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Abstract: Improved algorithms for solving continuous-time algebraic Riccati equations using Newton’s method with or
without line search are discussed. The basic theory and Newton’s algorithms are briefly presented. Algorith-
mic details the developed solvers are based on, the main computational steps (finding the Newton direction,
finding the Newton step size), and convergence tests are described. The main results of an extensive perfor-
mance investigation of the solvers based on Newton’s method are compared with those obtained using the
widely-used MATLAB solver. Randomly generated systems with orders till 2000, as well as the systems from
a large collection of examples, are considered. The numerical results often show significantly improved accu-
racy, measured in terms of normalized and relative residuals, and greater efficiency than the MATLAB solver.
The results strongly recommend the use of such algorithms, especially for improving the solutions computed
by other solvers.

1 INTRODUCTION what is needed is stabilizing solutionXs, for which
the matrix pair(op(A — BK(Xs)), opE)) is stable

The numerical solution of algebraic Riccati equations (in a continuous-time sense), where I§pXs)) is the

(AREs) is an essential step in many computational gain matrix of the optimal regulator or estimator, and

methods for model reduction, filtering, and controller » T

design for linear control systems. LAt E € R™", K(X) =R L(X) (2)

nxm ; - .
B € R™™M andQ andR be symmetric matrices of suit- (with X replaced by<).

able dimensions. In a compact notation, the general- . ; .
P g There is a vast literature concerning AREs and

ized continuous-time AREs (CARES), with unknown thei f Vi timal trol and estimat
X — XT € R™, are defined by eir use for solving optimal control and estimation

problems; see, e.g., the monographs (Anderson and

0 = Q+ op(A) "XopE) + opE) "Xop@A) (1) Moore, 1971; Mehrmann, 1991; Lancaster and Rod-
_L(X)R—:LL(X)T = R(X), man, 1995) for many theoretical results. The op-
timization criterion for linear control systems is a

whereE andR are assumed to be nonsingular,and  quadratic performance index in terms of the system

. tate and control input. By minimizing this criterion
L(X):=L+ opE)"XB s : . IS crl ’
(X) +opE) ’ a solution to the optimal systems stabilization and
with L of suitable size. The operator d{ repre- control is obtained, expressed as a state-feedback con-
sents eitheM or M. Define alsdG := BR!BT. An trol law. Briefly speaking, this control law achieves a

