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Abstract: We study the sequential identification problem for Bates stochastic volatility model, which is widely used as
the model of a stock in finance. By using the exact simulation method, a particle filter for estimating stochastic
volatility is constructed. The systems parameters are sequentially estimated with the aid of parallel filtering
algorithm. To improve the estimation performance for unknown parameters, the new resampling procedure is
proposed. Simulation studies for checking the feasibility of the developed scheme are demonstrated.

1 INTRODUCTION is given by

1
In the early 1960s, the linear filtering theory is formu- dyt = (ks A — Evt)dt +vWdB: + qu’ )

lated by Kalman and Bucy (Kalman and Bucy, 1961) Whereth is a compound Poisson process with in-
and nonlinear filtering has already been well devel- tensityA and Gaussian distribution of jump size,i.e.,
oped by many researchers, see Bensoussan (Bensouw(wvog), and the mean relative jump size is given
san, 1992) and the bibliography therein. The realiza- by m’ = E(exp(US) — 1) = exp(l +03/2) — 1 and

tion problem for the nonlinear filter is still not easy. where theAm’S term in (1) compensates for the in-
The recent development of particle filtering theory stantaneous change in expected stock introduced by

(Doucet et al., 2000) enable us to realize the nonlin- the pure-jump procesg’. The particular properties
ear filtering in an easy way with the aid of the digital of this model are

comput(_ar. _ ] 1. The observation mechanism (3) contains the sig-
~ Inthis paper we consider the Bates model which nal dependent noise.

is used in the fiance problem. In this model, we ob- . . : .
serve the tick value of stock price and need to esti- 2. The observation noise has a correlation with the
mate the movement of the volatility process for trad- system.s NOISe. o )
ing the stock and/or options. Itis not possible to apply From the first property, the estimation of stochastic
the nonlinear filtering theory to this volatility estima- Volatility becomes out of filtering problem. To cir-
tion problem, because this is out of the usual filter- cumvent this difficulty, all systems are discretized and
ing problem in the continuous stochastic systems (Ai- the particle filter is applied in (Aihara et al., 2008;
hara and Bagchi, 2006). To circumvent this difficulty, Johannes and Polson, 2006). However the usual dis-
the particle filter theory is usually applied in (Aihara Cretization method transformed the original continu-

et al., 2008; Cappé et al., 2005; Javaheri, 2005). TheOUS non-Gaussian system into the conditional Gaus-
Bates model is given by sian. Recently, Brodie and Kaya (Broadie and Kaya,

2006; Smith, 2008; van Haastrecht and Pelsser, 2010)
d§ = psSdt+ /4 SdB; + SdZtJ —A’Sdt, () proposed the exact simulation method from the fact
_ _ that the original system has a non-central chi-square
dv = KO —w)dt+2Mda @ distribution and we use this technique to the particle
whereB; andZz; are standard Brownian motion pro- filtering (Aihara et al., 2012). Introducing the new
cesses with correlatiop andz denotes the pure-  Brownian motion
jump process. Noting that the proceSsdenotes Y 1 (Z - pBY) 4)
the stock value, the observation date= l0gS /S o 1—p2 PBEL);
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from the second property, (2) becomes Ve — i + /tz R(é ~vgds
2 1
6]
dut = K(8 —w)dt+ &\ F\/1— p2dZ, /tz .
+ Vsy/1— p2dZ, 6
X ; €\/Vs pedZs (6)
+Ep(dyt — (Hs— An?’ — Sw)dt — dgf). (5)
2 where
Although in (Aihara et al., 2012) the exact particle fil- 5 _
tering procedure has been applied to the systems (5) Va Vi +PELYe — :
and (3), the priority property of the exact simulation —(Us—Anm)(t2—t1) — Agy, }
method can not be guaranteed and the final parameter . pE
estimation results are not satisfactory. In this paper, K = K= o
we introduce the rejection and acceptance method for - K0
enjoying the exact simulation method and construct 0 = I
the parallel filtering algorithm with an new resam-
pling procedure for parameter identification. AQL — jump sample fromqf forty <t <to.

