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Abstract: The problem of robust fault detection and isolation in robotic and mechatronic systems described by 
nonlinear models with non-smooth nonlinearities is considered. So-called logic-dynamic approach to 
construct the diagnostic observer with non-smooth nonlinearities by linear methods is considered. The 
method which allows obtaining full set of solutions with minimal sensitivity to the disturbance is suggested. 
This set of solutions can be used to choose the optimal solution with maximal sensitivity to the faults.  

1 INTRODUCTION 

There are many papers and books devoted to the 
problem of robust fault detection and isolation (FDI) 
in different technical systems (Blanke et al., 2006); 
(Chen and Patton, 1999); (Chen, 2008); (Li and 
Zhou, 2009); (Schreier et al., 1997). This problem is 
completely solved in the case when a residual 
generator is of the form of linear parity relations 
(Frank, 1990); (Low et al., 1984); (Patton et al., 
2002); mane papers consider this problem for 
diagnostic observer (Blanke et al., 2006); (Chen and 
Patton, 1999); (Chen, 2008); (Li and Zhou, 2009); 
(Schreier et al., 1997) in the case when the system 
under diagnosis is linear or nonlinear with smooth 
nonlinearities.  

At the same time, many robotic and mechatronic 
systems are described by nonlinear models with non-
smooth nonlinearities such as saturation, Coulomb 
friction, backlash and hysteresis. For such systems 
traditional methods of observer design (see Blanke 
et al., 2006; Frank, 1990) are not applicable, and 
special design methods must be used. One of these 
methods is the logic-dynamic approach suggested by 
(Zhirabok and Usoltsev, 2002). 

In this paper we consider the problem of robust 
observer design for FDI in robotic and mechatronic 
systems with non-smooth nonlinearities. As usual, 
observer-based methods allow obtaining the single 
solution only whose robust properties have to be 
checked. If the result of this checking is not good, 
another solution is found and the robust properties 

are checked again. To overcome this shortcoming, 
the new approach is suggested allowing obtaining a 
full set of solutions with given robust properties 
which can be used to choose the optimal solution. 

2 SYSTEM TRANSFORMATIONS 

Consider the system describe by the following 
equations 
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where nRXtx  )( , mRUtu )( , lRYty )(  

are vectors of state, control, and output; f   and h  
are nonlinear vector functions, the function f   may 

be non-smooth. It is supposed that the function h  

satisfies the condition l
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except on a set of measure zero. 
To obtain a linear function of output, consider 

one-to-one transformation of the system (1). For this 
system, coordinate transformation 
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is given by the function   where 
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 ,...,
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 are 

some state vector components functionally 
independent of the components of the function h , 

ih  is the i-th component of this function. Because of 

this choice, the function   is invertible for all 
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nRx   except on a set of measure zero. In new 
coordinates the system takes the form  
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where )0( llIH  , llI   is the identical ll   

matrix. 
To take into account faults and disturbances and 

to apply the logic-dynamic approach (Zhirabok and 
Usoltsev, 2002), the model (2) has to be transformed 
into the following form: 
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where F and G are matrices describing linear 
dynamics; pAA ,...,1  are matrices-rows; L and D are 

known constant matrices, the term )(tL  models 

unknown parameters and unknown inputs to the 
actuator and to the dynamic process, the evaluation 
of the vector function )(t  must generally be 

considered unknown; the term )(tDd  models the 

faults: if there are no faults, then 0)( td , if a fault 

occurs, )(td  becomes an unknown function; C is 

pn  matrix: is the right-hand side of the equation 

for the i-th component of the state vector of the 
system (2) contains nonlinearity ),( uxA jj , then 

0),( jiC , otherwise 0),( jiC . Generally, the 

function j  has several terms of the form xAi . 

3 PRELIMINARY RESULTS 

Firstly, consider the linear case when 0C  and the 
system is described by the equations 

).(=)(   ,)()()(+)()( tHxtytLtDdtGutFxtx   

Description of the linear observer is found in the 
following form: 

),(=)(

 ,)()()(+)()(

***
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txHty

tKrtJytuGtxFtx 
 (3)

where K is the feedback gain matrix; *F , *G , J, and 

*H  are matrices describing the observer; )(* tx  is 

the state vector of the observer, )(tr  is a residual 

generated as )()()( * tytRytr   for some matrix R. 

