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Abstract: This paper describes an Extended Kalman Filter for a wheel mounted inertial measurement unit using two
accelerometers and a single gyroscope as a substitute for classical odometry sensing. The sensor can be
mounted with minimal effort on existing wheeled vehicles. It is highly robust against vibration while rolling
on uneven terrain and can cope with higher speeds even when the measurement range is partially exceeded.
It has been developed as a component of a GPS based urban navigation assistant for elderly people using
walkers, wheelchairs, or tricycles as an add-on device.

1 INTRODUCTION

Odometry is frequently used on wheeled robots as a
measurement of travelled distance. Incremental en-
coders are attached near the wheel or in the motor to
measure discrete angle steps interpreted as travelled
distance. Integrating such a sensor is easy when con-
sidered in the mechanical design from the beginning,
but adding an odometry sensor later on is often diffi-
cult. This is particular true for the application that mo-
tivates our research, where COTS (Commercial Off-
The-Shelf) wheelchairs or walkers shall be equipped
with odometry to give navigation support for elderly
people. An alternative is a sensor attached at an ar-
bitrary position on the wheel, that measures gravity
to derive a wheel angle. Accelerometer based sen-
sors are described by (Sonenblum, 2010) and (Huang
and Wang, 2011), both using cheap MEMS sensors on
tiny battery powered microcontroller boards for log-
ging or wireless communication (details in Section 2).

A conceptual problem of an accelerometer based
approach is its sensibility to vehicle acceleration and
noise produced while driving over uneven terrain. As
a solution, we propose an Extended Kalman Filter
(Welch and Bishop, 1995), (Kalman, 1960), as a prin-
cipled estimator for locally linear systems observed
by noisy sensors. Given a proper process model ac-
counting for all aspects of the kinematics for a wheel
with its attached sensor, this filter can produce high
quality estimates for (in this case) the wheel angle
and, indirectly, the travelled distance. Angle accu-
racy at low speed or while standing using MEMS ac-

celerometers is typically much better than required for
the application area, but it is unacceptable to loose
complete wheel revolutions under stress like uneven
terrain or acceleration (e.g. while braking hard), es-
pecially when using odometry on both wheels of the
same axis to derive the heading of the vehicle (details
in Sections 5.1 and 5.2).

An alternative to a gravity sensor is a magnetic
field sensor, frequently used as a low cost solution
for bicycle computers to count wheel revolutions to
derive speed and distance. Section 5.4 uses this tech-
nique as a reference measurement in the evaluation of
the filter given in Section 4. In contrast to a gravity
sensor, magnet sensor placement can be problematic,
if the wheel hub contains a lot of iron.

This work was motivated by the ASSAM project
(Krieg-Brückner et al., 2012), (Krieg-Brückner et al.,
2013), that develops a navigation assistant for el-
derly people using COTS walkers, hand pushed
wheelchairs, electric wheelchairs, and tricycles. The
navigation assistance uses GPS as the main outdoor
localization sensor supported at least by odometry for
dead reckoning while in urban canyons, where the
GPS signal is hidden or reflected by obstacles. In
addition, it uses OSM (OpenStreetMap, 2013) card
material enriched with sidewalks, stairs, and bicycle
paths to provide more detailed and precise positions.

The wheel attached sensor shall finally communi-
cate with a smart phone or tablet computer attached to
the vehicle using BluetoothR© LE (Bluetooth, 2013),
an upcoming standard for low energy wireless com-
munication on hand held devices.
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The remainder of this paper is structured as follows.
Section 2 gives an overview of related work. The
sensor hardware used for experiments is described in
Section 3. Section 4 introduces the new Extended
Kalman Filter, and Section 5 presents the filter in op-
eration using real hardware as described in Section 3.
We conclude in Section 6.

2 RELATED WORK

a2

a1θ

rs

rw

driving direction

ω
Figure 1: Sensor position for wheel angleθ=0 (grows posi-
tive in driving direction). Angular acceleration is measured
by a1, centrifugal force bya2, and the gyroscope measures
angular wheel speedω.