In Sec. 2, we review the exact particle filtering
with the new use of rejection and resampling proce- Now assuming thak,”> 0, we find that the transition
dure. For the real application to the finance problem, law of v, given byw,,y; andy, is expressed as the
the market price of risk terms are included in the orig- non-central chi-square random variahﬁ)\x) with d
inal dynamics in Sec. 3. Simulation studies for fil- degrees of freedom and non-centrality parameger
tering and smoothing are presented in Sec. 5. The

new parallel filter algorithm is developed for estimat- E2(1-p?)(1—e 2 h) 200) @
ing the systems unknown parameters sequentially in 4K XdlAx )
Sec. 4. Finally some simulation studies for parameter \yhere
estimation are presented in Sec. 6. q 40K
£2(1-p?)

and B

2 EXACT PARTICLE FILTERING . Ake K(t2~t) -
X~ 2(1_p2)(1_e few)

2.1 Exact Sampling Hence by using MATLAB code "ncx2rnd.m”, we can

get a sample, .
In order to perform the particle filter, the original For the case tha#,”< 0O, this event may occur

system is usually approximated to the discrete-time whenw, is very small in generating particles by using
one by using the Euler method. This approximation the datay, —y;,. In the real world, we have already
easily causes bias from the original continuous sys- get the valusy, — yt,. Hencew, should satisfy

tem. For example, the discrete-time volatility pro- i

cessvy often becomes negative value. To avoid this Vi + P&V —Yu — (Ms— AT (t2 — ta) — Ac, }

bias, we propose the exact sampling method which is +|Zé(t2 —t1)>0. (8)
developed by Broadie and Kaya (Broadie and Kaya,

2006),Smith (Smith, 2008) and (van Haastrecht and 2.1.2 %, <0 Case

Pelsser, 2010) for simulating the Heston process. In

this paper, from (5) we can obtain the optimal impor- We use the rejection and resampling procedure. Atthe

tance functionp(w, [y, ¥t,.,). Hence we generate timet;, we already get many particles sdj/. Hence

samples from this optimal importance function. Now we check the above inequality (8) for eatf,H. If the

we shall present the exact sampling procedure. For X . ) .
2 ; C o particles which do not satisfy (8) are found, we ignore
simplicity we consider the time interval< t; and set )
these and perform a resampling procedure.

the following assumption: At most one jump occurs

in this time interval and we obseryg andy, . 22 Construction of Probability Density

211 Exact Sampling from p(v, |Vt , Y, %, ) Function
From (1), the volatility procesg, is represented by If we use the Euler scheme for discretization, the

generated sample becomes the conditionally Gaus-
sian. However for the exact sampling scheme , the
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processes generated are governed by the non-central

chi-square distribution. Although the explicit func-
tion form of this distribution is not possible, we can
numerically evaluate the pdf by using the MATLAB
code, "ncx2pdf.m”.

o P(W, |\, Ve, Wy ) fOrm

Noting that the jump occurs at most one time dur-

ing the time intervallty,t1], i.e, the probability
that the jump occurs ige % and no jump
becomes 1 Ae M2 and the jump siz&$ is
Gaussian with meapy and variance?, we have
p(vtz |Vt1 ) ytz ) ytl)
= (1—e M)\t —ty))

X p(vtz |Vt1 P ytz 5 Ytl 5 Aqtjl = 0)
S ei)\(t27t1))\(t2 - tl) / p(vtz |Vt1 ) ytz ) Ytl ) u 5)

S_ 2
exp(— u 2“‘]) ydus
2103 203

= (1—e M )ty —ty))

EZ 1_ p2 1_ ef}z('[zf'[l) ke
{ 1=ee X&)
—+ ei)\(tzitl))\(tz — tl)

00 2(1_n2 _ a—K(tp—t1)
x/ Ddfof{z(l pH(L—e W)

x pdf of

4K

~ 4Re*k(t2 —t1) p
2 S
K F e taw) )

S__
w2 expn T s )
202
2103 J
where
~ 4Re*k(t2*tl)
)\X: =
21— p)(1—e Fb W)
x{Vy + PE{Yt, — Y, — (Ms— AnP) (t2 —t1)}}

In (9), the first term implies that we have no jump
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and
N 4keKta—t1)

X~ §2(1— e k()

o (Y, I¥ty, /i veds) form
In this case, from

Wy -

dyt = (ps— AP — Evt)dt—i— g(dvt —K(8—w)dt)
+1/1-p2yWdZ +dg
we easily get

1— e Mi-t)) (to—t1)

\/2111 P?) i

153
p(ytz |yt1 ) /t Vsd S)

t2 vsds

X exp— >

— Vi + (s Am’—%"e)az—tl)

-9 /:vsds+g<vtz—vtl>1}21

e Mta—ta) ) (to—tg)

+
\/2ni(1=p?)

