [ms] [bytes] [kbps]
HA 1 1 8 64
HB 1 5 8 12:8
HC 1 10 8 6:4

Table 2: SRT event-triggered message activity on each
node.

Deadline Event Payload
ID # [ms] Period [ms] [bytes]
SA 5 10 10–20 8
SB 5 10 20–50 16
SC 5 50 50–100 20

With the test configuration, the maximum throughput
is 378 kbps, which means only a little overhead with
respect to the maximum data rate of CAN 2.0B spec-
ifications, which is 398 kbps (again, in worst-case bit
stuffing situation). Having 60 time slots per cycle, the
maximum frequency for HRT messages is 3 KHz, due
to the fact that slot 0 is reserved to the sync message.
To benchmark RTCAN, each of the nodes schedules
3 HRT messages as reported in Table 1; this gives a
total time-triggered traffic of 249:6 kbps leaving some
resources to SRT and NRT messages. Given the HRT
requirements of the nodes, the centralized scheduler
produces a reservation mask to reserve bus access to
all time-triggered messages occurrences. The result-
ing communication cycle, which in this configuration
is periodic, due to the requested frequencies, is pre-
sented in Figure 3.

To exploit the remaining bandwidth, SRT mes-
sages are produced on each node, simulating event-
triggered traffic. The trigger period varies, while
the relative deadline is fixed for each message. The
test configuration for SRT messages is shown in Ta-
ble 2; the resulting average traffic is 150:9 kbps. As a
consequence, the total requested throughput is about
400 kbps, higher than the maximum admissible value
of 378 kbps.

4.2 Results

During the benchmarks about 250:000 HRT and
100:000 SRT messages were transmitted. With re-
spect to HRT messages, we evaluated the actual up-
date period, its standard deviation and the distribu-
tion of transmission jitter. Results are reported in Ta-
ble 3, while Figure 4 shows the distribution of trans-
mission jitter. The results show that HRT messages
never missed a deadline and the jitter is bounded to
�3 µs. Moreover, due to temporal separation, HRT
performances are not influenced by the actual bus
load. About the measured periods, we believe that
some unavoidable jitter is introduced by the CAN it-
self, which adapts the bit time to other nodes, in order

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

358



(a) 1 ms period (b) 5 ms period (c) 10 ms period

Figure 4: Distribution of HRT messages transmission jitter, expressed in µs.

(a) 10–20 ms period, 10 ms deadline (b) 20–50 ms period, 10 ms deadline (c) 50–100 ms period, 20 ms deadline

Figure 5: Distribution of SRT messages transmission latency expressed in ms.

to have consistent bit timing over the bus. This feature
cannot be deactivated on our CAN controllers and it
is not measurable without specific network analyzers.

For SRT messages, we evaluated the missed dead-
line ratio and the delivery latency. Missed deadline
ratio and mean latency are reported in Table 4, while
latency distribution is shown in Figure 5. The results
show that SC messages, which have longer deadlines,
thus a lower initial transmission priority, rarely win
arbitration when the laxity is still high due to the EDF
scheduling, and higher priority messages, i.e., with
shorter deadlines, have less delivery latency. It can be
noticed also how SB messages, which have the same
deadline of SA messages, have a higher miss ratio, due
to their fragmentation: two frames must win arbitra-
tion for a successful delivery.

The test shows that RTCAN can handle high fre-
quency HRT messages with low jitter and a very lit-
tle overhead, given by the sync message which occu-
pies 1=60 of the bandwidth. As a comparison, con-
sider that to transmit a 1 Khz message in FTT-CAN,
a 1 Khz trigger message is needed, wasting 1=6 of
the available bandwidth. The jitter is lower too, as in
FTT-CAN it is only bounded by the length of the syn-
chronous window. Compared to TTCAN, the central-
ized scheduler used in RTCAN, with only local calen-
dars on the nodes, gives the same temporal determin-
ism of pure TDMA protocols, but without affecting
flexibility as using a static system matrix.

Table 3: HRT messages mean period and its standard devi-
ation.

Message Measured Standard
ID count period [µs] devation [µs]
HA 61136 995:9 0:86
HB 12427 4979:4 0:93
HC 6213 9958:8 1:05

Table 4: SRT messages missed deadline ratio and mean
transmission latency.

Message Missed Mean
ID count ratio latency [ms]
SA 4121 1:60% 4:33
SB 1594 5:52% 5:13
SC 784 5:21% 14:94

5 CONCLUSIONS

In this paper we discussed the communication re-
quirements of robotic systems, highlighting that
both time-triggered and event-triggered communica-
tions are needed. To account both communication
paradigms we developed RTCAN, a real-time CAN-
Bus protocol designed for distributed robotic applica-
tions; RTCAN combines the best aspects of CSMA
and TDMA protocols without scarifying flexibility.
Benchmarks show that RTCAN is able to handle HRT

RTCAN�-�A�Real-time�CAN-bus�Protocol�for�Robotic�Applications

359



messages at high frequency, with high temporal deter-
minism and low jitter, by using temporal separation.
At the same time, SRT messages are delivered ex-
ploiting free resources with a scheduling policy which
guarantees high bandwidth exploitation and limits la-
tency. Moreover, a ready to use implementation is
available as open-source software library, and its lay-
ered architecture facilitates porting to new platforms.