An early reference to a sensor mounted on wheels
for odometry was presented in (Coulter et al., 2011)
for all kinds of wheelchairs. In (Sonenblum et al.,
2012), this sensor was validated for the measurement
of wheelchair movement as a tool for clinical experi-
ments in the area of shoulder health and to collect data
for wheelchair improvements. The sensor is mounted
on the wheel as in Figure 1 and the wheel angle is
derived from low-pass filtereda1 anda2 accelerome-
ters usingatan2. The result is again low pass filtered
using a butterworth characteristic with a 3Hz cut off
selected to fit the maximal wheelchair speed of 1.5
m/s (downhill) and then doubled. Based on MEMS
sensors, it records the data on an SD-card for offline
analysis. The description of hard and software for this
sensor is available in (Sonenblum, 2010). The method
inherently produces angle errors while the wheelchair
is accelerated or exposed to noise from driving over
uneven terrain. However, this method is acceptable
for hand operated wheelchairs, since the acceleration
of such vehicles is very limited, and large wheels ro-
tate slowly and suppress noise from uneven terrain
better than small wheels.

In (Huang and Wang, 2011), a similar sensor was

developed for an inertial measurement system used
on bicycles by fusing odometry with a compass as
a support for a GPS-based navigation system. The
sensor uses two accelerometers (no gyroscope) and
transmits the data via Bluetooth to an Android based
smartphone. They use a very similar approach of low
pass filters andatan2 angle computation as in (So-
nenblum et al., 2012). Due to the increased wheel
rotational speed, they observed significant accelera-
tion shifts on thea2 accelerometer, and also on the
a1 accelerometer (e.g. when the bicycle brakes). To
cope with centrifugal force, accelerometers were con-
figured to the maximal available range of 8g. Offsets
from growing centrifugal forces (a2) or vehicle accel-
eration (a1) were computed by low pass filtering the
corresponding signal to subtract them from the origi-
nal signal before angle computation.

All these approaches address the sensor-fusion
problem in a rather heuristic way. Our contribution
here is to provide a principled textbook-style solution
thata) identifies how the measurements depend on the
wheel motion as the quantity to be estimated andb)
uses an Extended Kalman Filter to do the sensor fu-
sion based on the model obtained ina).

3 SENSOR HARDWARE

Figure 2: Prototype sensor with 3 axis accelerometer and
3-axis gyroscope used as a wheel sensor on a walker (see
Figure 3).

The experiments were conducted using two different
sensors. The prototype sensor in Figure 2, which
was mounted on a walker wheel shown in Figure 3,
uses MEMS sensors from STMicroelectronics, a 3-
axis accelerometer (MMA7361L), a 2-axis gyroscope
(LPR530AL), and a single gyroscope (LY530ALH).
Raw sensor data is sent out via Bluetooth Serial Port
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Profile (SSP) at a (low) frequency of∼ 40 Hz, and
time stamped later in the receiving PC. According to
the datasheets, the limits are 6g (g= 9.81m/s2) and
1200deg/s (20.9 rad/s), and the board reaches 4.8
g and 8.2rad/s. Mounted on a small hard plastic
wheel with radiusrw = 10cmand the sensor chip at
a radius of aboutrs = 7 cm (instead of a more cen-
tered position for reduced centrifugal force), the con-
ditions for producing good results are not ideal. Al-
though the noise level is high, it is still small com-
pared to noise produced by driving on uneven terrain,
and could therefore be used for the experiments.

Figure 3: Prototype sensor mounted on a light-weight
walker standing on cobblestone with wireless data commu-
nication.

The second sensor is a standard smartphone (Sam-
sung Galaxy S2), mounted on a bicycle wheel hub
as shown in Figure 4 and used as a data recorder
for offline analysis. According to (Chipworks, 2011),
it contains MEMS sensors from STMicroelectronics,
a 3-axis accelerometer (LIS3DH) with limits config-
urable between 2 and 16g, and a 3-axis gyroscope
(L3G4200D) configurable with 250, 500, or 2000
deg/s, but the Android API can only use the default
configuration of 500deg/sand 2g. Sensor data is re-
ceived time stamped through the API at a rate of∼ 70
Hz. It is used here to show a reference recording un-
der optimal conditions, and for a long distance test
(Section 5.4).

4 EKF BASED SENSOR FUSION

4.1 Overview of the Extended Kalman
Filter

The Extended Kalman Filter (EKF) is a generic sen-
sor fusion algorithm for non-linear state estimation.
A very accessible introduction is given by (Welch and
Bishop, 1995) and we refer the reader to Table 2.1 and
2.2 therein for the concrete equations.

Figure 4: A Samsung Galaxy S2 as a wheel sensor at radius
rs= 9.5 cmin a bicycle wheel of radiusrw = 35cmfor data
logging.

Conceptually, the EKF computes an estimate ˆxk for
an unknown state vectorxk at every point in timek
from a sequence of measurement vectorsz1...k provid-
ing noisy information about the statexk and optionally
control inputsu1...k which we don’t need here. The
point that makes the EKF attractive is that it updates
recursively an internal state representation with each
arrivingzk (anduk).

