
Predicting Cases of Ambulatory Care Sensitive Conditions 

W. Haque and D. C. Finke 
Department of Computer Science, University of Northern British Columbia, Prince George, Canada 

Keywords: Predictive Analytics, Ambulatory Care Sensitive Condition, Healthcare, Data Mining. 

Abstract: Proper management of ambulatory care sensitive conditions does not only enhance patient care, but also 
reduces healthcare costs by minimizing hospitalizations. In order to strategically allocate resources, it is 
essential to rely on informed forecasting decisions. Among other factors, the healthcare data is deeply 
affected by seasonality, granularity, missing information and the sheer volume. We have used the ten-year 
history from a Discharge Abstract Database to build predictive models and perform multi-dimensional 
analysis on key metrics such as age, gender, and demographics. The valuable insights suggest that 
investments in some areas appear to be working and should continue whereas other areas suggest a need for 
reallocation of resources. The results have been confirmed using two distinct time series models. The 
forecasted data is integrated with existing data and presented to users through data visualization tools with 
capabilities to drill down to reports of finer granularity. It is observed that though some diagnoses appear to 
be on an upward trend in prevalence over the next few years, other ACSC-related diagnoses will continue to 
occur with either the same or slightly less frequency. 

1 INTRODUCTION 

Ambulatory care sensitive conditions (ACSC) are 
medical conditions such as hypertension, asthma, 
diabetes, and COPD which are normally treatable in 
an outpatient setting. Identification of 
disproportionately high levels of ACSC cases in 
specific regions, health service delivery areas 
(HSDAs), or public demographics is key to reducing 
health care costs and enhancing patient care; most 
ACSC cases are preventable (Oster and Bindman, 
2003) and do not require hospitalization (Brown et 
al., 2001); (Schrieber and Zielinski, 1997). Many 
variables affect the distribution of ACSC cases – 
such as region, age, socioeconomic conditions and 
availability of health services. These variables can 
be difficult to identify because of the sheer quantity 
of data and the raw format in which it is stored. Data 
mining tools can be used to find these data patterns 
and to forecast reliably. Examples include the 
prediction of the number of cases into several years 
in the future, the probability that a person fitting a 
demographic set has an ACSC diagnosis, and more. 
The external variables (such as new breakthroughs 
in disease management or environmental factors 
causing more significant disease symptoms) that 
influence health care make predicting these metrics 

challenging. The data mining algorithms based on 
moving averages, linear regressions equations, and 
seasonal patterns are designed to reduce the impact 
of unknown and undetectable variables. Thus the 
algorithms are capable of detecting trends in data 
even when it contains a small percentage of outlying 
data which could potentially skew the results. 
Predictions that show a lack of disease treatment and 
management performance (e.g. in a specific 
community) will convince health care decision 
makers to revisit areas that may have been neglected 
but deserve attention. 

2 RELATED WORK 

It is the nature of ACSC that treatment differs from 
normal inpatient care. Additional challenges are 
often present such as the frequency of diagnoses 
being made, which may be many over a short period 
of time (Starfield et al., 1991). Examinations into 
demographics and locales that experience higher 
rates have been an interesting research in the health 
care field. Observations include a higher rate of 
ACSC occurrences in younger children and poorer 
areas (Parker and Schoendorf, 2000). Research also 
shows that non-Caucasian individuals tend to visit 
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physicians for ACSC-related circumstances at a 
lesser rate than Caucasian individuals. The 
correlation between income and patient’s race 
supports the notion that income is related to 
accessibility and frequency of ACSC treatment in 
potential patients (Lieu et al., 1993). Furthermore, 
remote and aboriginal communities were observed 
to have increased risk of complications with diabetes 
(Booth et al., 2005). It is likely that other ACSC 
diagnoses follow a similar pattern. The difference 
between areas with a higher overall income and the 
poorer areas may show a lack of health care access 
for some people (Roos et al., 2005).  

Time is a significant component in variations in 
ACSC case data. In Ontario, between the years 
1994-1999, acute complications of diabetes 
decreased by roughly 6% per year (Booth et al., 
2005). In U.S., research into childhood asthma 
showed an overall increase in visitations for the 
ACSC disease between the years 1980-1998. 
However, the data does show a recent stabilization 
of the proportion of youth admitted for asthma 
(Akinbami and Schoendorf, 2002). 