X expg—

12 vsds+ 03)
1
2((1—p?) fi? veds-+a3)

(Ms—Am’ — KTpe)(tz—tl)

1 1.
G [ st Bv —w)))?

{ytz

- [ytl +

(10)
2.3 Exact Particle Filter Algorithm

Now we can perform the exact particle filter. The
Weightw.('> is given by the foIIowing recursive form:
fori=1,---,Nandk=1,---

POVt o i v d9) p(vy )
(Vtk |Vtk,1ay'[kay'[k,1)

Of course we need to perform the resampling

(1) _ 0

e T Mk

. (11)

and the second term is caused from the jump size scheme in the above filtering algorithm.

UseN(W,o9).

o P(Vi, |V, ¥, ) fOrm
It follows from (2) that

P(Vi, [y, Y, ) = pdf of

where
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Itis also possible to construct the smoothing algo-
rithm by using forward filtering-backward sampling
scheme by Doucet et. al. (Doucet et al., 2000)
Algorithm(Sample realization)

In  the  particle filter to
(Vt(ll>,0)t(|l>)1<k<m 1<i<N-

e By using the systematic resamphng method, we
generate new inde¥, from {(ut H<i<n -

e Run obtain
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D Setvtn:) asvg.
e Fork=m—-1to1;
Resample to
(D) e ) .
{(Uck p(vtk+1|vtk ) hi<i<n.
Setvt!)
O

Tk
o V)= [\78),\7t2 ,--+, % "] is the realized particles for

smoothing with ¥N probability.

N from

Jk
asvj©.

3 MARKET PRICE OF RISK

For estimation we also need the dynamics of the state

S andv; under the actual probability measupe We
specify the market price of risk f@; andz; as

(ST (T e

We ignore the jump-timing risk premium and the
jump-size risk is assumed to be includeduin Now
the dynamics of; andv; under? is-given by

dy = (s~ AP+ (A~ 3 W)dt /8P 3 dg
dut = (K8 — (k — \&)w )dt+ &gy /1 — p2dZT
+Ep(dt — (s~ A — (5~ Agjw)dlt — dq).
Hence it is possible to apply our particle filer algo-

rithm to this world measure dynamics. The corre-
sponding dynamics is transformed to

to t2 ~
v, =, + R(e—vs)ds+/ £ Ve\/1- p2dZs,
t1

t1

where
\7t1 = W + pa{ytz Yy
—(Us—AnT)(t2—t1) — Ay, }
5 — X
K

p(w, |, ) becomes

Ez(l —_ e*(K*E)\V) (tZ*tl))

p(Vt2|th) = pdf of X(Zj()‘\)é)v

4(k — EAy)
where
40K
d = ?,
and

v AK-— E)\v)e*(K*E)\vth*tl) y
X7 g1 R w)

Noting that

dyt = (us— A + (As— %)w)dt

+%(th — KOt + (K — \E)v )dt)

+y/1-p2/MdZ +d¢f,

we also have
1.

2 1— e Me—t))(t, —t
p(ytz |yt17 / Vsd S) = (tz 1)
" \/ 21(1—p?) J;? vsds
1
x exp— ¥,

2(1-p?) f2vsds

—[yt1+<ps—mn’—"?pe>(tz—tl>

~G o9 st Blw, Sw
e MW (t —ty)
\/2r(1— p?) 2 veds+a3)
1
2((1—p?) 2 vsds+ a3

~ (5= w2~y

+

x exg—

) {y'[z

1 1.

— (G-l he) [ st
2 E t
+ g(vtz )1}

4 SIMULATION STUDIESFOR
FILTERING AND SMOOTHING

In this section, we simulate the proposed filtering and
smoothing equations with known systems parameters
for Heston model without any market price of risk
terms for simplicity.

The systems parameters are listed in Table-1 and
in this case the point "zero” is acceptable.