optimal regulator problem involves the solution of an trade-off between the regulation error and the control
ARE with opM) = M; an optimal estimator problem effort. The optimal estimation or filtering problem,
involves the solution of an ARE with op() = MT, for systems with Gaussian noise disturbances, can be
input matrix Breplaced (by duality) by the transpose solved as a dual of an optimal control problem, and its
of the output matrix Ce RP*", andm replaced by  solution gives the minimum variance state estimate,
p. (This means that should ben x pin this case.)  based on the system output. It is worth to say that the
In practice, oftenQ andL are given a<C'QC and results of an optimal design are often better suited in
L = C"L, respectively. The solutions of an ARE are practice than those found by other approaches. For
the matricesX = XT for which % (X) = 0. Usually, instance, pole assignment may deliver too large gain
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matrices, producing high-magnitude inputs, which Ab or A~1b, whereb is a vector.) The solvers dis-
might not be acceptable. In both control and estima- cusssed in this paper are general, and can be used to
tion problems, including those stated in tHg theory solve large dense problems.
(e.g., (Francis, 1987)), a major computational stepis  The paper compares the performance of the New-
the solution of an ARE. Due to their importance, nu- ton solver with or without line search with the per-
merous numerical methods have been proposed forformance of the state-of-the-art commercial solver
solving AREs; see, for instance, (Mehrmann, 1991; care from MATLAB Control System Toolbox. The
Sima, 1996). There are also several highly-used soft- MATLAB solver uses a different, eigenvalue ap-
ware implementation, e.g., in MATLAB (MATLAB, proach, based on the results in, e.g., (Laub, 1979;
2011), orin the SLICOT Library (Benner etal., 1999; Van Dooren, 1981; Arnold and Laub, 1984). Rela-
Benner and Sima, 2003; Van Huffel et al., 2004; Ben- tively recent research, including both theoretical and
ner et al., 2010). numerical investigation, has been directed to exploit
Newton’s method for solving AREs has been con- the Hamiltonian-symplectic structure of the eigen-
sidered by many authors, for instance, (Kleinman, problem associated to the ARE (Raines and Watkins,
1968; Mehrmann, 1991; Lancaster and Rodman, 1992; Benner et al., 2002; Benner et al., 2007; Sima,
1995; Sima, 1996; Benner, 1997; Benner, 1998; Ben- 2010; Sima, 2011).
ner and Byers, 1998). Actually, the matrix sign func- A recursive method for computing the positive
tion method for solving ARES, e.g., (Roberts, 1980; definite stabilizing solution of an ARE with an in-
Gardiner and Laub, 1986; Byers, 1987; Sima and definite quadratic term has been recently proposed
Benner, 2008), uses a specialized Newton’s methodin (Lanzon et al., 2008).
to compute the square root of the identity matrix of One drawback of the Newton’s method is its de-
order 4. This paper merely reports on implementa- pendence on an initializatioXyg. When searching for
tion details and numerical results. In addition, there a stabilizing solutiorXs, the initializationXy should
are contributions compared to (Benner, 1998; Ben- also be stabilizing, i.e.{op(A — BK(Xp)), opE))
ner and Byers, 1998): improved stopping criteria, im- should be stable. Except for stable systems, finding a
proved functionality (regarding generality in the co- suitable initialization can be a difficult task. Stabiliz-
efficient matrices and options), a better routine for ing algorithms have been proposed, mainly for stan-
computing the roots of a third order polynomial, etc. dard systems, e.g., in (Kleinman, 1968; Varga, 1981,
The paper extends the results of (Sima and Benner,Sima, 1981; Hammarling, 1982). However, often
2006) in some details, and by investigating the nu- these algorithms produce a matiXy and/or the fol-
merical behavior of the current Newton-based ARE lowing several matriceX;, i = 1,2,... (computed by
solvers for high-order random systems, and for sys- the Newton method), with very large norms, and the
tems from the COMRIb collection (Leibfritz and solver may encounter severe numerical difficulties.
Lipinski, 2003; Leibfritz and Lipinski, 2004). (The For this reason, Newton’'s method is best used for it-
previous paper (Sima and Benner, 2006) used ran-erative improvement of a solution or as defect correc-
domly generated systems with< 40, and systems tion method (Mehrmann and Tan, 1988), delivering
from the CAREX benchmark collection (Abels and the maximal possible accuracy when starting from a
Benner, 1999), where most problems have small size,good approximate solution. Moreover, it is preferred
but may be very ill-conditioned.) It is worth mention- in implementing certain fault-tolerant systems, which
ing that Newton’s method has been applied in (Penzl, require controller updating, see, e.g. (Ciubotaru and
2000) for solving special classes of large-order ARES, Staroswiecki, 2009) and the references therein.
using low rank Cholesky factors of the solutions of The organization of the paper is as follows. Sec-
the Lyapunov equations built during the iterative pro- tion 2 starts by summarizing the basic theory and
cess (Penzl, 1998). Additional numerical results, for Newton’s algorithms for AREs. Algorithmic details,
randomly generated systems with< 600, and com-  computation of the Newton direction, computation of
parison with MATLAB and SLICOT solvers are pre- the Newton step size, and convergence tests are dis-
sented in (Sima, 2005). However, contrary to stan- cussed in separate subsections. Section 3 presents the
dard solvers, the specialized solvers usiegl|(r nm main results of an extensive performance investiga-
and| p_l rnm.i ) are not general solvers. In order to tion of the solvers based on Newton’s method, in com-
use them advantageously, the following main assump- parison with the MATLAB solvercare. Randomly
tions must be fulfilled: 1) the matri&is structured or ~ generated systems with order till 1000 (but also a sys-
sparse; 2) the solutiod has a small rank in compar- tem with order 2000), as well as systems from the
ison with n. (These solvers use the possibly sparse COMPLib collection (Leibfritz and Lipinski, 2003;
structure of the matriXA and operations of the form  Leibfritz and Lipinski, 2004), are considered in the
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two subsections. Section 4 summarizes the conclu-
sions.

2 BASIC THEORY AND
NEWTON'S ALGORITHMS

The following assumptions are made.
Assumptions A:

e Matrix E is nonsingular.

o Matrix pair (opE) top(A), opE) ~B) is stabi-
lizable.

e Matrix R= R is positive definiteR > 0).

e A stabilizing solutionXs exists and it is unique.

Method

Theorem 2.1(Convergence of Algorithm N, standard
case) If the Assumptions A hold, and X6 stabiliz-
ing, then the iterates of the Algorithm N with+ 1
satisfy

(a) All matrices X are stabilizing.

(b) X<+ < X1 S X< < X

(€) iMoo Xy = Xs.

(d) Global quadratic convergence: There is a con-

stanty > 0 such that

Xrr—Xel| S VIXc— X%, k>1.

Theorem 2.2(Convergence of Algorithm N)If the
Assumptions A hold,Xs stabilizing, and, in addi-
tion, (op(E) ~1op(A), op(E) ~!B) is controllable and
t >t > 0, for allk > 0, then the iterates of the Algo-
rithm N satisfy

(a) Alliterates X are stabilizing.

The algorithms considered in the sequel are enhance- (p) IR (X 1)l < |R(X)||F and equality holds

ments of Newton’s method, which employ lime
searchprocedure to minimize the residual along the
Newton direction.

The conceptual algorithm can be stated in the fol-
lowing form:

Algorithm N: Newton’s method with line search
for CARE

Input: The coefficient matriceg, A, B, Q, R, andL,
and an initial matrixXo = XJ .
Output: The approximate solutiok, of CARE.

