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Abstract: Here, we present a tool for describing and simulating dynamic systems. Our starting point is the aggregation
concept, which was developed for multicriteria decision making. Using a continuous logic operator and a
proper transformation of the sigmoid function, we build positive and negative effects. From the input data we
can calculate the output effect with the help of the aggregation operator. Our approach is similar to that of the
Fuzzy Cognitive Map. We shall introduce a new technique that is more efficient than the FCM method. The
applicability of PCM is discussed and simulation results are presented.

1 INTRODUCTION

When we have to deal with a sophisticated system,
we are confronted by certain difficulties as we have
to represent it as a dynamic system. Using a dy-
namic system model can be hard computationally. In
addition, formulating a system using a mathematical
model may be difficult, or even impossible. Devel-
oping a model requires effort and specialized knowl-
edge. Usually a system involves complicated causal
chains, which might be non-linear. It should also be
mentioned that numerical data may be hard to obtain,
or it may contain certain errors, noise and incomplete
values. Our approach seeks to overcome the above-
mentioned difficulties. It is a qualitative approach
where it is sufficient to have a rough description of the
system and deep expert knowledge is not necessary.
A similar approach was proposed by Kosko (Kosko,
1986; Kosko, 1994; Kosko, 1992), and it is called
the Fuzzy Cognitive Map (FCM). FCMs are hybrid
methods that lie in some sense between fuzzy systems
and neural networks (Glykas, 2010; Salmeron et al.,
2012; Yaman and Polat, 2009; Salmeron and Lopez,
2012; Maio et al., 2011). Knowledge is represented
in a symbolic way using states, processes and events.
Every piece of information has a numerical value. In
Figure 1 we can see a typical FCM model, which is a
directed graph.

The FCM approach allows us to perform qual-
itative simulations and experiment with a dynamic
model. It has better properties than expert systems
or neural networks, since it is relatively easy to use,

Figure 1: The FCM model.

it represents structured knowledge and inferences can
be computed by numeric matrix operations instead of
applying rules. In this paper, we will use a modifica-
tion of the FCM concept so that ours better matches
real-world modeling, which we call Pliant Cognitive
Maps (Jozsef Dombi, 2005) (J. Dombi, 2005). We
use cognitive maps to represent knowledge and to
model decision making, which was first introduced by
Axelrod (Axelrod, 1976). Kosko used fuzzy values
and matrix multiplication to calculate the next state
of a system. Here instead of values, we use time-
dependent functions that are similar to impulse func-
tions to represent positive and negative influences.
Another improvement is that we drop the concept of
matrix multiplication. On the one hand, matrix mul-
tiplication is not well suited in continuous logic (or
fuzzy logic), where the true value is one and the false
value is zero. On the other hand, general operators are
more efficient for calculating the next step of a simu-
lation. Logic and the cognitive map model correspond
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to each other in the PCM case. It is easier to construct
a PCM and after we have run PCM simulations and
compared them with the real world, extracting knowl-
edge is much easier. Combining cognitive maps with
logic helps us to extract knowledge more efficiently,
in contrast to when we use rule-based systems. The
standard knowledge representation in expert systems
is achieved through a decision tree. This form of
knowledge representation in most cases cannot model
the dynamic behaviour of the real world. The cog-
nitive map describes the whole system by a graph
showing the cause-effects that connect concepts. It
is a directed graph with feedback that describes the
real world concepts and the causal influences between
them. From a logic point of view, causal concepts are
unary operators of a continuous valued logic contain-
ing negation operators in the case of inhibition effects.
The value of the node reflects the degree of system ac-
tivity at any given time. Concept values are expressed
on a normal [0,1] range. Values do not denote exact
quantities, but the degree of activation. The inverse
of the normalization might express the values com-
ing from the real world, i.e. using a sigmoid func-
tion. Unlike the Fuzzy Cognitive Map, we do not use
thresholds to force it to take values between zero and
one. The mapping is a variation of the ”fuzzification”
process in fuzzy logic, and it always hinders our de-
sire to get quantitative results. In Pliant logic we map
the real world into the logical model. These maps are
continuous, strictly monotonous increasing functions,
and so the inverse of these functions yields data about
the real world. This paper is organized as follows.
Section II describes the representation and mathemat-
ical formulation of the PCM concept compared to the
FCM concept. Section III describes the components
of the PCM, while Section IV describes how to create
the PCM model. In Section V we discuss the develop-
ment of a FCM model for the heat exchanger system
that is common in the process industry. Section VI
presents the features and potential use of the PCM for
modeling complex systems. Lastly, in Section VII.,
we summarize our findings.

