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Abstract: Fluid particle breakage and coalescence phenomena are important for optimal operation for industrial process
units like the bobble column reactors. The population balance equation (PBE) can be applied to describe the
evolution of populations of countable entities such as the bubbles in the bubble column. In recent literature,
the least-squares methods has been adopted for the approximate solution of population balance (PB) models.
Adopting a weighted residual method such as the least-squares method, the distribution function resolved
instead of obtaining only a few moments of the distribution function. The performance of the least-squares
method for PB problems should be compared to other techniques in the family of weighted residual methods.
The aim of the present study is to evaluate the orthogonal collocation, tau and last-squares methods for the
solution of a combined multifluid-PB model describing bubbly flows.
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Despite the simple construction of the bubble T a2

columns and their widespread use for chemical re- O \—j\,,

actions and separation in the process industries, our O i° - ¢t

understanding of the complex flows in these vessels ° ii f(206)

is still very limited. The complexity of the hydro- = o

dynamics in the bubble columns relates to the evo- °iO

lution of phenomena such as breakage, coalescence, D —

growth and convective transport of the bubbles. In the Of o ¢
O

mathematical modeling framework, the PBE (Ramkr-
ishna, 2000; Jakobsen, 2008; Randolph and Larson, I - Tz)
1988; Sporleder et al., 2012) is considered a concept o {0

for describing the evolution of populations of count- 0

able entities such as the bubbles in the bubble col- °
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umn. Adopting the PB modeling technique to bubbly '
flows, the dispersed gas phase is treated as a popula- . : fl0)
tion of bubbles distributed not only in physical space 0,100
but also in an abstract property space. The quantity 0 o’ — _J\_/
of basic interest in PB modeling is the statistical den- iy -

. . . . —
sity function representing the behavior of the popula- Gasinjection

tion of bubbles. The evolution of the statistical den- Figure 1: Sketch of a bubble column reactor. The parameter
sity function must take into account the different pro- ¢ is a characteristic property of the bubble, for example the

cesses that control the population of the bubbles in pppie giameter. Because of the different interaction pro-
the vessel, such as breakage, coalescence, growth angesses, the distribution of the bubbles evolves.

convective transport. Thus the PBE provides a sta-
tistical description of the dispersed phase where the
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density function may be denoted Ibyr,&,t) wherer collocation methods in the weighted residual frame-
is the spatial position vectdf,is the property of inter-  work can be applied to solve the model proposed by
est of the dispersed phase, aigithe time. Moreover, (Nayak et al., 2011).

f(r,&,t)d€ represents the average number of particles  In the following, the multifluid—-PB model is out-
per unit volume around the point(r,r +dr) in the lined for bubbly flows in a cold-flow column.

time t, with the property betweefiand¢ + d¢. The

resulting PBE is characterized mathematically as a2 1  The dispersed Phase

non-linear integro-partial differential equation which

must be solved by a suitable numerical method. The two-dimensional (one dimensiona in the physical

In recent publications, the least-squares method : L
has been adopted for the solution of PB problems, issps;:eesggsegré;dlmensmn in the property space) PBE

e.g. (Dorao and Jakobsen, 2006b; Dorao and Jakob-
sen, 2007b; Dorao and Jakobsen, 2008; Dorao and 9 0

Jakobsen, 2009; Dorao and Jakobsen, 2007a; Dorao a—Z[Vz(E,Z) fam(&,2)] + % [V (&,2) fam(&,2)]
and Jakobsen, 2006a; Nayak et al., 2011; Sporleder

etal., 2011; Zhu et al., 2009a; Zhu et al., 2009b; Pa- — P& fam(&.2)

truno et al., 2009; Patruno, 2010; Borka and Jakobsen, max fam({,2)

2012a). The least-squares method has also been ap- +V(E)/E h(&,2)b(0) V(Q) ac

plied to other chemical reactor problems such as the (€3, —£3)1/3 fam(Z,2) (1)
pellet equations and fixed packed bed reactors (Rout _ fd.m(gvz)/ (8,02~ gz

et al., 2011; Rout and Jakobsen, 2012; Solsvik and ' Ermin Pd(2)V(Q)