This computation is based ana) a process model
f that maps a former state (optionally control input),
and noise values to a new state thereby describing,
how the state changes over time andb) a measure-
ment modelh that maps state and noise values to a
measurement.

In our implementation of wheel odometry with an
EKF, the generic filter algorithm is provided by the
kfilter-library from (Zalzal, 2013), while the specific
process and measurement model are developed in the
following subsections.

4.2 State Representation

For wheel odometry the desired quantity is the posi-
tion p, i.e. the travelled horizontal distance of the ve-
hicle (measured at the center of the wheel, not at the
sensor). We drop the indexk here for simplicity. As
we assume a non-slipping wheel, the wheel angleθ
relates linear top as

θ =
p
rw

(1)

with wheel radiusrw. The sensor itself however,
makes a spiralling motion composed of a translation
by p and a rotation byθ. This complex motion leads
to the following effects (Huang and Wang, 2011) ob-
served through the sensor (Figure 1):

The gyroscopeω observes

1. Rotation, i.e. ˙p;

2. Sensor noise.

The accelerometersa1,a2 observe
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Figure 5: Measurement using the Galaxy S2 sensor (Figure 4) in a bicycle wheel shuffled indoor over a distance of 6.6m at
walking speed.

3. Gravity;

4. Vehicle acceleration ¨p;

5. Angular acceleration ina1, which is proportional
to p̈

6. Centrifugal acceleration ina2, which is propor-
tional to ṗ2;

7. Acceleration caused by uneven terrain;

8. Sensor noise.

We model the last two items as white noise. To model
the other effects as a functionf of the statex, the state
x consists of

x=





p
ṗ
p̈



 (2)

i.e. position, velocity and acceleration.
It is common practice to include only position and

velocity in the state and model the accelerometer mea-
surement as change in velocity in the control inputu
(similar with the gyroscope). This is difficult here,
as from the above list of effects the relation between
measured acceleration and the state is rather complex,
so we chose also to include the acceleration ¨p in the
state.

4.3 Process Model

As usual, the process modelxk+1 = f (xk,wk) simply
integrates ¨p twice for a duration of∆t starting from ˙p
andp. It assumes that white noise added to the accel-
eration (resulting implicitly also velocity and position
noise).

f









p
ṗ
p̈



 ,w



=





p + ṗ∆t + 1
2 p̈∆t2

ṗ + p̈∆t
p̈ +w





(3)

The acceleration is modeled as a so-called random
walk, i.e. accumulated small random noise, which
means that the acceleration may change smoothly
over time. As usual, the noise valuew is unknown, as-
sumed zero mean, independent and with known vari-
anceq = (0.07 m/s)2. In addition, equation (3) de-
fines that noise occurs only by this uncertain accel-
eration, since in principle every change in position
is caused by velocity and every change in velocity is
caused by acceleration.

4.4 Measurement Model

As the process model is completely driven by the
state, there is no control inputu, both the accelerom-
eters and gyroscope are modeled as measurements
z. The measurementz= (a1,a2,ω)T consists of the
two accelerometer measurementsa1, a2 and the gyro-
scope measurementω (Figure 1).

The measurement modelzk = h(xk,vk) formalizes
the items from Section 4.2, defining how the measure-
mentz depends on the statex and the noise valuesv
(all at timek):

h









p
ṗ
p̈



 ,





v1
v2
v3







=







−gsinθ + p̈cosθ − p̈ rs
rw

+ v1

−gcosθ − p̈sinθ − ṗ2 rs
r2
w

+ v2

− ṗ 1
rw

+ v3






(4)
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Figure 6: The sensor of figure 2 at radiusrs = 7 cmon a walker with a wheel radius ofrw = 10cm. It shows 1 second with
about 2.5 wheel revolutions while driving at an extremely uncomfortable speed of 1.5m/s on cobblestone near the limit of
the EKF filter.

whereθ = p
rw

, rs is the radius of the sensor placement
on the wheel (Figure 1) andθ = 0 corresponds to the
sensor in lowest position. Equation 4 models grav-
ity (1st column), translational acceleration (2nd col-
umn), and angular as well as centrifugal acceleration
(3rd column) in the first two rows for the accelerom-
eter measurementsa1 and a2. Gravity and transla-
tional acceleration include sine and cosine terms be-
cause their direction is world-fixed but measured by a
rotating sensor. On the contrary, angular and centrifu-
gal acceleration are sensor fixed as they “rotate with
the sensor”.