2 PLIANT COGNITIVE MAPS

In the FCM, a causal relationship is expressed by ei-
ther positive or negative functions that have differ-
ent weights. As we mentioned earlier, this will be
replaced by unary operators in the PCM. First, let
{C1, . . . ,Cm} be a set of concepts. Define a directed
graph over the concepts. A directed edge has a weight
wi j from conceptCi to conceptCj . This weight mea-
sures the influence ofCi onCj , where

• 0.5 is the neutral value,

• 0 is the maximum negative and

• 1 is the maximal positive influence or causality.

In the FCM, the weight valuewi j ∈ [−1,0,1] . In
our case,

• wi j > 0.5 means there is a direct (positive) causal
relationship between conceptsCi andCj . That is,
the increase (decrease) in the value ofCi leads to
an increase (decrease) in the value ofCj .

• wi j < 0.5 means there is an inverse (negative)
causal relationship between conceptsCi andCj .
That is, the increase (decrease) in the value ofCi
leads to a decrease (increase) in the value ofCj .

• wi j = 0.5 means there is no causal relationship be-
tweenCi andCj .

During the simulation, the activation levelai of
conceptCi is calculated in an iterative way. In the
FCM, the calculation rule that was initially introduced
to calculate the value of each concept based only on
the influence of the interconnected concepts is

At
i = f

(

∑
i 6= j

At−1
j ·Wji

)

,

whereAt
i is the value of conceptCi for time stept,

At−1
j is the value of conceptCj for time stept−1,Wji

is the weight of the causal interconnection from the
jth concept toward theith concept andf is a threshold
function. One of the most popular threshold functions
is the sigmoid function, whereλ > 0 determines the
steepness of the continuous function f and squashes
the contents of the function into the interval [0,1]:

f (x) =
1

1+e−λx

. A more general FCM formula was proposed By
Stylios et al. (Stylios and Groumpos, 2004) to calcu-
late the values of concepts for each time step. Namely,

At
i = f

(

ki
1 ∑

i 6= j

At−1
j ·Wji + ki

2A
t−1
i

)

The coefficientski
1 andki

2 must satisfy the condi-
tions 0≤ ki

1 ≤ 1 and 0≤ ki
2 ≤ 1. The coefficientki

1 ex-
presses the influence of the interconnected concepts in
the configuration of the new value of conceptAi . The
coefficientki

2 represents the proportion of the contri-
bution of the previous value of the concept in the com-
putation of the new value. The FCM approach has the
advantage that we get a new state vector by multiply-
ing the previous state vector a by the edge matrix W,
which shows the effect of the change in the activation
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level of one concept on another. In the Pliant con-
cept, we aggregate the influences instead of summing
up the values. The result always lies between 0 and
1, so we do not need normalization as an additional
step. Aggregation in Pliant logic is a general oper-
ation, which contains conjunctive operators and dis-
junctive operators as well. Depending on the param-
eter called the neutral value of the aggregation opera-
tor, we can build logical operators like Dombi opera-
tors. Using PCMs (Pliant Cognitive Maps) we answer
”what if” questions based on an initial scenario. Now
let Ai be the initial state vector. The new state is cal-
culated repeatedly with the aggregation operator until
the system converges

∣

∣At
i −At−1

i

∣

∣< ε. Eventually we
get the equilibrium vector, which provides a set of an-
swers to our ”what-if” questions. The PCM approach
can be used in every area covered by the FCM ap-
proach.

3 COMPONENTS OF THE PCM

Now we will introduce the components of the Pliant
Cognitive Maps.

3.1 Aggregator Operator

Besides the logical operators constructed in fuzzy the-
ory, a non-logical operator also appears. The reason
for this is the insufficiency of using either conjunc-
tive or disjunction operators for real-world situations
(Zimmermann and Zysno, 1980). The rational form
of an aggregation operator is (Dombi, 1982):

a(x1, . . . ,xn) =
1

1+ 1−ν0
ν0

·
( ν

1−ν
)∑wi−1

·∏n
i=1(

1−xi
xi

)wi

We can model conjunctive and disjunctive opera-
tors with the aggregation operator. If v is close to 0
then the operation has a disjunctive characteristic and
if v is close to 1 then the operation has a conjunctive
characteristic. From this property it can be seen that
by using aggregation we have more possibilities than
by simply using the sum function in FCM. By varying
the neutral values at the nodes, different operations
can be performed.