Jakobsen, 2012; Sporleder et al., 2011). However, EA/(E) [E=En)' 2 g([E3=T313,0)
the least-squares technique is a method in the family + 2 /E . W
of weighted residual. Thus, it is of interest to reveal ™
the properties of the least-squares method compared fam(C,2) fam([&3—23Y32) o

to other methods in the weighted residual framework pa(2V(Q) V() -V

like the orthogonal collocation and tau methods. ) ' ; ) )

The aim of the present study is to compare the per- IN Which fq is the mass density function [kgffm].
formance of different solution techniques in the fam- The bubbles are transported in physical space accord-
ily of weighted residual methods. The solution meth- g to velocityv; and in the property space according
ods is evaluated for a combined multifluid-PB model t0 velocity ve. Moreover, the internal coordinate is
describing bubbly flow. The evaluation should con- the bubble diameter. The breakage rate and daughter
sider residual measures, computational time, imple- SiZ€ redistribution function proposed by (Coulaloglou

mentation issues, and complexity of the algebraic the- @nd Tavlarides, 1977), and the coalescence model by
ory of the methods. (Prince and Blanch, 1990) are adopted. The breakage

frequency yields:

kee/® ok
2 THE MODEL R T ]

The combined multifluid-PB model considered in the Whereki andk; are empirical parameters, which de-
present study is based upon the work of (Nayak et al., Pend on the system properties. The daughter size re-
2011; Borka and Jakobsen, 2012a: Borka and Jakob-distribution function is given as:

(2

sen, 2012b; Borka and Jakobsen, 2012c). The steady- .
state model holds one dimension in physical space 24<§EZ>
and one dimension in the property space (bubble di- h(&,0) =2P(&,0) =2
ameter). The model equations is outlined in the se- V(@) (3)
quel. 2V (8) = V()
The main advantages of the novel model by x exp <—4-5%

(Nayak et al., 2011) is that both the PBE and the
momentum equation of the dispersed gas phase is inThe coalescence model by (Prince and Blanch, 1990)
terms of the internal coordinate Hence, the inner s defined as the product of a collision volume rate

coordinate space physics can be resolved providedhc(E 2) and the coalescence probability(&, 2):
that a sufficient numerical method is available. In par- ’ ’

ticular, the least-squares, tau, Galerkin and orthogonal c(&,0) = he(&,OAc(E, Q) 4)
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The expression for the coalescence probability is
given as:

ho
160 h¢

[r§<z,z>p.]1/zsl/3m[
f

Ace(€,{) =exp|— ®)
[rC(EaZ)} 2/3
where the equivalent radius is defined as:
r(zz>—1[1+1}l )
Cc\&» - 4 E Z

The collision volume rate is given as:

he(€,0) = ;[E+Z]2[B[é]2/3+8[81]2/3} 1/2 )
The bubble growth velocity is estimated as:

&vy d)d(z)
3pd(z2) 0z ®
The momentum equation of the dispersed phase is
given as:

: [fam(&2V2(8,2V:(E,2)] =

Vi (2,8) =

0z
- 2 lfam(& (5.2 ©
- BnBDD D | fan(E DG+ taa. D
The dispersed phase fraction:
ad= [ f"g;(é’)z’ g (10)

The gas-phase pressure is assumed equal to the liquid-

phase pressureP = Py = B. The ideal gas law

gives the relationship between the pressure and the.

dispersed phase density:

p?
p(z) — —Pd(2) =0 (11)
Pqd
The drag force is defined as:
_ § % fd,m(Evz) _
fdrag= 4pl E pa2) Vi (§,2) —vi(2)] (12)
x [ (&,2) —vi(2)]
where
Co =
_[16 g7, 487 8 Eo
max(mln {%(14- 0.15R&%87), @] ,§m>
(13)
PiV2(z,E) —Vvi(2)[€
Rep = 14
€ m (14)
Eo_ 9(P1 —Pg)E° (15)
B o
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2.2 The Continuous Phase

The liquid continuity equation:

2 [m@pm(@] =0 (16)
or integrated:
a(2pvi(2) = (z=0)pvi(z=0)  (17)
The momentum equation:
o (2)pvi(2) dEzV' (2) =
(@] -2 -0 Muer|  as)