FORk:O,l,...,kmax, DO

1. If convergence or non-convergence is detected, re-
turn X and/or a warning or error indicator value.

2. ComputeKy := K(X) with (2) and opfx), where
Ac= op(A) — BK.

3. Solve inNk the continuous-time generalized (or
standard, i€ = I,) Lyapunov equation

op(A) "NcOPE) + OpE) TNOp(A) = —R(X) -

4. Find a step siz& which minimizes the squared
Frobenius norm| R (X« +tNy)||2 (with respect to
t).

5. UpdateXy; 1 = Xk + tkNk.

END

Standard Newton'’s algorithms are obtained by taking
tx = 1 at Step 4 at each iteration. When the initial
matrix Xp is far from a Riccati equation solution, the
Newton’s method with line search often outperforms
the standard Newton’s method.

Basic properties for the standard and modified
Newton'’s algorithms for CARESs can be stated as fol-
lows (Benner, 1997):

if and only if ® (Xx) = 0.
(€) limkse R (Xk) = 0.
(d) limy e Xk = Xs.
(e) In a neighbourhood of g{the convergence is
quadratic.
) limy ety = 1.
Theorem 2.2 does not ensure monotonic convergence
of the iteratesxy in terms of definiteness, contrary
to the standard case (Theorem 2.1, item (b)). On
the other hand, under the specified conditions, The-
orem 2.2 states the monotonic convergence of the
residuals to 0, which is not true for the standard algo-
rithms. It is conjectured that Theorem 2.2 also holds
under the weaker assumption of stabilizability instead
of controllability. This is supported by the numerical
experiments.

2.1 Algorithmic Details

The essential steps of Algorithm N will be detailed
below.

Continuous-time AREs can be put in a simpler
form, which is more convenient for Newton’s algo-

rithms. Specifically, setting
A = A—BRIT,
Q = Q-LR'LT, 3)

after redefiningA and Q as A and Q, respectively,
equation (1) reduces to

0 = op(A)"XopE) + opE) "X op@A)
— 0pE) TXGXOpE) +Q=: R(X), (4)
or, in the standard casg & Ip), to
0= 0pA) "X +Xop@A) —XGX+Q=: R(X). (5)
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The transformations in (3) eliminate the matiix
from the formulas to be used. It is more economical

to solve the equations (4) or (5), since otherwise the

calculations involving. must be performed at each
iteration. In this case, the matriy is no longer
computed in Step 2, anik = op(A) — GXop(E) (or
A = op(A) —DD"Xx0pE)).

Algorithm N was implemented in a Fortran
77 subroutineS®@2CD following the SLICOT Li-
brary (Benner et al.,, 1999; Van Huffel and Sima,
2002; Van Huffel et al., 2004) implementation and
documentation standardsThe implementation deals

solver returns immediately, with the first entry of that
array set to the optimal size.

A maximum allowed number of iteration steps,
kmax, iS specified on input, and the number of itera-
tion steps performeds, is returned on exit.

If m<n/3, the algorithm is faster if a factoriza-
tion G=DDT is used instead db itself. Usually, the
routine uses the Cholesky factorization of the matrix
R, R=L[L,, and compute® = BL; 1. The standard
theory assumes thRtis positive definite. But the rou-
tine works also if this assumption does not hold nu-
merically, by using th&JDUT or LDLT factorization

with generalized algebraic Riccati equations, possibly of R. In that case, the current implementation uSes

for the discrete-time case, without inverting the ma-
trix E. This is very important for numerical reasons,
especially wherE is ill-conditioned with respect to
inversion. Standard algebraic Riccati equations (in-
cluding the case whek is specified a$,, or ever ]

in MATLAB), are solved with the maximal possible
efficiency. Moreover, both control and filter algebraic

and not its factors, evenih < n/3.

The arrays holding the data matricksandE are
unchanged on exit. Arra§ stores eitheB or G. On
exit, if B was given, andn < n/3, B returns the ma-
trix D = BL;l, if the Cholesky factoL; can be com-
puted. Otherwise, arraBis unchanged on exit. Array
Qstores matriXxQ on entry and the computed solution

Riccati equations can be solved by the same routine, X on exit. If matrixR or its Cholesky factor is given,

using an option (“mode”) parameter, which specifies
the op operator. The matricdsandE are not trans-
posed. It it possible to also avoid the transposition for
C andL, for the filter equation, but this is less impor-
tant and more difficult to implement. (Some existing

it is stored in arrayR. On exit,R contains either the
Cholesky factor, or the factors of thkeDU T or LDLT
factorization ofR, if Ris found to be numerically in-
definite. In that case, the interchanges performed for
theUDUT or LDLT factorization are stored in an aux-

lower-level routines do not cover the transposed case.)iliary integer array.