Researching the causes of and situations for 
ACSC cases is critical in improving a key health 
care performance metric: Primary Health Care 
(PHC). It has been identified by professionals that 
improving PHC significantly improves the treatment 
of ACSC and prevention of ACSC hospitalizations. 
By looking for symptoms related to the onset of 
ACSC, this pre-emptive care is most effective 
(Caminal et al., 2004). 

3 METHODOLOGY 

The Discharge Abstract Database (DAD), consisting 
of approximately one million rows and over seven 
hundred sparsely populated columns, formed the 
basis of this study. Upon pivoting, this yielded over 
twenty-six million rows that were to be analyzed. 
Earlier, we had used Business Intelligence (BI) tools 
and techniques to efficiently analyze this database 
and presented statistically significant trends and 
patterns (Haque and Edwards, 2012). We have now 
extended this study using advanced analytics for 
developing predictive models. There are several 
methods which can be deemed viable for predictive 
analytics. Our data mining solution focuses 
primarily on time-based mining and requires input 
sets with equally distributed time slices. Mining 
models for the identified metrics have been created 
and trained individually for each dimension (or set 
of dimensions) in order to attain maximum level of 

accuracy. Microsoft SQL Server Analysis Services 
(SSAS) tools are used to achieve our solution 
(Microsoft Corp, 2013). Furthermore, separate 
models are developed using the software R and its 
various multivariate linear regression algorithms 
(Gentleman et al., 2012). 

Other available algorithms include Microsoft 
Clustering, Decision Trees, Neural Networks, and 
Linear Regression. The Clustering algorithm was 
immediately invalidated because it did not support a 
continuous type attribute (ACSC data is continuous 
as opposed to discrete). While the other algorithms 
could be used for our predictions, they would require 
a mapping between the id fields in the date 
dimension and integer values. Linear Regression 
was the most applicable, because the input series for 
our data was primarily based on increase and 
decrease in number of cases. However, the 
Microsoft Time Series algorithm is a special 
implementation of a blend of the Linear Regression 
algorithm and ARIMA. It is designed to operate with 
date key values and simplifies the process of 
forecasting over time ranges. As a result, time series 
was our choice of data mining technique. This 
technique allows use of a combination of the 
proprietary Microsoft ARTXP algorithm and 
popular ARIMA algorithm (MSDN, 2012). 

As Microsoft Time Series does not supply 
control over every variable used by ARTXP or 
ARIMA algorithms, a comparison of our SSAS 
results with those produced by R is used to enhance 
our confidence and support the results of our data 
mining solution. 

3.1 Data Challenges 

The data integrity issues encountered ranged from 
formatting that prevents straightforward integration 
into an existing cube structure to absence of data that 
could have been a useful metric for forecasting. An 
example of such data is the ethnicity of an individual 
identified with ACSC. 

3.1.1 Time Series Stationarity 

A requirement of the ARIMA time series data 
mining algorithm is stationarity of the input time 
slices. “Stationarity has three components. First, the 
series has a constant mean, which implies that there 
is no tendency for the mean of the series to increase 
or decrease over time. Second, the variance of the 
series is assumed constant over time. Finally, any 
autocorrelation pattern is assumed constant 
throughout the series.” (Barao, 2008) In general, the 
volatility of the health care data causes a lack of 
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stationarity. The process of differencing is used to 
reduce or eliminate non-stationarity from the input 
series. In both manual and automatic differencing 
(done by time series implementation examining 
autoregressive values) (MSDN, 2012), the 
application of the differencing process cannot 
resolve the externally influenced changes in input 
series mean. Thus, increasing the levels of 
differencing in ACSC data cannot redeem ARIMA 
as useful for all model applications. As a result, we 
are limited to the use of ARTXP time series 
algorithm for several predictions. 

Due to inherent seasonality in our ACSC data, 
creating mining models at a finer granularity 
becomes a greater challenge because finding a fitting 
historic model curve becomes more difficult. 
Trimming the input set of irregular data can help to 
improve the generation of historic model. 