RTCAN has been used to control Triskar2, an
omnidirectional wheeled robot built from distributed
hardware modules. Three motor controllers drive the
wheels, while another board reads measurement from
IR proximity sensors. The distributed motion control
loop exploits HRT messages to synchronize motor ac-
tuation with low jitter; the proximity module sends
SRT messages when an obstacle is detected. Thanks
to RTCAN flexibility, different data sources, with dif-
ferent requirements, are mixed on the CAN-Bus.

ACKNOWLEDGEMENTS

This work has been partially supported by the re-
search grant “Robotics for the Masses” from ST Mi-
croelectronics and Regione Lombardia, and by the
Italian Ministry of University and Research (MIUR)
through the PRIN 2009 grant “ROAMFREE: Robust
Odometry Applying Multi-sensor Fusion to Reduce
Estimation Errors”.

REFERENCES

Albert, A. (2004). Comparison of event-triggered and time-
triggered concepts with regard to distributed control
systems. Embedded World, 2004:235–252.

Almeida, L., Pedreiras, P., and Fonseca, J. A. G. (2002).
The FTT-CAN protocol: why and how. In IEEE
Transactions on Industrial Electronics, pages 1189–
1201. IEEE Press.

Bonarini, A., Matteucci, M., Migliavacca, M., and Rizzi,
D. (2012). R2P: an open source modular architecture
for rapid prototyping of robotics applications. In Pro-
ceedings of 1st IFAC Conference on Embedded Sys-
tems, Computational Intelligence and Telematics in
Control (CESCIT’12), pages 68–73. Elsevier.

Bonarini, A., Matteucci, M., Migliavacca, M., Sannino, R.,
and Caltabiano, D. (2011). Modular low-cost robotics:
What communication infrastructure? In Proceedings
of 18th World Congress of the International Federa-
tion of Automatic Control (IFAC), pages 917–922. El-
sevier.

Bruyninckx, H. (2001). Open robot control software: the
OROCOS project. In Proceedings 2001 ICRA. IEEE
International Conference on Robotics and Automa-
tion, pages 2523–2528. IEEE Press.

Buttazzo, G. C. (2005). Rate monotonic vs. EDF: judgment
day. Real-Time Systems, 29:5–26.

Coronel, J., Blanes, F., Benet, G., Simó, J., Pèrez, P.,
and Albero, M. (2005). CAN-based distributed con-
trol architecture using the SCoCAN communication
protocol. In Prodeedings of 10th IEEE Conference
on Emerging Technologies and Factory Automation
(ETFA). IEEE Press.

Di-Sirio, G. (2007). ChibiOS/RT Real Time Operating Sys-
tem. http://www.chibios.org.

Kaiser, J. and Livani, M. A. (1998). Invocation of real-
time objects in a can bus-system. In Proceedings of
the The 1st IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pages
298–307. IEEE Press.

Kopetz, H. (1993). Should responsive systems be event-
triggered or time-triggered? Transactions on Infor-
mation and Systems, E76-D(11):1325–1332.

Leen, G. and Heffernan, D. (2002). TTCAN: a new time-
triggered controller area network. Microprocessors
and Microsystems, 26(2):77–94.

Livani, M. A. and Kaiser, J. (1998). EDF Consensus on
CAN Bus Access for Dynamic Real-Time Applica-
tions. In Proceedings of 12th International Parallel
Processing Symposium and 9th Symposium on Paral-
lel and Distributed Processing, volume 1388, pages
1088–1097. Springer.

Lu, C., Stankovic, J., Son, S., and Tao, G. (2002). Feedback
control real-time scheduling: Framework, modeling,
and algorithms. Real-Time Systems, 23:85–126.

Natale, M. D. (2000). Scheduling the can bus with earliest
deadline techniques. In Proceedings of The 21st IEEE
Real-Time Systems Symposium., pages 259–268. IEEE
Press.

Nolte, T., Nolin, M., and Hansson, H. (2003). Server-based
scheduling of the can bus. In Proceedings of the 9th
IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA’03), pages
169–176. IEEE Press.

Noonen, D., Siegel, S., and Maloney, P. (1994). DeviceNet
Application Protocol. In 1st International CAN Con-
ference.

Obermaisser, R. (2004). Event-triggered and time-triggered
control paradigms, volume 22 of Real-Time Systems.
Springer.

Pedreiras, P. and Almeida, L. (2000). Combining event-
triggered and time-triggered traffic in FTT-CAN:
Analysis of the asynchronous messaging system. In
IEEE International Workshop on Factory Communi-
cation Systems, pages 67–75.

Pèrez, P., Benet, G., Blanes, F., and Simó, J. (2003). Com-
munication jitter influence on control loops using pro-
tocols for distributed real-time systems on CAN bus.
In Proceedings of 5th IFAC International symposium
SICICA, pages 237–243. Springer.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS: an
open-source robot operating system. In ICRA Work-
shop on Open Source Software. IEEE Press.

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

360

http://www.chibios.org