The implemented algorithm solves either the gen-
eralized CARE (4) or standard CARE (5) using New-
ton’s method with or without line search. The selec-
tion is made using another option. There is an op-
tion for solving related AREs with the minus sign re-
placed by a plus sign in front of the quadratic term.
Moreover, instead of the symmetric mat® G =
BR BT, then-by-mmatrix B and the symmetric and
invertible m-by-m matrix R, or its Cholesky factor,
may also be given. The iteration is started by an ini-
tial (stabilizing) matrixXp, which can be omitted, if
the zero matrix can be used. X§ is not stabilizing,
and findingXs is not required, Algorithm N will con-
verge to another solution of CARE. Either the upper,
or lower triangles, not both, of the symmetric matrices
Q, G (or R), andXp need to be stored. Since the so-
lution computed by a Newton algorithm generally de-
pends on initialization, another option specifies if the
stabilizing solutionXs is to be found. In this case, the
initial matrix Xo must be stabilizing, and a warning is
issued if this property does not hold; moreover, if the
computedX is not stabilizing, an error is issued. An-

The basic stopping criterion for the iterative pro-
cess is stated in terms of a normalized residyabnd
atoleranca. If

fiei=1(X) = [ R (X0 [/ maxL[XdlF) < T, (6)

whereX is the currently computed approximate so-
lution (at iteratiork), the iterative process is success-
fully terminated. Ift <0, a default tolerance is used,
defined in terms of the Frobenius norms of the given
matrices, and relative machine precisieg, Specif-
ically, for givenG, t is computed by the formula

T = min(emv/A(|ElIF (2)|AlF

+IGlrIElF) +QllF). vEm). (7
WhenG is given in factorized form (see above), then
|G|l in (7) is replaced by{D||2. WhenE is identity,
the factors involving its norm are omitted. The sec-
ond operand of min in (7) was introduced to prevent
deciding convergence too early for systems with very
large norms fo, E, G, and/orQ.

The finally computed normalized residual is also
returned. Moreover, approximate closed-loop system

other option specifies whether to use standard NewtonPoles, as well as mirks, 50 11 values of the resid-

method, or the modified Newton method, with line
search. The optimal size of the real working array
can be queried, by setting its length-td.. Then, the

1Seehttp: //wwv. slicot.org

uals, normalized residuals, and Newton steps are re-
turned in a working array, wherg is the iteration
number when Newton’s process stopped.

Several approaches have been tried in order to re-
duce the number of iterations. One of them was to
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setty = 1 whenevety < /em. Often, but especially

in the first iterations, the computed optimal steps
are too small, and the residual decreases too slowly.
This is calledstagnation and remedies are used to
escape stagnation, as described below. The finally
chosen strategy was to dget= 1 when stagnation is

detected, but also whep < 0.5, s%,,/“ <rg<1, and

| R (X +tcNk) || < 10, if this happens during the first
10 iterations; hereR (X« +tkNk) is an estimate of the
residual obtained using the formula (10).

In order to observe stagnation, the last computed
) residuﬂals are stored in the fikgt entries of an array
RES. If || R (X + i) [ > Tl R (Xcig) [l > O, then
tx = 1 is used instead. The current implementation
usests = 0.9 and setkg = 2, but values as large as
ks = 10 can be used by changing this parameter. The
first kg entries of arrayRES are reset to 0 whenever a
standard Newton step is applied.

Pairs of symmetric matrices are stored economi-
cally, to reduce the workspace requirements, but pre-
serving the two-dimensional array indexing, for ef-
ficiency. Specifically, the upper (or lower) trian-
gle of Xk and the lower (upper) triangle of (Xx)
are concatenated along the main diagonals in a two-
dimensionah(n+ 1) array, and similarly folG and a
copy of the matrixQ, if G is used. ArrayQitself is
also used for (temporarily) storing the residual matrix
R(X), as well as the intermediate matricks and
the final solution.

If Gis to be used (since > n/3), but the norm of
G is too large, then its factdD is used thereafter, in
order to enhance the numerical accuracy, even if the
efficiency somewhat diminishes.

2.2 Computation of the Newton
Direction

The algorithm computes the initial residual matrix
R (Xo) and the matrix of{o), whereAq := op(A) +
GXopE). If no initial matrix Xp is given, we set
Xo =0, R (%) = Qand opfo) =A.

At the beginning of the iteratiok, 0 < k < kmax,
the algorithm decides to terminate or continue the
computations, based on the current normalized resid-
ualr(Xy). If r(X¢) > 1, a standard (i€ = I,)) or gen-
eralized (otherwise) Lyapunov equation

op(A) "NkOPE) + 0p(E) "Nk OP(AK) —OR(X%,)

is solved inNk (the Newton direction), using SLICOT

subroutines. The scalar< 1 is set by the Lyapunov

solver in order to prevent solution overflowing. Nor-
mally,c = 1.

Method

Another option is to scale the matricédg and
E (if E is general) for solving the Lyapunov equa-
tions, and suitably update their solutions. Note that
the LAPACK subroutine®GEES and DGCGES, (Ander-
son et al., 1999) which are called by the SLICOT
standard and generalized Lyapunov solvers, respec-
tively, to compute the real Schur(-triangular) form,
do not scale the cefficient matrices. Just column and
row permutations are performed, to separate isolated
eigenvalues. For some examples, this fact created
troubles: the convergence was not achieved in a rea-
sonable number of iterations. This difficulty was re-
moved by the scaling included in the Newton code.