3.1.2 Input Data Limitations 

The input set for time series models should have a 
large number of slices in order to create a strong 
historic model and reduce the overall impact of 
irregularities. In general, using between 32-40 time 
slices is the minimum for an acceptable ARTXP 
model. The existing set of ACSC data gives us 36 
fiscal quarter slices. It is also critical that data is 
supplied continuously through all periods – a lack of 
data for an input slice means we must either 
determine it as zero, or take the mean of previous 
time slices, adding error. A similar problem exists 
when the series is fully populated but the metric 
values lack significant variation. This occurs more 
frequently as data granularity becomes finer when 
incorporating additional attributes.  

Ethnicity has been observed to be a strong 
influencer of the frequency and severity of ACSC 
occurrences. The DAD, however, does not contain 
any aggregations on ethnic demographics. As a 
result, we cannot explore or forecast change in 
ACSC in varying ethnic groups. We instead choose 
to explore how changing gender and age 
demographics will affect ACSC prevalence. 

3.1.3 Conformed Date Dimension 

Time series data mining predictions output their data 
as a set of SQL rows split by attributes and future 
time slices. An inconsistency exists between the way 
SQL creates a date dimension and the way the time 
series implementation creates future time slices in 
fiscal quarters. The forecasting tool produces data 
whose date fields progress in ¼ of a calendar year. 
However, the Northern Health (NH) conformed date 

dimension uses fiscal quarters aligning along 
specific months. As a result, a mapping query is 
needed to link the predicted data to the NH 
conformed date dimension. The mapping query 
prevents the quarter-year output from the mining 
prediction from becoming offset from the proper 
fiscal quarters. 

3.1.4 Storing Forecasted Data 

Output from mining model predictions in SSAS is 
exported to a SQL table. We have two options when 
storing: either update the existing prediction results 
table or create a new one for the prediction. When a 
large number of unique predictions are done, the 
number of tables would become large with the latter 
choice. This not only adds complexity to the cube 
but additional tables require that SSAS data source 
view must be updated for every new table; this 
makes calculations more complex, involving 
multiple separate relations’ fields as opposed to a 
single standard field. Updating existing prediction 
tables require distinguishing between sets of rows 
using a key column. This solution results in longer 
lookup times and increased space complexity, but 
this is less of an issue in analytical work than it 
would be in a transactional scenario. The cube is 
only periodically processed; the lookup on the data 
in the database only occurs when the DAD is 
updated. As a result, we used a single table whose 
rows are differentiated by the key. 

4 DATA MINING/PREDICTIONS 

The use of data mining functionality in SQL Server 
requires creation of a mining structure (with models) 
and preparation of two sets of data: a training set, 
and a template set. The latter is required for 
forecasting in the instance where partial future data 
needs to be added to an existing model (such as in 
the case of ACSC predictions based on future census 
population) and consists of relations with arity and 
domain equivalent to the model’s training data. 
Training sets are needed for each unique collection 
of dimensions used to slice the data. 

The SSAS data mining tools support two modes 
of creation: the model can be created on top of the 
cube, or it can be created based on the corresponding 
SQL database. The latter option requires special 
formatting of the forecast output data. Though our 
ultimate intent is to update the cube, having access 
to the SQL database content gives us additional 
control over the mining results. With results in SQL 
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rows, we can easily tie in new data with existing 
data as well as split the data by arbitrary conditions. 
Therefore, the SQL mode was a preferred choice for 
use in our solution. 

4.1 Preparation of Training Data 

Our training data set consists of numbers of cases 
and interventions over a given period of time. 
Existing raw data resides in a SQL database from 
where we gather appropriate dimensions for the 
measures that are being forecast. Preparation of 
training data can include any number of dimensions 
and conditions. Each row with an ACSC flag in the 
diagnosis table represents a unique case. By 
aggregating on unique attribute groups, we can 
obtain the number of cases belonging to those 
groups. As we are working at the SQL level, we 
must replicate the calculation for the measure in the 
training query. Because each row in the diagnosis 
fact table is considered a case, we can select a sum 
of the number of rows where one or more of their 
dimension parameters match. For example, we could 
choose a count of rows where genders match. Thus, 
the output set would consist of two columns; one 
column specifies the gender, and the other displays 
the number of rows/cases corresponding to that 
gender. The output is stored in a temporary staging 
table. 