The third row simply models the rotational veloc-
ity θ̇ of the wheel as measured by the gyroscope.

All three measurements are perturbed by white
Gaussian noisev1...3, which is as usual unknown
and assumed independent with zero mean and vari-
ancer1,2 = (5 m/s2)2 for the accelerometer andr3 =

(0.5 rad/s)2 for the gyroscope. The large accelerom-
eter noise models uneven terrain.

As noted in Section 3, the gyroscopes of both
sensors do not measure rotation speeds above 10
rad/s. Therefore, a dynamic variance increased to
r3 = (150rad/s)2 was used, when the gyroscope was
operated in saturation. Increasing and decreasing the
variance forr3 smoothly increases the stability of the
filter.

Larger centrifugal forces can also lead to a satu-
ration of thea2 accelerometer (see Section 5.2). For-
tunately, the filter continues to work under these con-
ditions, benefitting from using a dynamic variance in-
creased tor2 = (1200m/s2)2 for thea2 measurement

to (almost) ignore this value. The variancer2 is also
smoothly increased and reduced as for the gyroscope.

4.5 Intuitive Understanding

In this section we provide an intuitive answer to the
questionWhere does the distance information p come
from?

In slow motion a1 and a2 effectively measure
gravity only, i.e. sinθ and cosθ, while the gyro-
scope measureṡθ. Therefore, the overall EKF
fuses rather precise differential information (gyro-
scope) with rather imprecise absolute information
(accelerometers). Such a scenario is very common,
for instance in robot localization (Thrun et al., 2005).

With faster and more unsteady motion the situa-
tion is more difficult, as heavy accelerations strongly
perturb(a1,a2) in one dimension. However, as long
as the gyroscope is still working the filter only needs
some average information over roughly a revolution
to prevent the gyroscope errors from accumulating.
This information is available, since the integral of ¨p
is proportional to the velocity measured by the gyro-
scope.

It is more surprising that the filter still works in
fast motion and without a gyroscope (due to satura-
tion), as we will report in section 5.2. To our judge-
ment, at higher speeds the gravity acceleration has a
very periodic pattern on which the filter “locks in”,
similar to a PLL (phase-locked loop) radio receiver.
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Figure 7: Measurement using the configuration from Figure 6 driving indoor on a carpet. The walker was accelerated and
stopped on a distance of 9.70m to a maximum speed of about 4m/s.

5 MEASUREMENTS AND
RESULTS

The filter has been implemented as a standalone C++
program using the kfilter-library from (Zalzal, 2013)
for offline optimizations, and as a real time applica-
tion in SimRobot, a C++ framework for robotic appli-
cations (Laue and Röfer, 2008).

It has been tested with different hardware under
normal conditions, as well as under extreme condi-
tions to show its limits. For the intended application
area, the focus is to demonstrate the correct recogni-
tion of complete wheel revolutions. Therefore, the
rolling distance for each experiment was measured
to check the deviations of the sensor measurement,
and the obtained graphical representation was dou-
ble checked to identify the combination of missing
or false detection of wheel revolutions. The long dis-
tance test described in Section 5.4 uses an indepen-
dent sensor to count wheel revolutions.

Figure 5 shows a measurement using a bicycle
wheel with the Samsung Galaxy S2 shown in Fig-
ure 4 under optimal conditions and walking speed.
The travelled distance measured by the EKF is shown
by curve (1), the EKF speed (2) and the gyroscope
measurement (3) are almost identical (the curve at the
bottom). The rotational speed of the gyroscope was
scaled to its corresponding vehicle speed to allow a
comparison with the derived EKF speed. The wheel
angle (4) is derived from the EKF distance (normal-
ized to a range from−π to π) for the interpretation
of the sensor inputsa1 (5) anda2 (6), that must be

sychronous, if the filter works correct.

5.1 Uneven Terrain

The measurement of Figure 6 was taken from the
third in a series of 3 successive measurements with
increasing speed, using the lightweight walker driv-
ing on cobblestone (Figure 3) and the prototype sen-
sor (Figure 2). The walker reached a speed of 1.5
m/s2, which is already a very uncomfortable speed.
The same speed is mentioned in (Coulter et al., 2011)
as the maximal measured speed typically reached by
wheelchair drivers using hand propulsion. The hard
plastic wheels provide almost no damping and the
a2 measurement contains peaks ranging from+15 to
−40 m/s2, which makes it even hard for a human
reader to see the sinusodial effect of gravity. The gy-
roscope was deactivated after 2 seconds (saturation)
and activated short before the target.