2.3 Computation of the Newton Step
Size

The next step is the computation of the optimal size
of the Newton step (line search). The procedure mini-
mizes the Frobenius norm of the residual matrix along
the Newton directionNy. Specifically, the optimal
step sizey is given by

tie = argmin/| R (X + tNo) |- (9)

It is proved (Benner, 1997) that, in certain standard
conditions, an optimay exists, and itis in the “canon-
ical” interval [0,2]. Computationallyt is found as
the argument of the minimal value in [0,2] of a poly-
nomial of order 4. Indeed,

R (X+tNg) = (1-1) R(X) —t2W,  (10)

where Vi = opE) "NkGNcop(E). Therefore, the
minimization problem (9) reduces to the minimiza-
tion of the quartic polynomial (Benner, 1997)

fu(t) = tracd R (Xc+tNe)?)
ok (1—1)2 — 2Bk(1— )2+ yit?, (12)

where ax = tracg® (X)?), Bk = tracgR (X)Vi),
Vi = traceVj?).

In order to solve the minimization problem (9), a
cubic polynomial (the derivative ofy(t)) is set up,
whose roots in [0,2], if any, are candidates for the so-
lution of the minimum residual problem. The roots
of this cubic polynomial are computed by solving an
equivalent 4-by-4 standard or generalized eigenprob-
lem, following (Jbnsson and Vavasis, 2004). Specifi-
cally, let the cubic polynomial be defined by

p(t) = a+ bt+ct?+dt.

Normally, a matrix pencil is built, whose eigenvalues

are the roots of the given polynomial, and they are
computed using the QR and QZ algorithms, depend-
ing on the magnitude of the polynomial coefficients.
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A candidate solution should satisfy the following 3.1 Randomly Generated Systems
requirements: (i) itis real; (ii) itis in the interval [0,2]
(iii) the second derivative of the cubic polynomial is A first set of tests refer to CAREs (4) with initial
positive. If no solution is found, thep is set equal to matricesk, A, B, L, Q, andR randomly generated
1. If two solutions are found, thepis set to the value  from a uniform distribution in the (0,1) interval, with
corresponding to the minimum residual. nandmset am = 200 : 200 : 1000m = 200:200 n
(in MATLAB notation). The generated matrk was
2.4 Convergence Tests and Updating the stabilized by subtracting 10_ﬁ)ormCE) from the diag—
onal. The generated matric€and R were modi-
Current Iterate fied by addingh andm, respectively, to the diagonal
entries, and then each of them was symmetrized, by
The next action is to check if the line search stagnatesadding its transpose. The generated mdtrixas di-
and/or the standard Newton step is to be preferred. If vided by 100. We then used the MATLAB function
n>1,k<10,t < 0.5, sb/“ <re<1, and||§{(xk+ car e from the Control System Toolbox (MATLAB,

%N [ < 10, OngA{,(Xk‘Ftka)HF > Tol| R (Xe_i) | F 2011) with inputsA, B, Q, R, L, andE, and stabilized

(i.e., stagnation is detected), then a standard Newton” USINGA := A—BF, whereF is the feedback gain
step f = 1) is used. matrix returned byar e. A new Riccati solution was

Another test is to check if updating is mean- compuited bﬁaf ¢ ysmgiite podifiedsang th_e _o_ther
ingful. The updating is done t([Nk|lr > & [ X] matrices. This allowed us to set to zero the initial ma-
If this'is the case, S, ., — Xk+tk|<lkF and'\/(l:ompfj.te trix Xo. For the Newton solver, we removed the effect
the updated matr’ices SMH) andﬂ((,xkﬂ). Other- of L using the formulas (3). Fifteen CARE_probIems
wise, the iterative process is terminated and a warn- ) i ggnerated. =7 e_ach CARPy(3jRyeeptions
ing value is set, since no further improvement can be Rave BEET fed (07, USE ERNETIhe UppeTor IoWeT part

: - of symmetric matrices, use the two values of Mj(
expected. Although the computation of the residual . ) ;
R (X +tN) can be efficiently performed by updat- use either the matricésandR, or the matrixG). The
ing the residuak (X«), the original data is used, since gRiauit toleragge, computed by the solver when the
the updating formula (10) could suffer from severe IMiggialue iggfon-positive, has been used.

numerical cancellation, and hence it could compro- Elg' 1 preselnts thle ndormgllzel\(lj \:\imdualls for t.r:ﬁ
mise the accuracy of the intermediate results. random exampes Solved using Newton solver wi

Then, [ X, andry.; are computed, ank = line search, andar e. Fig. 2 presents the CPU times

k+ 1is set. If the chosen step was not a Newton step, (computed using the MATLAB pair functionsi ¢

but the residual norm increased compared to the pre_andtoc). The y-axis is scaled logarithmicall, for
vious iteration, i.e.,| R (X a)llF > [|& (X)|e, but better clarity, since the CPU times vary significantly.

it is less than 1, and the normalized residual is less For the largest example, the run time for the Newton

1/4 ) ) i . solver and op{l) = M is about half the run time for
thangy, ', then the iterative process is terminated and .5 ¢

a warning value is set. Otherwise, the iteration con-

tinues. B Normalized residuals
10 T

—— Newton, op(M) =M
P Newton, op(M) = m"