If there are no faults and 0)(  t , then 0)( tr , if a 

fault occurs, 0)( tr . The problem of the matrix K 

choice is considered in (Schreier et al, 1997). 
It is supposed that for the healthy system the 

vectors )(* tx  and )(tx  satisfy the equality 

)()(* txtx   for some matrix   satisfying the 

equations (Chen and Patton, 1999; Frank, 1990): 

JHFF  * ,     *HRH ,    GG *  (4)

To ensure the reliable fault detection, the residual 
)(tr  has to be sensitive to the faults and invariant 

with respect to the unknown inputs )(t , that is 

0L , 0D  (Frank, 1990). Notice that in the 
case when 0L  one says about full decoupling 
with respect to unknown inputs. 

To design an observer in the linear case, there are 
a number of approaches, e.g., the eigenstructure 
assignment, the approach based on the Kronecker 
canonical form (Frank, 1990). Another linear 
procedure suggested in (Zhirabok et al., 2010) also 
is based on the Kronecker canonical form. 
According to this approach, the matrices *F  and 

*H  describing the observer are represented in the 

canonical form 
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In this case (4) may be presented in the form of the 
set of k equations: 

kRH  ,     HJF iii  1 ,  

ki ..., ,2 , 

HJF 11  , 
(5)

where i  and iJ  are the i-th rows of the matrices 

  and J , ki ..., ,1 , k  is the dimension of the 
observer. It is shown in (Zhirabok et al., 2010) that 
(5) can be transformed into the single equation   

HJHFJHFJRHF k
k

k
k

k
1

2
1

1  


  . (6)

The solution of this equation gives the minimal 
integer k and the matrices R and J; then the rows of 
the matrix   are obtained from (5). This matrix is 
used to find the matrix GG *  and to check the 

conditions 0L  and 0D . 
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Shortcoming of this approach is that it does not 
allow to take immediately into consideration the 
condition 0L , therefore one has to check 
whether or not the solution of (6) satisfies this 
condition. If not, then another solution must be 
found and the condition 0L  must be checked 
again. To overcome this shortcoming, the new 
approach is suggested which allows to include the 
condition 0L  in (5) and to obtain a full set of 
solutions with specified robust properties. 

4 PROBLEM SOLUTION 

4.1 Main Relationships 

Introduce the matrix *L  of full rank such that 

0* LL . This choice allows rewriting the condition 

0L  in the form *ML  for some matrix M. 

Replace in (5) the row i  of the matrix   with 

*LM i  that gives the equations ,*LMRH k  

,*1* HJLMFLM iii    
,,,2 ki   ,1*1 HJFLM   

where iM  is the i-th row of the matrix M. Rewrite 

these equations as follows: 
 

,0))(( TT
*

T  LHMR k  (7)

,0))()(( TTT
*

T
*1   HLFLJMM iii  (8)

0))()(( TTT
*11  HFLJM . (9)

We begin to solve equations (7)-(9) from the last one 
finding at every step all linearly independent 
solutions. The result of each step is a conclusion 
about possibility to construct the observer satisfying 
the condition 0L ; if it is possible, then the 
observer is constructed, otherwise the dimension k is 
increased and the next step is fulfilled. Consider 
these steps in detail. 

4.2 The First Step 

Equation (9) has a solution in the case when rows of 
the matrices FL*  and H are linearly dependent, this 

can be checked by the criterion 

)()( *
* HrankFLrank
H

FL
rank 




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


. (10)

If (10) is not valid, then full decoupling is 
impossible, and one has to use the robust methods 
(Frank, 1990); (Low et al., 1986); (Patton, 1994). 
Suppose that condition (10) is valid. 

Let the matrix )( 11 PN   contains all linearly 

independent solutions of (9), then one can set 

111 NWM   for some matrix 1W . To check 

possibility to construct the observer of dimension 
1k , consider (7) replacing 1M  with 11NW  and 

rewriting the result in the form 

0)(
*1

1 



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



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H
WR . (11)

Criterion of existence of this equation solution is the 
condition  

)()( *1
*1

LNrankHrank
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H
rank 








. (12)

If it is valid, the observer of dimension 1 exists, it 
can be constructed as follows. Let the matrix 
 00 PR   contains all linearly independent 

solutions of (11), then the equality *100 LNPHR   is 

valid, and one can set 00RWR   for some matrix 

0W . Notice that the matrix 0R  describes the set of 

all linearly independent solutions guarantees full 
unknown inputs decoupling for 1k . 