Table 1: Model parameters.

K 0 Hs p g
0.8638 1.0000 0.0100 -0.1050 2.5017

True

We present the log price in Fig.1. As shown in
Fig.2, the volatility process hits "zero” at many times
because the degree of freedoms is less than 2. The
rejection and resampling rate is shown in Fig.3.
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Figure 1: Observation data.
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Figure 2: True and estimatesl

5 PARALLEL FILTERING
ALGORITHM

In a market, traders buy or sell stocks from their feel-
ing of the volatility movement of the traded stock.
Form this fact, we need to estimate the volatility itself

330
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08 1

Rejection and resampling rate
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Figure 3: Rejection and resampling rate.
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Figure 4: Mean square errors.

rather than the parameters in the model. The estimate
of the volatility should be online. Hence, in this sec-
tion, we construct the recursive online estimate for the
volatility. Of course to obtain the estimate of volatil-
ity, we also get the estimate of systems parameters at
the same time. Here the unknown parameters are de-
noted by

a= [K797V57p727)\7VJ70J7)\V7)\S]'
Now we set candidates of unknown parametsuch
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that
al) e uniformly random vectors i®, j = 1,--- ,M,

If we know ana-priori information for ©, we may
set the pdfpo(a). For eachal), we solve the par-
ticle filter Vi, (a())) from Section 2.3. Hence from

(B.D.O.Anderson and J.B.Moore, 1979), we get the 4,

posteriori density given by

p(a(j)|yt0tk)
{= 1Wtk L@MLRG (W )y, ,)
2% {2, @)L (a0 1)}

where

RVOIG)
LFk,i:p(Yk|yk—1a/t ve'(alyds).

k—1

The estimates of volatility and parameters are given

by
U =230 (aD) p(a D lyigs,) (12)
~ M i i
G =2 aV p(alV |y, ). (13)

5.1 New Resampling Procedure

The sample of parametdl }'\":F’l is drawn only
from the initial information (in thls paper we set the
uniform distribution). Hence for a long time period

the estimates of parameters are sometimes stacked
with some biases. This may cause from the fact that
there are so many unknown parameters while we get
In order to improve this
property, a resampling for the candidates for param-

a scaler observation data.

etersa()) is usually performed in MCMC algorithm

in (Johannes and Polson, 2006). In the parallel filter-

ing algorithm, we already get the posterior probability
p(aV|y,, ) and from this distribution, we propose to

get new samples fax(!) by using the following pro-
cedure:

1. We set the resampling tintg if

2Mp
r <—
ZD |Ytot <3

we generate new samptel) from the step 2) to
6).

2. Calclulate
= z?":plwn p(a D ytg1p)
Gaq) = 221 (@D ()2p(@ D () lyigry) -
fori=1,2,---,10.

. Resetp(a!

. We denote the parameter range at the resampling

time pointt =t} as
Ib(i,tp) < a(i) <ub(i,ty) fori=1,2,---,10,

where Iii,t) = Ib(i) and ulfi,t) = ub(i) for t <
the first resampling time.
From the calculatedtr anddy, we reset the pa-
rameter range frort}, ; as

Ib(i,tp) = max(Ib(i,ty_1), Qe (i) —
and

ub(i,tp) =

30'0(())

min(ub(i,t, 1), Gtk +304(i))-

. Construct the candidates of paraméger

ub(tp,) — ub(tp) i

aw(i) = Ib(i,th) + e U

fork=1,2,--- ,Mp.

. Construct the posterior distribution for each pa-

rametera(i) by using the Gaussian approxima-
tion:

P(C((i)|Yto:tE,) ~ N(G(D, dtb R Ej 6'31/02))’

whereg; is a user defined parameter to increase
diversity.

7. Allocateng copies of the particle(i) from

nj = the number OW

p
€ (Fe(ak-1(i)), Fo(ok(i))]

for G= uniform random number, wheffg; is an
approximated Gaussian distribution (step 6)):

Fo(ax(i)
8 g eXP g () — Gy o)
Fo(lb(i.th) '

. Construct new candidate; fpe=1,2,--- ,Mp

all) =[al(1),al(2), -

j)|yyoitb) = 1/MP

ol (10)].