10 * | =——care, op(M) =M

— care, op(M) = M"

3 NUMERICAL RESULTS

10°

This section presents some results of an extensive per-
formance investigation of the solvers based on New- s 10° ]
ton’s method. The numerical results have been ob-

tained on an Intel Core i7-3820QM portable computer ~ 107% ]
at 2.7 GHz, with 16 GB RAM, with the relative ma-

chine precisiorgy ~ 2.22 x 10716, using Windows 7 107 : :
Professional (Service Pack 1) operating system (64 ° > Example # 10 =

bit), Intel Visual Fortran Composer XE 2011 and Figyre 1: The normalized residuals for random examples
MATLAB 8.0.0.783 (R2012b). The SLICOT-based using Newton solver with line search andre; n = 200 :
MATLAB executable MEX-functions have been built 200 : 1000, m =200 : 200: n.

using MATLAB-provided optimized LAPACK and

BLAS subroutines. Similarly, Fig. 3 and Fig. 4 present the normalized

Normalized residuals

10
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Elapsed CPU time Elapsed CPU time

10 10
10 10
[} (]
E E
S 10 S 10
5 S
—— Newton, op(M) =M —— Newton, op(M) =M
10° - — Newton, op(M) = m" | 10° b — Newton, op(M) = m" |
——care, op(M) =M ——care, op(M) =M
~—care, op(M) = mT ~—care, op(M) = m"
107 ‘ ‘ 10" : ‘
0 5 10 15 0 5 10 15
Example # Example #

Figure 2: The CPU times for random examples using New- Figure 4: The CPU times for random examples using stan-
ton solver with line search arwhr e; n = 200 : 200 : 1000, dard Newton solver andare; n = 200 : 200 : 1000, m =
m =200:200:n. 200:200:n.

Table 1: Normalized residuals 2-norms and mean number

residuals and the CPU times, respectively, when using©f iterations for random examples.
standard Newton solver amdr e. The large error for

) L. search | Standard care
an example withn = 600, m = 200 (and o =
MT)is noEt)typicaI. ( . [rias2 [ 298-10°]301.10° | 1.55-10 "

L3P | 56 5.33 _

Normalized residuals

—— Newton, op(M) =M ‘ ations when opgl) = M. The CPU times were

_, | 7 Newton, op(m) = MT about 793 and 1360 seconds, and the normalized
10— care, op(M) =M _ 1 residuals were 81-10 9 and 44-10~9, respectively.

L | opM = M MATLAB care needed about 1350 and 1530 sec-
107y ] onds, and the normalized residuals werg1210~’

and 366- 10/, respectively. Similarly, whelE =

10° ¢ ; Ih, the results for the Newton solver were: 4 and
9 iterations, 68 and 469 seconds, and normalized
107 ] residuals 169- 10710 and 322- 10713, respectively.
MATLAB care needed 99.4 and 100 seconds, and
1072 : : the normalized residuals were1- 101! and 101.

0 5 10 15 .
Example # 10711, respectively.

Figure 3: The normalized residuals for random examples

using standard Newton solver andre; n = 200:200: 3.2 Systems from the COMPlib
1000, m =200:200: n. Collection

-2

10

Normalized residuals

For both variants, the Newton solver was almost
always faster thanar e. It was also (with one excep- Other tests have been performed for linear systems
tion) significantly more accurate. Note that for this set from the COMP{ib collection (Leibfritz and Lipin-
of tests, the problems with o) =M™ needed more  ski, 2003; Leibfritz and Lipinski, 2004). This collec-
iterations and CPU time for Newton solver than those tion contains 124 standard continuous-time examples
with op(M) = M, especially for the standard Newton (with E = I)), with several variations, giving a total of
solver. Indeed, the standard Newton solver was most168 problems. All but 16 problems (for systems of or-
often over 50% faster thazar e for op(M) = M, but der larger than 2000, with matrices in sparse format)
often over 20% slower tharar e for op(M) = M7, have been tried. The performance index matriQes
The Euclidean norm of the vectors of normalized andR have been chosen as identity matrices of suit-
residuals (one normalized residual for each example) able sizes. The matrix was always zero. Most often
and the mean number of iterations are shown in Ta- we used the default tolerance.
ble 1 for the case oM) = M. In a series of tests, we uséq set to a zero ma-
We have also solved a problem with=m = trix, if Ais stable; otherwise, we tried to initialize the
2000, built as above. Newton solver with line search Newton solver with a matrix computed using the al-
needed 4 iterations when dp{ = M, and 7 iter- gorithm in (Hammarling, 1982), and when this algo-