Choosing the certain matrix 0W , one obtains 

*10000 LNPWHRWRH  . Comparing this 

equation with LMRH k  for 1k , one concludes 

that 1001 NPWM  . Then relation HPFLN 1*1   

obtained from (9) gives HPPWFLNPW 100*100  . 

This means that *1001 LNPW , 1001 PPWJ  ; set 

GG 1*  , and the observer has been constructed. 

4.3 The Second Step 

If (12) is not valid, it is necessary to find the 
observer of higher dimension. Consider (8) with 

2i , replace 1M  with 11NW  and rewrite the result: 

TTT
*

T
*2112 ))()(( HLFLJNWM  . (13)

Since (13) contains additional addend *11 LNW  in 

comparison with (9) which by assumption has a 
solution, then (13) has a solution as well. 

Let the matrix  212 PQN   contains all 

linearly independent solutions of (13), then 

222 NWM   for some matrix 2W . To check 

possibility to construct the observer of dimension 
2k , consider (7) after replacing 2M  with 22 NW . 

It can be shown that such checking reduces to (11) 

Observer-based�Robust�Fault�Diagnosis�-�Logic-dinamic�Approach

241



and (12) after replacing 1N  with 2N  and 1W  with 

2W . 

It follows from (9) and (13) that all rows of the 
matrix 1N  are contained in the matrix 2N , therefore 

one obtains additional possibility to satisfy the 
condition (12) and to solve (11) at the second step. 

If (12) is valid, denote the solution of (11) by 
)( 00 PR  , set 00RWR   that gives 

*200 LNPWRH   and 2002 NPWM  . Then the 

relation HPLNQFLN 2*11*2   obtained as a 

solution of (13), implies FLNPW *200  

HPPWLNQPW 200*1100  , i.e. one can let 

*2002 LNPW , 2002 PPWJ  , and 1M
 

1100 NQPW . Multiplying the equation FLN *1  

HP1  by 100 QPW , one obtains FLNQPW *1100  

HPQPW 1100 and *11001 LNQPW , 11001 PQPWJ  . 

Calculating the matrix GG 











2

1
* , one obtains 

the linear observer of dimension 2. Notice that one 
can solve (6) with 00RWR   and obtain rows of the 

matrix   from (5). 
If (12) is not valid, consider (8) with 3i , 

replace 2M  with 22NW  and continue similar 

analysis of (13) after replacing 1N  with 2N . Such a 

procedure continues as long as either the observer is 
constructed at some step or the condition 1 ii NN  

is fulfilled for some i. The latter means that 
possibility to solve (11) does not improve, and 
absence of a solution at step 1i  implies absence of 
that at next steps. In this case, one has to use the 
robust methods (Frank, 1990; Low et al, 1986). 

4.4 Nonlinear Case 

According to the logic-dynamic approach suggested 
in (Zhirabok and Usoltsev, 2002) for nonlinear 
systems, the nonlinear observer is based on the 
linear one constructing above. The nonlinear term 
for the model (3) is obtained as follows. Calculate 
the   product   and  combine  the  similar   terms,  for 


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example the sum kjki xuAxuA   is rewritten as 

 kji xuAA )(  kij xuA ; notice that this operation 

allows to minimize the dimension of the observer. 
Then the matrix A is built up from the matrices-rows 

iA  and ijA  contained in the product (14) and the 

condition 

)()( TTTTT AHrankHrank   (15)

is checked. If it is valid, the equation 







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H
AA *  (16)

is solved and the matrices idi AA *1* ,,  are found, 

where d is the number or the matrix A rows. These 
matrices are used to form an argument of the 
nonlinear term ),,( ** uyx  by replacing the term 

xAij  in (14) with 







y

x
A i

*
*  according to (16). As a 

result, the nonlinear observer takes the form 

))(),(),(()()()()( ****** tutytxtJytuGtxFtx 
 

If the condition (15) is not valid, one has to construct 
another linear observer of bigger dimension or to use 
the additional observer considered below. 

4.5 Additional Observer Design 

If (15) is not valid for all possible linear observers, 
the additional observer estimating some rows of the 
matrix A has to be used. Denote by 0A  the row of 

the matrix A for which the condition (15) is not 
valid. By analogy with (4), one can write the 
equations  

000  HA ,      HJFF 0000  , (17)

where the index “0” corresponds to matrices 
describing the additional observer. By analogy with 
the matrix  , the matrix 0  has to satisfy the 

condition *00 LM  for some matrix 0M . 