3.2 Creating Influences

In the Pliant Cognitive Map, we define influences.
The sigmoid function naturally maps the values to the
(0,1) interval. Positive (negative) influences can be
built with the help of two sigmoid functions and the

conjunctive operator. Hence we get the generalized
positive impulse function

c(t,u,v,a,b) =
1

1+u∗e−λ1(t−a)+ v∗e−λ2(t−b)
,

whereu andv are weights. In Figure 2 we can see
a basic influence, as mentioned in (Jozsef Dombi,
2005). If the influence is neutral, we can represent
it by a 1/2 value. If there are no influences, then we
continuously order 1/2 values in the system. If we
want to model positive influences, we order a value
which is larger than 1/2, and whose maximal value is
1. The negative influence is the negation of the posi-
tive influence. To create these influences, we use the
following transformations:

P(t,u,v,a,b) =
1
2
(1+ c(t,u,v,a,b))

N(t,u,v,a,b) =
1
2
(1− c(t,u,v,a,b))

Figure 2: An average influence.

Figure 3: The aggregation of two influences.

In Figure 3, we have plotted the aggregation of a
positive and a negative effect.

4 CONSTRUCTION OF THE PCM

To simulate the system, the only thing we have to do
is to aggregate the influences. The aggregation oper-
ator is a guarantee that we will use influences in the
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right way. The following steps should be carried out
to simulate the system:

1. Collect the concepts.

2. Define the expectation values of the nodes (i.e.
threshold values of the aggregations).

3. Build a cognitive map (i.e. draw a directed graph
for the concepts).

4. Define the influences (i.e. whether they are posi-
tive or negative)

In the iterative method we

1. Use the proper function or supply a data list for
the input nodes.

2. Calculate the positive and negative influences us-
ing step 4.

3. Aggregate the positive and negative influences,
where the aggregation parameterν0 value is the
previous value of the conceptCj .

5 HEAT EXCHANGER
APPLICATIONS

A heat exchanger is a standard device in the chemi-
cal and process industries (M. Fischer and Isermann,
2000). In this task, the temperature control is still a
major challenge as the heat exchanger is used over a
wide range of operating conditions. The behaviour of
the system, which is non-linear, strongly depends on
the flow rates and on the temperature of the medium.
A cross-flow water/air heat exchanger is envisaged,
which is subject to immeasurable or non-modeled dis-
turbances that require the use of knowledge-based
techniques. In this problem, we wish to develop a be-
havioural model for the heat exchanger system, that
will control the water outlet temperature by manipu-
lating the flow rate of the air.

Figure 4: Typical heat exchanger system.

Here, in Figure 4 we can see a typical set-up for
the system. It is well known that the FCM can be

used to model and control the heat exchanger process
(Stylios and Groumpos, 2004). In most process indus-
tries the thermal plant comprises two heat exchangers,
but in our example (see Figure 2) we will just con-
sider the secondary circuit. Our system contains two
circuitsW1 andW2. W1 is a circuit, which is a tubular
steam/water heat exchanger, andW2 is the cross-flow
water/air exchanger. The water in this circuit is heated
by means ofW1. On the left hand side, the water is
cooled in the cross-flow water/air heat exchangerW2.
A fan sucks in cold air from the environment (temper-
atureTai). After passing through the heat exchanger
and the fan, the air is blown back out into the envi-
ronment. The water temperatureTwo is controlled by
manipulating the fan speedS f. The control variable
Twodepends on the manipulated variableS f and the
measurable disturbances: the inlet water temperature
Twi, air temperatureTai and water flow rateFw. In
most systems, the water flow rate is usually regulated
by a PI-controlled pneumatic valve which strongly in-
fluences the behaviour of the heat exchangerW2 and
it is a major challenge to design a temperature con-
troller for Two when the flow rates vary over a wide
range (Bittanti and Piroddi, 1997), (Ernst and Hecker,
1996). The operators of the heat exchanger gather
experience that can be used to build a model. To
construct an FCM system, we have to determine the
concepts. Here, concepts stand for the input and out-
put variables of the process. Earlier the thermal plant
was described, and the concepts of the FCM were de-
rived from a Stylios analysis (Stylios and Groumpos,
2004). Experts define five concepts for this situation:

• Concept1: The fan speedS f, which is the manip-
ulated variable.

• Concept2: The water flow rateFw.

• Concept3: The water inlet temperatureTwi.