11
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rithm failed to deliver a stabilizing initialization, we 5 Normalized residuals
used the solution provided by the MATLAB function
care. A zero initialization was used for 44 stable ex- o L
amples. Stabilization algorithm was tried on 107 un-
stable systems, and succeeded for 91 examples. Fail:
ures occurred for 16 examples. With default toler-
ance, the implementation of the Newton solver used
in the preliminary version of this paper did not im-
prove thecar e solution, returning with O iterations.
But, modifying the test at Step 1 of Algorithm N, in
order to continue the calculations at iteratios- O,

enabled to improve the accura_\cycrzfr e solution for 10 200 0 100 150

15 examples. (Only the solution for example ROC5 Example #

could not be improved.) The functiarar e failed to Figure 5: The normalized residuals for examples from the
solve the Riccati equation for example REA4, with COMPIeib collection, using Newton solver with line search
the error message “There is no finite stabilizing solu- Without balancing andar e.

tion”. This unstable example has been excluded from

our tests, because it could not be stabilized. was of order 107 for the standard Newton solver and
We tried both standard and modified Newton’s of order 107 for care.

method, with or without balancing the coefficient ma-

trices of the Lyapunov equations. The modified solver ~ ;4°

needed more iterations than the standard solver for

10 examples only. The cumulative number of itera-

— Newton
——care

!
o

=
o

|
N
1)

Normalized residuals
=
o

[
N
@

=
o

Relative residuals

-5

tions with modified and standard solver for all 150 107 —— Newton | |

—cCcare

examples was 1654 and 2289, respectively. With bal-
ancing, the total number of iterations was 1657 and '
2279, respectively. The mean number of iterations
was about 11, for the modified solver, and 15.2, for
the standard solver. We tried also to use the stabiliza- ~ 107°}
tion algorithm whenever possible, including for stable
A matrices. Doing so, the total number of iterations i
without balancing was 1796 and 2208, respectively 10 50 100 150
(1784 and 2207, with balancing). Example #

Fig. 5 shows the normalized residuals for the Figure 6: The relative residuals for examples from the

- . COMPIeib collection, using Newton solver with line search
COMPLib examples. For clarity, only the results for .
Newton solver with line search without balancing and '

for car e are plotted. Note that the normalized resid- Figure 7 shows the number of iterations of the

ual is higher tha_m 1 for the TL example when using Newton solver with line search for the COMM® ex-
care. (Its value is 213-10% for care, but109-10°  amples. The largest number, 34, was applied for ex-
for the Newton solver, and.32- 103, using a stabi- ample CM5IS, with ordem = 480, andn = 1.
lizing Xo 7 0.) The matrice$\ andB of this example Similarly, Fig. 8 shows the elapsed CPU times.
have norms of (_)rderlfé.and are poorly scaled (the  Athough the modified Newton method was faster
minimum magnitude i is of order 10). Omitting  thancare for 100 examples, out of 150, the sum of
example TL, the maximum normalized residual was ine CPU times was about 64% larger than dare.
of order 10°° for the standard Newton solver, and of ' Thjs js mainly due to the fact that, with the chosen
order 10°° (10-*° with balancing) for the modified  jnjialization, some large examples (mainly, 15 exam-
solver anccare. ples in the HF2D class) required at least 19 iterations.
Similarly, Fig. 6 shows the relative residuals, com- The standard Newton solver was globally over 25%
puted in a similar manner with that usecdciar e. The slower than the solver with line search. The balanc-
maximum value of these residuals i98-10~° for ing option increased the CPU times by less than 4%
the modified Newton solver (for example ROCS5), and in both cases. When using stabilizidg # 0, the
3.16- 10 °for car e (for example TL) . (Its value was  speed-up of the modified Newton solver increased by
1 for the standard Newton solver and example TL!) about 30%; the main contribution came from solving
Omitting example TL, the maximum relative residual the ARE for example CM6n(= 960,m = 1) in just

residuals

Relative
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Number of iterations (Newton with line search) amp|e EBG, withn = 160,m — 1)' and the maximum
‘ ‘ relative residual was.85- 1010 (for example 1SS2,
30f 1 withn=270,m=3).

After modifying the test at Step 1 to force the
solver to try at least an update, and after adding a
test of relative residual, the total number of itera-
tions increased to 159, namely 11 iterations for ex-
ample TL, zero iterations for ROC5, and one itera-
tions for the other examples. The sum of the CPU
times for Newton solver was then about 8.3 sec-
onds. The normalized residual for example TL var-
% 50 100 150 ied in between B-10 4 and 13- 103 for the four

Example # variants (with/without line search and with/without

Figure 7: The number of iterations performed by the New- balancing), and the relative residual varied between

ton solver with line search for examples from the COMPleib 1 61.101! and 205- 1011, Omitting the example

collection. TL, the maximum normalized residual decreased to
6.9- 1013 for Newton solver, and 8- 102 for car e

one iteration, compared to 19 iterations needed when(for example HF2DIS5, withn =5, m = 2), and the

Xo = 0 was used. (Note that the stabilization algo- maximum relative residual was4®2- 1013 (for ex-

rithm did not work for example CM6, sy was set =~ ample CBM, withn =348, m= 1). The decision to

to thecar e solution.) Clearly, a good initialization  keep this modification of the tests was based on these

could significantly reduce the number of iterations. - improved results.

We used the same initialization provided dsyr e
with values for the tolerance parameteset to 1012,

— Newton 1014 and relative machine precisicey.