4.2 Training the Model 

SSAS mining structures are used to process data 
from the staging tables; the chosen algorithm learns 
the patterns in the input data and enables forecasting 
based on those patterns. Initially, a univariate 
analysis was done. We considered the variations in 
either number of ACSC cases or total cases when 
divided by various attributes relevant to prescribed 
time-based metrics. Eventually, population was 
identified as an important predictor for a 
multivariate analysis. 

In SSAS, the data source view is prepared to 
accept newly forecast data for cube processing 
without additional configuration. The control 
parameters used by the algorithm to learn the trends 
in its input series are given in Table 1. The mining 
model processes the data based on these values and 
exports it as a series of SQL rows. By completing 
the query process the raw output data can be 
combined with other forecast data as well as DAD 
data.  

SSAS does not allow control over the algorithm 
learning process past these parameters. Instead, 

heuristic algorithms assist in determining the values 
that compose the prediction algorithm’s equation. 
This equation is based on the linear change in input 
series as well as some constant variance values. In 
case of ARIMA, the additional process of 
differencing is used to get the best possible forecast 
equation; SSAS deems the equation fitting when 
stationarity is maximized. Using the mining model 
viewer in SSAS, we examine the short-term results 
of the forecast as well as how accurately the 
historical model collection matches up with existing 
data. Prediction results are exported to the SQL 
database once the model is deemed acceptably 
accurate. 

Table 1: Model parameters. 

Parameter 
Property 

Use 
Mthly/Qtrly 

value 
FORECAST_ 
METHOD 

Controls the algorithm used 
by SSAS in forecasting 

ARIMA or 
ARTXP 

HISTORIC_MODEL_
COUNT 

Multiplier for historic 
models 

1 

HISTORIC_ 
MODEL_GAP 

Number of time slices each 
historic model spans. 

12 / 8 

MINIMUM_SERIES_
VALUE 

Series values cannot be 
predicted below this 
threshold (case counts 
cannot be negative) 

0 

MISSING_ VALUE_ 
SUBSTITUION 

Value used when points in 
the middle of the series are 
absent. 

0: 
values (<10) 

MEAN: 
values (>10) 

PERIODICITY_HINT Seasonality of data 12 / 4 

4.3 Integrating Forecasted Data 

In order to combine raw forecast data with existing 
data in the cube, it needs to be assigned the 
appropriate foreign keys for various dimensions. 
Output strings are parsed for attribute members 
found in dimension tables. A lookup is executed for 
finding the key value that corresponds with the 
attribute members and finally the data is inserted 
into a table for completed predictions. An additional 
key is used to identify the unique prediction fields; 
for example, a different identifier key is used for a 
prediction on the gender attribute than for prediction 
on both gender and age group. This identifier 
enables us to choose the right data from the cube for 
visual reports. 

Further examination of the accuracy of the 
historical models is conducted by averaging 
percentage difference for each time slice. In general, 
mining models that generate historical prediction 
values of less than 30% difference from the actual 
values are accepted for use in deliverable reports. 

Predicting�Cases�of�Ambulatory�Care�Sensitive�Conditions

75



 

A
C

S
C

 c
as

es
 

Predictions with few attributes tend to have 
differences of less than 5-6%. Data is finally 
formatted to be processed by the SSAS cube. New 
entries in tables linked to forecasts and forecast-
related dimensions become a part of the cube. Upon 
completion, the case count metrics can be split by 
the unique prediction identifiers described above. 

4.4 Data Visualization 

Charts and tables enable users to easily observe 
trends in the ACSC metrics; many charts are broken 
down by fiscal quarters or fiscal years and show the 
change in ACSC over time. Aggregations take place 
at levels such as on diagnosis or locale. Data is 
aggregated on diagnosis, institution, locale cluster, 
HSDA/LHA, and discharge disposition. 

4.4.1 Dashboard 

The dashboard presents a high-level overview of the 
ACSC data. Visualization of data at this level is not 
filtered. Common attributes for slicing charts and 
tables include diagnosis, age group, and gender. The 
users can select up to 5 years into the future. A user 
may choose to exclude historical data, forecasted 
data, or any combination. Forecast information in 
the chosen future period is clearly identified, either 
by a description or by an alternate colour. Tooltips 
offer additional details on series seen in charts. 
Other reports include metrics broken down by 
ACSC diagnoses, Discharge Disposition, and ACSC 
prevalence by geographic clusters/location. 