- /0 ) farag(§,2) € + a1 (2)pi1g

The summation of the phase area fraction must be
unity:

ag+o, =1 (19)
The wall friction factor is calculated as:
fu(2) = [0.79In[Re (2)] — 1.64) 7% (20)

3 NUMERICAL METHODS

Basically, spectral methods are based upon using a
representation of the solution function over the entire
computational domain via a truncated series expan-
sion (Finlayson, 1972):

P

fex(8) ~ f2(8) = ¥ ajof (&)
2,0

in which¢¥ (&) denotes the basis function aogl de-
notes the basis coefficients. A nodal basis is obtained
if the truncated series expansion (21) is given in terms
of Lagrangian basis ponnomiaA’%’(E):

(21)

P
(&)~ 7€) = zoff’é%’(a (22)

J:
in which the basis coefficients are meaningful in the
sense that they correspond to the solution function
values at the collocation points.

The methods of weighted residual is presented by

the following generalized inner product:

/Q R(E L2, 1)wi(E)dQ =0
i=0,1,...,P

wherew; are weighting functions anf_ is the resid-
ual. The particular choice of the weighting function
defines the particular solution approximation tech-
nique in the family of weighted residual methods:

(23)
for
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o the least-squares method system form. The former residual definition measure
Py the residual of the governing equation, while the lat-

wW=—=RE fy, ., fF) (24) ter definition gives the residual of the algebraic equa-

of; tion system that is actually solved. Noticeable, for the

orthogonal collocation method the problem operator
form and the algebraic system form coincide. Fig-
w = £ (&) (25) ure 3 shows the residual versus the number of itera-
tions adopting the residual measure definition based
on the algebraic system form. Based on this partic-
W =3(§—§) (26) ular residual measure, the tau method is significantly
favorable above the orthogonal collocation and least-
The tau (Lanczos, 1938) and least-squares (Jiang,squares methods. The orthogonal collocation and
1998; Bochev and Gunzburger, 1998; Pontaza, 2003)least-squares methods obtain the same accuracy, but
methods have not obtained the same popularity as thewith differences in the number of iteration to reach
orthogonal collocation method (Villadsen and Stew- convergence, in which the least-squares method re-
ard, 1967, Villadsen, 1970; Villadsen and Michelsen, quires less iteration to reach its minimum residual
1978; Michelsen and Villadsen, 1981) in the chem- value. In figure 4 the residual measure definition
ical reactor engineering society. However, the tau based on the problem operator form is adopted. For
method is similar to the Galerkin method (Galerkin, this particular residual measure definition, the tau and
1915). The essential difference between the Galerkin orthogonal collocation show the same performance.
and the tau methods is the treatment of the boundaryOn the other hand, the least-squares method obtains a
conditions. Theory of the least-squares method from significant larger value of the residual measure. Thus,
a chemical engineering point of view is given by (Do- the least-squares method does not fulfill the govern-
rao, 2006; Zhu, 2009; Sporleder, 2011). Furthermore, ing equation as well as the orthogonal collocation and
the algebra and implementation issues using the leasttau methods. The least-squares method requires fur-
squares method for the solution of a PB problem is ther attention to reveal the significantly larger resid-
provided by (Solsvik and Jakobsen, 2013).

e the tau method

¢ the orthogonal collocation method
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The solution of the PBE (1) is presented in figure 2. '?»10'10 "-_ “a, ,
The PB model has been solved with the orthogonal & e AT T T S I
collocation, tau and least-squares methods. '-._
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Figure 2: Solution of a PB problem. The bubble size distri-
bution along the bubble column height. [Machine accuracy T
Two residual measure definitions have been em- 107° : : :
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ployed to evaluate the accuracy of the solution meth- Iterations

ods. The residual measure definitions are based ongigyre 4: Residual (problem operator form) as a function of
(i) the problem operator form and (ii) the algebraic the number of iterations.
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ual measure on the problem operator form comparedDorao, C. A. and Jakobsen, H. A. (2006a). Application of

to the orthogonal collocation and tau methods. the least-squares ryelthod for solving population bal-
The orthogonal collocation method is favorable aggi problems iR“**. Chem Eng S¢i61:5070~

considering the simplicity of implementation com-

pared to the tau and leas-squares methods. Moreove'{)oramethod for the solution of population balance prob-

t_he orthogonal qolloc_atlon method uses less computa- lems. Computers & Chemical Engineering0:535—

tional costs per iteration than the relatively more com- 547.

putational demanding tau and least-squares methods.porao, C. A. and Jakobsen, H. A. (2007a). Least-squares
spectral method for solving advective population bal-

ance problems. J. of Computational and Applied
Mathematics201:247-257.