E—— Fort =10 '2, the behavior was identical with that
for the defaultt. Fort = 1014, example TL needed
50 iterations without convergence (the tolerance be-
ing too small), one example needed 6 iterations, 2 ex-
amples needed 5 iterations, 3 examples needed 4 iter-
1072} ] ations, 14 examples needed 3 iterations, 9 examples
needed 2 iterations, 119 examples needed one itera-
tion, and ROC5 needed no iteration. The repartition
. of the number of iterations for = gy is shown in
10, 50 100 150 the bar graph from Fig. 9, where TL example was ex-
Example # cluded, for clarity. Only for ROC5 example, the New-
Figure 8: The elapsed CPU time needed by the Newton ton solver returned before finishing the first iteration
solver with line search and MATLABar e for examples  (reporting 0 iterations); it found that no improvement
from the COMPleib collection. of X is numerically possible, since the norm of the
When the solution returned tnar e was used to  correctiortoNo, 3.07-10~*4 was too small compared
initialize the Newton solver variants for all COMg  t0 the norm ofXo, which is 141.10% (T?Se normal-
examples, with default tolerance and without the iZ€d residual value foko was 488-10""") Omit-
modification, mentioned before, of the test at Step 1, ting TL, thle3 maximum qgrmahzed residual redlgced
the total number of iterations was 69, namely 50 it- {0 6.9-107"*for T = 10", and to about 5-10~
erations for TL, and one iteration for other 19 ex- for smaller values of. Performance results are sum-
amples. The remaining examples were solved with- Marized in Table 2.
out any Iteratlons’ sincear e results were accurate Table 2: Summary of performance results for small toler-
enough with the default tolerance. The sum of the gncer and initialization by MATLABcar .
CPU times for Newton solver was about 2.4 seconds,

= N N
o o al

Number of iterations

=
o

al

) Elapsed CPU time

10

10° |

CPU time

compared to about 53.8 seconds ¢ar e. The nor- T Total iterations| Sum of CPU timesg
malized residual decreased td%- 103 for exam- 1012 198 10.83
ple TL, but the relative residual slightly increased to 10 4 257 23.79
9.76-10°5. Omitting the example TL, the maximum M 344 26.23

normalized residual decreased ta® 1010 (for ex-
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Repartition of the number of iterations Relative residuals

10

70

-5 |

=
o

— Newton | |
——care

Number of examples
Relative residuals

0 1 2 3 4 5 6 0 50 100 150
Number of iterations Example #

Figure 9: Bar graph showing the repartition of the num- Figure 11: The relative residuals for examples from the

ber of iterations for examples from the COMPIleib collec- COMPIeib collection, using Newton solver with line search

tion, using Newton solver with line search without balanc- without balancing, initialization usingar e and tolerance

ing, initialization usingar e and tolerance relative machine relative machine precision.

precision.
Improvement of relative residuals

Fig. 10 shows the normalized residuals for the New-
ton solver with line search, initialized byar e, and 500
with tolerancet = gy. Clearly, Newton solver re-
duces the residuals 'by several orders of magnitude,
compared taare.

D
o
T

Normalized residuals

Number of examples
N w
o o

©
=
o

—— Newton
—care 0

Figure 12: Bar graph showing the improvement of the rela-
10y 1 tive residuals for examples from the COMPIeib collection,
using Newton solver with line search without balancing; ini
10" v tialization usingcar e and tolerance relative machine preci-
sion. The height of the i-th vertical bar indicates the num-
‘ ‘ ber of examples for which the improvement was between
0 50 100 150 i-1 and i orders of magnitude.

Example #
Figure 10: The normalized residuals for examples from the
COMPIeib collection, using Newton solver with line search
without balancing, initialization usingar e and tolerance 4 CONCLUSIONS
relative machine precision.

Fig. 11 shows similarly the relative residuals. Ex- Basic theory and improved algorithms for solving

cept for ROC5, Newton solver always reduces the continuous-time alg_ebraic Riccati _equations using
residuals, often by several orders of magnitude, com- Néwton'’s method with or without line search have
pared tocar e. Fig. 12 shows by a bar graph the size been presented. Algorithmic details for the devel-

of this improvement. Specifically, the improvementis ©P€d solvers, the main computational steps (finding
of seven orders of magnitude for one example, six or- the Newton direction, finding the Newton step size),

ders for three examples, four orders for five examples, and convergence tests are described. The usefulness
etc. For 114 examples, the improvement is between of such solvers is demonstrated by the results of an

one and three (inclusive) orders of magnitude. extensive performance investigation of their numeri-
cal behavior, in comparison with the results obtained

using the widely-used MATLAB functiopar e. Ran-
domly generated systems with orders till 2000 (and
even a system with order 2000), as well as the systems

Normalized residuals
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from the large COMRIDb collection, are considered.
The numerical results most often show significantly
improved accuracy (measured in terms of normalized
and relative residuals), and greater efficiency. The re-
sults strongly recommend the use of such algorithms,
especially for improving, with little additional com-
puting effort, the solutions computed by other solvers.
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