6 SIMULATION STUDIES

We set the following parameters in Table 2.

The lower and upper bounds for parameters are set as
Here we setit =0.001L T =1,M = 100 Mp =60 and
tr=20dt,e1=1.1,eo=11,63=1.15¢4,=101 ¢e5=
101e=1.15¢€;, = 1.15¢€g = 1.15¢€9 = 1.15, and

€10 = 1.15. In Fig.5, we show the true volatility state
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Table 2: Model parameters. 0.1
K ¢} Hs P o]
True | 0.8638 1.1000 0.6000 -0.1500
E Y U,J O_J -0.1f
True | 2.1017 5.4000 -0.3000 0.2500 -02f
Av As © -03
True | 0.1882 0.1723 2
Q 04
Table 3: Lower and upper bounds of model parameters. 8’
4 -05
K 0 Hs P
Upper| 1.6412  2.0900 1.140 -0.001 067
Lower | 0.0086 0.0011 0.006 -0.300 -
& A ! o’ W
Upper | 3.9932 10.260 -0.0030 0.4570 08¢ 1
Lower | 0.0210 0.0540 -0.5700 0.0025 fog Ty,
)\V )\S 0 01 02 03 0.1% 05 06 07 08 09 1
Upper | 0.35758 0.62174 IHE ({9
Lower | 0.0018 0.0032 Figure 6: Observed log price.
04 True value and estimated value of volatility
g 0.4 T T T T T T T T
T_ruevalue
; 03 0351 Fl\ltered statel.1 |
E 0.2 03}
g ok N‘M\ bo.zs— ‘
0 L L )AMJ‘JJ L L L m E 02r ' " ’H |
w 0 01 02 03 04 05 06 07 08 09 1 S } | | ‘ ‘ ‘
§ Time (year) 0-15l M‘ | \} I’ | MJ .|l
| [ (i
g- 02 x| ik “ | ‘ N\ \ "1 \M | u ( \‘ i\
B\ LAl ‘ )ﬁ i Mi
g 0 Q 0.05 " m \ \‘ ‘ W\‘J \
% VM | ‘j | w”.‘ A \“\ | | l
0 021 1 00 01 02 03 04 05 06 07 08 09 1
o Time (year)
'g 04 | Figure 7: True and estimated volatility.
8_06 Il Il Il Il Il Il Il Il Il 0.0 ‘ ‘ ‘ ‘
£ 0 0L 02 03 04 05 06 07 08 09 1 Square errorseum ~2.3106)
0 Time (year)
U 0.03
Figure 5: The true volatility state and compound Poisson S
process. o %[
g 0.02
and compound Poisson process. The observed log gms
price is also shown in Fig.6. The estimated volatil- £~
ity is shown in Fig.7 with the square error in Fig.8. oot
We also present the resampling rates of the parti- 0.005
cle filter of this algorithm in Fig. 9. PLLLITWIIRVL )N WY R VLS L o
The estimates of unknown parameters are demon- S Time (year)

strated from Figs 10 to 19 with the corresponding his- Figure 8: Square error of estimated volatility.

togram for 0<t < 1.
The true and estimated parameters at 1 are the upper and lower bounds for each parameters at

shown in Figs. 20-24 where the green line indicated t = 0.
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Figure 9: Square error of estimated volatility

K
i w m ; : :
—— Estimated value
Lower bound

1§ —— Upper bound 5 Mean=0.935
[} True value
0 Cov.=1:8e-02
Oy
0 0
£
g 12
Q 20
T
9 1
g 0
Euf MRV
b
v 150
T 0]
[«
0 00
0 1
Y
z
F

02| 50

VO 02 04 06 08 1 v0 05 1 15
Time (jear) Parameter

Figure 10: Estimated and histogram for &t <1

7 CONCLUSIONS

By using the non-central chi-square random genera-
tion method, we developed the particle filter for esti-
mating the stochastic volatility process. The sequen-
tial estimation for the systems unknown parameters
are performed with the aid of the new resampling pro-
cedure. In this procedure, we need to choose the re-
sampling timet; and the user defined parametgto
obtain the good numerical results. This turning prob-
lem is still an open problem.
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Figure 16: Estimateft’ and histogram for &t < 1
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Figure 19: Estimatedls and histogram for &t <1
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