4.4.2 Other Reports 

The drilldown reports provide information about the 
core ACSC metrics at a finer granularity. New 
information on various charts is displayed in the 
same manner as the dashboard, wherever predictions 
for the attributes present in those charts produced 
results with acceptable accuracy. Users can choose 
to filter data by members of the corresponding 
attribute, as well as the specified time period. As 
explained earlier, forecasting results become 
increasingly sparse as more attributes are introduced. 

For the sake of space, the dashboard or other 
drilldown reports are not included in this paper. 

5 ANALYSIS OF RESULTS 

In this section, we present some observations from 
each of the models developed in SSAS and R, 

closeness of results between the two, and significant 
trends found from the data forecast by each 
corresponding mining model. We have selected the 
most representative results from our study. 

5.1 Quarterly vs. Monthly Aggregation 

The first noticeable result is the quality of forecasts 
when using monthly vs. quarterly aggregation of 
data. Both SSAS and R models result in higher 
quality predictions when using quarterly 
aggregation. This is observed by examining R’s 
AIC, AICc, and BIC values which determine the 
ideal fit from a pool of candidate models. AIC 
represents the amount of information suspected to 
have been lost by the model. BIC values operate in 
the same manner as AIC, but incur a more 
significant penalty when additional attributes are 
included in the model. This helps to prevent 
overfitting to the training data. We use these values 
as a confidence measure for R’s models.  

The label associated with R models comes in the 
form ARIMA(0,0,0)(0,0,1)[12] (Figure 1). It is a 
representation of the equation used by ARIMA for 
generating the model. The two tuples in parentheses 
imply that the model combines two equations. The 
first index in a tuple is the number of regressive 
terms, the second is the number of deviations in the 
series that do not follow a seasonal pattern, and the 
last is the lagged forecast error in the equation. 
Finally, the label “[12]” implies the model’s 
seasonality, which in this case is monthly. 

 

Figure 1: Monthly ACSC count forecasts produced by R. 

In Figure 1, values prior to 2010 are data from 
DAD. The data beyond 2010 shows predicted metric 
values by the ARIMA algorithm and the bands 
around this line represent the 85% and 90% 
confidence levels. The values of AIC, AICc, and 
BIC are 504.96, 505.19, and 513.01, respectively. A 
higher value of these metrics implies a lower relative 
quality of forecast. Relatively, these values are high 
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and therefore the level of confidence in this model is 
low. An additional observation in this chart is the 
absence of any variation in the predicted period. 
This commonly occurs when the input series does 
not have strong seasonality – as a result, the 
algorithm resorts to detecting a mean of the series. 

 

 

Figure 2: Quarterly ACSC cases forecast produced by R. 

 

Figure 3: Monthly ACSC cases forecast by SSAS and R 
models. 

 

Figure 4: ACSC cases forecast by SSAS and R models. 

Figure 2 shows the same metrics using quarterly 
data due to much more pronounced seasonality. This 
results in improved AIC, AICc, and BIC values 
(roughly 200 each) and a forecast that retain 
seasonal trends; the peak in forecast values is at the 
4th quarter of each fiscal year. The corresponding 
results from our SSAS models are shown in Figure 3 

and Figure 4; similar trends were observed. 

5.2 Reducing the Number of Attributes 

An experiment separating the genders produced 
significant variation between the predicted values. 
For example, it was observed that the male category 
in 30-39 age group showed a poor forecast of 
seasonality from both the R and SSAS models 
(Figure 5). Though both models were unable to 
detect and represent the quarterly seasonal pattern, 
the values of AIC, AICc, BIC in the R model were 
204.96, 205.32, and 208.13, respectively. These 
values, relative to our other successful predictions, 
show that the model has a good degree of accuracy. 
For this age group, the forecast results were 
significantly improved when the male and female 
input sets were combined and forecasted on (Figure 
6). Both SSAS and R models created forecasts with 
strong seasonality and both produced nearly 
identical output. AIC, AICc, and BIC values of 
approximately 195 show a close fit to DAD data in 
the R model.  