• Concept4: The air inlet temperatureTai. The en-
vironmental temperature cannot be manipulated
as it depends on the weather and season.

• Concept5: The water outlet temperatureTwo,
which is the output of the model.

In the next step, the causal interconnections for the
concepts have to be determined. Experts can describe
the relation between any two concepts based on the
system. The connections for the concepts are

• Linkage1: It connects concept1 (fan speedS f)
with concept5 (water outlet temperatureTwo).
When the value ofS f increases, the value ofTwo
decreases.

• Linkage2: It connects concept2 (flow rateFw)
with concept5 (water outlet temperatureTwo).
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When the value ofFw increases, the value ofTwo
increases.

• Linkage3: It connects concept2 (flow rateFw)
with concept1 (fan speedS f ). When the value
of Fw increases, the value ofS f increases.

• Linkage4: It connects concept3 (water inlet tem-
peratureTwi) with concept5 (water outlet temper-
atureTwo). When the value ofTwi increases, the
value ofTwo increases.

• Linkage5: It connects concept3 (water inlet tem-
peratureTwi) with concept1 (fan speedS f ).
When the value ofTwi increases, the value ofS f
increases.

• Linkage6: It connects concept3 (water inlet tem-
perature Twi) with concept2 (flow rateFw).
When the value ofTwi increases, the value ofFw
decreases.

• Linkage7: It connects concept4 (air inlet tempera-
tureTai) with concept5 (water outlet temperature
Two). When the value ofTai increases, the value
of Two increases.

• Linkage8: It connects concept4 (air inlet tempera-
tureTai) with concept1 (fan speedS f ). When the
value ofTai increases, the value ofS f decreases.

• Linkage9: It connects concept5 (water outlet
temperatureTwo) with concept2 (flow rateFw).
When the value ofTwoincreases, the value ofFw
decreases.

• Linkage10: It connects concept5 (water outlet
temperatureTwo) with concept1 (fan speedS f ).
When the value ofTwo increases, the value ofS f
increases.

Figure 5: The FCM model for the heat exchanger system.

Figure 5 shows our system which describes, mod-
els and controls the heat exchanger system. The FCM
model for the heat exchanger is in accordance with the
models and experiments described in (M. Fischer and
Isermann, 2000) (Ernst and Hecker, 1996). It is also
possible to create an influence matrix for the system
like that in Table 1.

Table 1: The weighted matrix of the model.

S f Fw Twi Tai Two
0 0.625 0.75 -0.25 0.625
0 0 -0.75 0 -0.75
0 0 0 0 0
0 0 0 0 0

-0.75 0.125 0.25 -0.75 0

Table 2: Simulation results for the FCM.

Iteration S f Fw Two Improvement:
1 0,77 0,52 0,56 0,8577
2 0,85 0,44 0,54 0,1906
3 0,85 0,43 0,51 0,0419
4 0,85 0,43 0,5 0,0107
5 0,85 0,43 0,5 0,0036

To simulate a real environment in the FCM, the
values of concepts correspond to real measurements
that have been transformed to the interval [0,1]. A
corresponding mechanism is needed that will trans-
form the measures of the system to their represen-
tative values of concepts in the FCM model and
vice versa. The initial measurements of the heat
exchanger system were transformed to concept val-
ues and the initial vector of the FCM isA0 =
[0.3 0.65 0.45 0.15 0.3]. In Figure 5, it also shows
the initial values of each concept and the interconnec-
tions with their weights. With these initial values of
concepts, the FCM starts to simulate the behaviour of
the process. For the FCM area, a running step is de-
fined as the time step during which the values of the
concepts are calculated. The value of each concept is
defined by taking all the causal linkage weights point-
ing to this concept and multiplying each weight by
the value of the concept that causes the linkage, and
adding the last value of each concept. Then the sig-
moid function withλ= 1 is applied and the result falls
into the range [0,1]. The results of the simulation are
listed below.

This table does not contain input node values
where the value is the same all time. Evaluating the
results, we see that the value of fan speedS f has in-
creased, the value of flow rateFw has decreased, and
after the third step, the water outlet temperatureTwo
falls below the value of 0.50. We also see that the
value between any two simulation steps decreases, but
this decrease is not uniform, which is not as good as
we first thought. Because concepts control physical
devices, we should vary the values as smoothly as
possible.
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6 EVALUATE WITH THE PCM

Our method works with real data measurements,
which means that we do not need to transform real
values between [0,1] in order to run the simulation. In
our model we use the same concepts and connections,
and the initial values of the concepts are the same as
before. So first of all to evaluate our method we need
to identify the range values of the concepts. Because
previous articles do not mention these values, we will
choose the following values:

Table 3: The range values of the concepts.