This experiment shows, that the filter can cope
with uneven terrain at a speed near the limit reach-
able by elderly people, but certainly far beyond a level
of comfortable driving, even with a deactivated gyro-
scope. The observable noise on the EKF distance is
significant, but would be much smaller using a gy-
roscope covering the full measurement range, as dis-
cussed in Section 5.3.

5.2 High Speed

Figure 7 uses the walker from Section 5.1 for driv-
ing in an indoor environment on a carpet over a dis-
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Figure 8: Simulated scenario based on the measured data of the scenario in Figure 7. The simulation allows the printing of
the deviation between EKF distance and true distance (4).

tance of 9.70m. The walker was accelerated (shuf-
fled) within 2 seconds to a maximum speed above 4
m/s. The gyroscope is saturated after 0.7s. Centrifu-
gal force reaches values of about 12g in this exper-
iment, which saturates thea2 accelerometer (6) after
one second. Again, the EKF derived final distance (1)
coincides with the reference measurement.

This experiment is a clear indication, that our EKF
filter can cope with high speeds and heavy accelera-
tions, even if two of the three sensors are already in
saturation. The reached speed is far beyond the speed
reachable by users dependent on a walker.

5.3 Angle Truth

Comparing the computed angle with the real angle
is desirable, but requires an independent secondary
odometry sensor, which may introduce additional un-
certainties, especially considering synchronization.
To analyse the EKF filter alone, we place it in a sim-
ulation loop based on the kinematic model used for
the filter itself, and feed the filter with (noisy) sensor
input based on a fully known statex.

Figure 8 is a simulation of the high speed sce-
nario described in Section 5.2. Here, the difference
between simulated position and the derived distance
is given as the dotted line (4) incm. In this scenario,
the vehicle was accelerated for 1.5s with 3.2 m/s2,
rolled for 0.5s, and then braked with -3.2m/s2, the
resulting simulated speed is visualized as curve (2).
The sensor data contains noise using a normal distri-
bution (Box and Muller, 1958) with a standard devia-
tion σ = (0.5+ ṗ) m/s2 for the accelerometers (curve

(6) and (7)). The noise grew with the simulated speed
to create noise similar to noise from driving on un-
even terrain. For the gyroscope,σ = 0.5 m/s and a
linear error by multiplication with 1.01 were chosen.
The maximal difference of 14.5cm (wheel angle er-
ror near 90 degrees) confirms this example to be an
extreme case. Although speed and acceleration where
chosen extremly high, the EKF filter did not loose a
single wheel revolution.

This experiment was repeated with the gyroscope
measuring the full range of angular speed (no gyro-
scope saturation). Curve (5) in Figure 8 is the differ-
ence for this configuration, where the maximal devia-
tion does not exceed 1.8cm.

In this example, while driving over a distance of
9.70 m, the gyroscope would overestimate the dis-
tance due to its linear error by nearly 10cm. The
filter corrects the gyroscope measurement using the
additional information from thea1 accelerometer to
correct this error, reducing it to an overall maximal
difference of 1.8cm. Using the gyroscope not only in-
creases the precision, it also suppresses underground
noise as it is mainly unaffected by vibrations.

5.4 Long Distance

For a long distance test, the bicycle sensor was used
over a distance of 4 km in an urban environment
with segments of cobblestone and typical bumps at
speeds up to 6m/s (22 km/h). As a reference mea-
surement, a magnet was attached to the fork carrying
the wheel to count complete wheel revolutions. The
result was 1828 wheel revolutions for the magnetic
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counter, 1827.6 for the EKF filter. It therefore works
correctly in a practical scenario.

6 CONCLUSIONS

This paper presents a sensor fusion algorithm for a
wheel mounted accelerometer and gyroscope based
odometry sensor. In contrast to existing approaches
using ad hoc methods to derive wheel angles, the
presented solution uses an Extended Kalman filter as
a principled estimator for locally linear systems ob-
served by noisy sensors. The power of this algo-
rithm is demonstrated by the overall positve results of
a number of experiments using real hardware under
normal as well as extreme conditions, and by simula-
tion experiments to compare the filter output against
a well known true state. The filter adapts dynamically
to saturation of the gyroscope and of the centrifugal
force accelerometer at high speed and continues to
work with even a single accelerometer. Embedded
in a small hardware component, it will provide a very
simple way of belated or temporary installation for
existing vehicles.
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