Replace the matrix 0  in (17) with *0LM  and 

rewrite the equations obtained as follows: 
 

*000 LMHA  ,   

0))()(( TTT
*

T
*0000  HLFLJMFM . 

Denote the solution of these equations by 0D  and 

)( 321 DDD , respectively. It follows from the 

above equations that 000 MHD  , 01 MD  , 

002 MFD  , and 02 JD  . The first three 

equalities show that rows of the matrices 0D  and 

2D  must be linearly depended on rows of the matrix 
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1D . Therefore, if some row of the matrix 2D  is 

independent of the rows of the matrix 1D , then this 

row must be removed form the matrix 
)( 321 DDD . Such a procedure has to be applied 

to every row of the matrix 1D . 

Denote the result of this analysis as 
)( 321 DDD  . Then the procedure similar to the 

one suggested above is applied to the matrices 0D  

and 2D  with removing the appropriate rows of the 

matrix 0D . If the resulting matrix 0D  is not equal to 

zero, the additional observer exists. To construct this 
observer, solve the algebraic equation 102 DFD   

for 0F , set 30 DJ  , *1LD , GG 0 , and 

*00 LDA  . If 00 D , then the additional observer 

invariant with respect to the unknown inputs does 
not exist and the robust methods must be used. 

5 PRACTICAL EXAMPLE 

Consider the general electric servoactuator of 
manipulation robots studied in (Zhirabok et al., 
2010). The servoactuator dynamic, with the backlash 
and elasticity taken into account, may be described 
by the following nonlinear equations: 
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Here 1x  and 2x  are the output rotation angle and 

velocity at the reducer output shaft, respectively; 3x  

and 4x  are the output rotation angle and velocity at 

the motor output shaft, respectively; 5x  is the 

current through the servoactuator windings; W and w 
are the components of the inertia and velocity, 
respectively: dM  and rM  are the moments of the 

Coulomb friction at the motor and reducer shaft 
output, respectively: )( 4o xsignMM dd  , 

)( 2xsignMM ror  ; dK  and rK  are the respective 

coefficient of viscous friction of the motor and 
reducer output shaft; ri  is the reducing ratio of the 

reducer; rC  is the rigidity coefficient of the 

mechanical reducer; MJ  is the moment of inertia of 

the electric servoactuator and of the rotating parts of 
the reducer; K  and MK  are the respective 

coefficients of the counter EMF and of the torque; R 
and L are the active and inductive resistances of the 
electric servoactuator windings, respectively; the 
function Bl describes the backlash:  

))()()(|(|5.0)(   zsignzsignzzBl , 

2  is the backlash span, 13 xixz r . 

Suppose that )()( 11 txty  , )()( 22 txty  , 

)()( 43 txty  . According to the logic-dynamic 

approach, this system has the following matrix 
description: 
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Nonlinear term is described as follows: 
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It can be shown that (10) and (12) are valid therefore 
one can find from (11) )011(0 R ; set 

10 W . Equation (6) is solvable for 1k : 

2)1()00010( H
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Since condition (15) is not valid for the matrices 3A , 

the solution must be improved. An analysis shows 
that increase of the observer dimension cannot 
overcome this difficulty therefore the additional 
observer estimating the variable xA3  must be used. 

It can be shown that the main and additional 
observers are described as follows: 
 

)(00011.200)(1001.11 *221* zysignyx Bl , 

)(09.902478.05100 *13*2*2* zuxxx Bl , 

)(180205.45 *313* zyux Bl , 

   1*21 xyyr  , 
 

where 313*2** 1001.1200 yyxxz  . Numerical 

values of the electrical servoactuator parameters can 
be found in (Zhirabok et al., 2010).  

The residual )(tr  time behavior is shown in 

Figure 1, the fault occurred at 30t  s; obviously, 
the disturbance does not influence on the residual. 
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Figure 1: Simulation results. 

6 CONCLUSIONS 

The problem of robust fault detection and isolation 
in mechatronic systems described by nonlinear 
models with non-smooth nonlinearities has been 
considered. The logic-dynamic approach suggested 
in the paper allows solving this problem by linear 
methods. The method which allows obtaining a full 
set of solutions with full decoupling with respect to 
unknown inputs has been suggested. 
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