Concept Minimum Maximum Default
S f 100 500 250
Fw 2 20 6
Twi 20 50 30
Tai 18 35 24
Two 20 40 30

The default value is used to specify the real values
of the first step. Using the above-mentioned ranges
we define a sigmoid function that will be used for the
calculations. For example, the initial value of theS f
concept is 0.3, and we apply the following sigmoid
function:

Sf (x) =
1

1+e−
4

500(x−250)

In this case, the real value ofS f should be 144.08.
Based on these calculations, we can compute the ini-
tial values of the concepts:

Table 4: The initial values of the concepts.

S f Fw Twi Tai Two
144.08 3.7 27.5 8.8 21.52

This method also shows that with each simula-
tion step it is easy to recover the real value. In the
classical FCM method, the influence does not change
during the simulation. In order to compare it with
our method, we will also define a constant influence.
Hence in a simulation step we calculate the new con-
cept value in the following way. For each node in
the set we create a set that contains all the incoming
nodes. Also, we will use the following expression to
calculate the strength of the incoming node:

(

1− xi

xi

)wi j

,

wherexi is the actual value of the node andwi j is the
value of the influence between conceptCi andCj . Af-
ter, we calculate this method for each node in the set,
then we use the aggregation operator to calculate the

Table 5: Simulation results for the PCM.

Iteration S f Fw Two Improvement:
1 0.53 0.68 0.75 0.7262
2 0.81 0.33 0.59 0.7870
3 0.52 0.46 0.31 0.7024
4 0.42 0.67 0.57 0.5787
5 0.71 0.47 0.67 0.5881
6 0.66 0.40 0.42 0.3810
7 0.46 0.59 0.46 0.4327
8 0.60 0.56 0.63 0.3492
9 0.69 0.43 0.53 0.3310
10 0.54 0.51 0.44 0.3176
11 0.54 0.58 0.56 0.1951
12 0.65 0.48 0.57 0.2203
13 0.60 0.47 0.47 0.1590
14 0.54 0.55 0.51 0.1829
15 0.61 0.52 0.57 0.1602
16 0.63 0.47 0.51 0.1224
17 0.56 0.52 0.49 0.1266
18 0.58 0.53 0.55 0.0833
19 0.62 0.49 0.54 0.0908
20 0.59 0.50 0.50 0.0734
21 0.57 0.53 0.52 0.0712
22 0.60 0.51 0.54 0.0675
23 0.60 0.50 0.52 0.0405
24 0.58 0.52 0.51 0.0462
25 0.59 0.52 0.54 0.0337
26 0.60 0.50 0.53 0.0380
27 0.59 0.51 0.51 0.0336
28 0.59 0.52 0.53 0.0256
29 0.60 0.51 0.53 0.0264
30 0.60 0.51 0.52 0.0174
31 0.59 0.51 0.52 0.0191
32 0.59 0.51 0.53 0.0155
33 0.60 0.51 0.52 0.0148
34 0.59 0.51 0.52 0.0141
35 0.59 0.51 0.53 0.0084

new value of the concept. For example, the new value
of Fw is obtained by computing

1

1+
(1−0.45

0.45

)−0.75(1−0.3
0.3

)−0.75

Now we can run the simulation until it exceeds a
limit. The following table shows the results of our
simulation.

Evaluating the results we notice that they are dif-
ferent from those got by using the FCM method. In
Figure 6, we see how the values vary.

The value of the fan speedS f has decreased, the
value of flow rateFw has decreased and the water
outlet temperatureTwo is below the value of 0.50.
We also see that the differences between two simu-
lation steps decreases (see Figure 7), but this decrease
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Figure 6: Results for the PCM model.

Figure 7: Sum of value change for each step.

is smooth, and this is why it requires more simulation
steps.

7 CONCLUSIONS

In this paper, we made use of numerical methods to
model complex systems based on positive and nega-
tive influences. This concept is similar to the FCM
concept, but the functions and the aggregation proce-
dures are quite different. It is based on a continuous-
valued logic and all the parameters have a semantic
meaning. Here, we showed that we can apply this
method in a real environment. The values of the sim-
ulation steps smoothly decrease, but it requires more
simulation steps. In this example, we used the same
influence for each concept all the time, but it is also
possible to vary the strength of the influence, and then
we can model a real-world situation better.
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