0, C. A. and Jakobsen, H. A. (2006b). A least squares

S5 CONCLUSIONS Dorao, C. A. and Jakobsen, H. A. (2007b). Time—space—
property least squares sp_ectral m(_ethod_ for po_pulation
The accuracy of the orthogonal collocation, tau and balance problems. Chemical Engineering Science

least-squares method can be evaluated on different OR.L322371333.

residual measure definitions. Dependent on the resid-2°2%: C- A. and Jakobsen, H. A. (2008hp-adaptive
least squares spectral element method for population

ual measure definition adopted, the relatively perfor- balance equationsApplied Numerical Mathematics
mance of the numerical methods may change signifi- 58:563-576.

cantly. However, the simulation results of the present porao, C. A. and Jakobsen, H. A. (2009). Time—property
PB problem indicate that the orthogonal collocation least-squares spectral method for population balance

and tau method are favorable above the least-squares  equations.J. Math. Chem.46:770-780.
method considering accuracy. Nevertheless, the or-Finlayson, B. A. (1972)The method of weighted residuals
thogonal collocation method uses less computational- — and variational principlesvolume 87 oﬁ{lathergaths
costs per iteration than the tau and least-squares meth- gresscs'ence alf EngineeringNew York: Academic
ods. Furthermore, the orthogonal collocation method T , .

- . . Galerkin, B. G. (1915). Series solution of some problems
holds the simplest algebraic theory, and is thus asso-

. : . . o in elastic equilibrium of rods and plated/estn Inzh
ciated with the simplest implementation issues. Tech 19:897—908.

Jakobsen, H. A. (2008)Chemical reactor modeling: Mul-
tiphase reactive flowsBerlin: Springer.
REFERENCES Jiang, B.-N. (1998). The least-squares finite ele-

ment method: Theory and applications in computa-
tional fluid dynamics and electromagnetic8erlin:

Bocheyv, P. B. and Gunzburger, M. D. (1998). Finite ele- Springer.
ment methods of least-squares tyf®AM REVIEW Lanczos, C. (1938). Trigonometric interpolation of empir-
40:789-837. ical and analytical functionsJ Math Phys 17:123—
Borka, Z. and Jakobsen, H. A. (2012a). Evaluation of 199.
breakage and coalescence kernels for vertical bubbly michelsen, M. L. and Villadsen, J. (1981). Polynomial so-
flows using a combined muItiquid—popuIation_ balance lution of differential equations. In Mah, R. S. H. and
model solved by least squares meth&®tocedia En- Seider, W. D., editorssoundations of computer-aided
gineering 42:623-633. chemical process desigmpages 341-368. New York:

Borka, Z. and Jakobsen, H. A. (2012b). Least squares Engineering Foundation.
higher order method for the solution of a com- Nayak, A. K., Borka, Z., Patruno, L. E., Sporleder, F.,

bined multifluid—population balance model: Model- Dorao, C. A., and Jakobsen, H. A. (2011). A com-

ing and implementation issueBrocedia Engineering bined multifluid-population balance model for verti-

42:1121-1132. cal gas-liquid bubble-driven flows considering bubble
Borka, Z. and Jakobsen, H. A. (2012c). On the modeling column operating conditiondndustrial & Engineer-

and simulation of higher order breakage for vertical ing Chemical Researc50:1786-1798.

bubbly flows using the least squares method: Appli- Patruno, L. E. (2010)Experimental and numerical inves-

cation for bubble column and pipe flowsProcedia tigations of liquid fragmentation and droplet genera-