 

 

Figure 5: ACSC cases forecast for 30-39 yr males. 

 

Figure 6: ACSC cases forecast for all 30-39 yr old. 

Figure 7 shows the breakdown of ACSC actual 
and predicted data (4 year into the future) with only 
the gender attribute. This scenario resulted with a 
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very acceptable confidence level of 89.5%. This also 
demonstrates that predicting on the aggregated case 
count produces a more accurate forecast. 

 

 

Figure 7: Quarterly ACSC cases forecast by gender. 

5.3 Some observed Trends 

Accurate forecasting of ACSC metrics allows 
management to make informed decisions on the 
choice of future healthcare strategies instead of 
making simple extrapolations from past data.  

Sample Observation 1. As an example, Figure 8 
identify the 70-75 year old as an age group in which 
overall ACSC frequency is on the decline. 
Following a spike at around 2007, our models 
project a consistent decrease in ACSC occurrence. 
Because the forecasting models are heavily 
influenced by more recent events, the actual 
decrease may not end up being as sharp as the 
forecast. However, this does promote the idea that 
existing activities designed for improving the ACSC 
care of seniors have helped and will continue to help 
that group. 

Sample Observation 2. In recent years, the number 
of ACSC cases in the Region 1 (Figure 9) has stayed 
higher than the period around year 2004. Data 
predicted by our models suggests that while the 
ACSC numbers may stabilize at their current levels 
for a couple years, the yearly average trend should 
begin to return to previous levels after 2-3 years. 
However, though the yearly cases on average will 
begin to decline, 4th quarter spikes in ACSC will 
remain. Region 2 occurrences (Figure 10) will 
continue to remain reasonably high after identifying 
a recent increase in their prevalence. Earlier time 
slices have influenced the model such that the 
expected threshold will not be as extreme as the 
2008 peak. 
Sample Observation 3. The overall number of ACSC 
cases in all groups and diagnoses (Figure 11) 
appears to remain constant over the forecast period. 

In the chart, a diagnosis category with a historical 
value approximately twice the forecast value is one 
whose ACSC count per year has not changed (the 
historical period is twice the forecast period). Within 
these counts, COPD and Diabetes appear to be on a 
slight increase in prevalence over the next 5 years 
and other ACSC-related diagnoses will continue to 
occur with either the same or slightly less frequency. 
 

 

Figure 8: ACSC cases forecast for 70-75 yr females. 

 

Figure 9: Historical and Forecasted Quarterly ACSC cases 
in Region 1. 

 

Figure 10: Yearly ACSC prevalence as a percentage of 
population in Region 2. 

 

Figure 11: ACSC cases in each diagnosis (2002-2010, 
forecast to 2015). 
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6 CONCLUSIONS 

Data mining tools have been applied to ACSC data. 
The resulting predictions have identified both, areas 
and groups that need attention and those that are 
headed in a positive direction. Because of the 
inconsistent nature of health-related data, these 
trends are more reliable when data is aggregated. 
Despite this limitation, improvements to the health 
care system can be targeted towards high-impact 
locations and critical demographic groups identified 
by our predictive models. COPD and Diabetes 
diagnosis groupings appear to be on the rise and 
require additional health care focus. Conversely, 
population such as the 70-75 age group may be 
receiving adequate treatment thus decreasing the 
morbidity of these cases. Visualizations methods 
provide a clear and easy to understand interface for 
correctly distinguishing factual existing data and 
predicted/forecasted data. The reporting tools offer 
drill-down capabilities for further insight into any 
desired set of existing and forecasted information 
over specified time ranges. The models developed 
offer a strong confidence level where stable 
forecasting of ACSC-related health data is possible. 
The SSAS environment was confirmed as an 
effective means of creating forecasting models for 
the ACSC data by observing similar results with R. 
As a result, SSAS was deemed a beneficial tool for 
creating a data mining solution for ACSC as it 
simplified the task of designing mining structures 
and models without the need for statistics expertise. 
The reporting is also more intuitive and interactive. 
The tight integration with the existing analytics cube 
further centralized the task of data mining and 
incorporation of new data into the data warehouse. 
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