Engineering 42:1270-1281. tion for gas processing at high pressure®hD the-
Coulaloglou, C. A. and Tavlarides, L. L. (1977). Descrip- sis, Norwegian University of Science and Technology

tion of interaction processes in agitated liquidliquid (NTNU).

dispersionsChemical Engineering Sciencg?:1289— Patruno, L. E., Dorao, C. A., Svendsen, H. F., and Jakob-

1297. sen, H. A. (2009). Analysis of breakage kernels for
Dorao, C. A. (2006).High order methods for the solution population balance modellin@€hemical Engineering

of the population balance equation with applications Science64:501-508.

to bubbly flows PhD thesis, Norwegian University of  Pontaza, J. P. (2003)Least-squares variation principles

Science and Technology (NTNU). and finite element mehtods: Theory, formulations, and

106



Spectral Solutions of a Combined Multifluid--population Balance Model Describing Bubbly Flow - A Numerical Study of

models for solid and fluid mechanicsPhD thesis,
Texas A&M University.

weighted Residual Methods

method. Industrial Engineering Chemical Research
48:7994-8006.

Prince, M. J. and Blanch, H. W. (1990). Bubble coalescence Zhu, Z., Dorao, C. A., and Jakobsen, H. A. (2009b). Solu-

and break-up in air-sparged bubble columrdChE
J, 36(10):1485-1499.

Ramkrishna, D. (2000).Population balance: Theory and
applications to particulate systems in engineering
San Diego: Academic Press.

Randolph, A. D. and Larson, M. A. (1988Theory of par-
ticulate processes. Analysis and techniques of contin-
uous crystallization San Diego: Academic Press, 2
edition.

Rout, K. R. and Jakobsen, H. A. (2012). Reactor perfor-
mance optimization by the use of a novel combined
pellet reflecting both catalyst and adsorbent proper-
ties. Fuel Processing Technolog99:13—34.

Rout, K. R., Solsvik, J., Nayak, A. K., and Jakobsen,
H. A. (2011). A numerical study of multicomponent
mass diffusion and convection in porous pellets for
the sorption-enhanced steam methane reforming and
desorption processe€hemical Engineering Science
66:4111-4126.

Solsvik, J. and Jakobsen, H. A. (2012). Effect of jacobi
polynomials on-the numerical solution of the pellet
equation using the orthogonal collocation, Galerkin,
tau and least squares metho@omputers & Chemi-
cal Engineering39:1-21.

Solsvik, J. and Jakobsen, H. A. (2013). On the solution
of the population balance equation for bubbly flows
using the high-order least-squares method: Imple-
mentation issuesReviews in Chemical Engineering
29(2):63-98.

Sporleder, F. (2011)Simulation of chemical reactors using
the least-squares spectral element methBéD the-
sis, Norwegian University of Science and Technology
(NTNU).

Sporleder, F., Borka, Z., Solsvik, J., and Jakobsen, H. A.
(2012). On the population balance equati®eviews
in Chemical Engineering28:149-169.

Sporleder, F., Dorao, C. A., and Jakobsen, H. A. (2011).
Model based on population balance for the simulation
of bubble columns using methods of the least-squares
type. Chemical Engineering Sciencg6:3133-3144.

Villadsen, J. (1970).Selected approximation methods for
chemical engineering problemsKgbenhavn: Dan-
marks Tekniske Hgjskole.

Villadsen, J. and Michelsen, M. L. (1978%olution of Dif-
ferential Equation Models by Polynomial Approxima-
tion. Englewood Cliffs, NJ: Prentice-Hall.

Villadsen, J. V. and Steward, W. E. (1967). Solution of
boundary-value problems by orthogonal collocation.
Chemical Engineering Scienc22:1482-1501.

Zhu, Z. (2009).The least-squares spectral element method
solution of the gas—liquid multi-fluid model coupled
with the population balance equation PhD the-
sis, Norwegian University of Science and Technology
(NTNU).

Zhu, Z., Dorao, C. A., and Jakobsen, H. A. (2009a). On
the coupled solution of a combined population bal-
ance model using the least-squares spectral element

tion of bubble number density with breakage and coa-
lescence in a bubble column by least-squares method.
Progress in Computational Fluid Dynamics, 9:436 —
446.

107



